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Abstract Within chaos-geometric approach it has been carried out modelling

and analysis of nonlinear processes dynamics in quantum-generator system

(time series of laser intensities). The approach combines together application

of the advanced mutual information approach, correlation integral analysis,

Lyapunov exponent's analysis etc.
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1. Introduction

This paper goes on our work on development an advamsed version of non-

lienar analysis tool and its application to studying dynamics of nonlinear pro-

cesses in complex chaotic systems. Earlier [1]�[8] we have developed a new, chaos-

geometrical combined approach to treating of chaotic dynamics of complex sys-

tems and forecasting its temporal evolution. Here we use this approach to carry

out an analysis of nonlinear processes dynamics in quantum-generator system

(on example of laser system). The approach combines together application of the

advanced mutual information approach, correlation integral analysis, Lyapunov

exponent's analysis etc. Let us rimend that during the last two decades, many

studies in various �elds of science have appeared, in which chaos theory was

applied to a great number of dynamical systems, including those are originated

from nature [5]�[16]. The outcomes of such studies are very encouraging, as they

reported very good predictions using such an approach for di�erent systems.
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2. Advanced chaos-geometrical approach to quantum-generator dy-

namics: Data

In this studying we study dynamics of quantum-generator system on example

of external cavity semiconductor laser of the hydrological systems, in particular,

variations of the laser intensity, by using the non-linear prediction approaches

and chaos theory method (in versions) [1]�[8]. The time series of the laser inten-

sity are described and listed in [9].

As the fundamental aspects of chaos-geometric approach have been in details

presented earlier, here we are limited only by key moments. Following to [1]�[9],

further we formally consider scalar measurements s(n) = s(t0+ n∆t) = s(n),

where t0 is a start time, ∆t is time step, and n is number of the measure-

ments. In a general case, s(n) is any time series (f.e. atmospheric pollutants

concentration). As processes resulting in a chaotic behaviour are fundamen-

tally multivariate, one needs to reconstruct phase space using as well as pos-

sible information contained in s(n). Such reconstruction results in set of d -

dimensional vectors y(n) replacing scalar measurements. The main idea is that

direct use of lagged variables s(n + τ), where τ is some integer to be de�ned,

results in a coordinate system where a structure of orbits in phase space can

be captured. Using a collection of time lags to create a vector in d dimensions,

y(n) = [s(n), s(n + τ), s(n + 2 τ), .., s(n +(d−1 )τ)], the required coordinates

are provided. In a nonlinear system, s(n + j τ) are some unknown nonlinear

combination of the actual physical variables. The dimension d is the embedding

dimension, dE .

Let us remind that following to [1]�[8], the choice of proper time lag is important

for the subsequent reconstruction of phase space. If τ is chosen too small, then

the coordinates s(n + j τ), s(n +(j +1 )τ) are so close to each other in numerical

value that they cannot be distinguished from each other. If τ is too large, then

s(n+j τ), s(n+(j +1 )τ) are completely independent of each other in a statistical

sense. If τ is too small or too large, then the correlation dimension of attractor

can be under-or overestimated. One needs to choose some intermediate position

between above cases. First approach is to compute the linear autocorrelation

function CL(δ) and to look for that time lag where CL(δ) �rst passes through

0. This gives a good hint of choice for τ at that s(n + j τ) and s(n + (j + 1 )τ)

are linearly independent. It's better to use approach with a nonlinear concept

of independence, e.g. an average mutual information. The mutual information I

of two measurements ai and bk is symmetric and non-negative, and equals to 0

if only the systems are independent. The average mutual information between
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any value ai from system A and bk from B is the average over all possible

measurements of I AB (ai , bk ). Earlier it was suggested, as a prescription, that

it is necessary to choose that τ where the �rst minimum of I (τ) occurs.

In [5]�[6] it has been stated that an aim of the embedding dimension determina-

tion is to reconstruct a Euclidean space Rd large enough so that the set of points

dA can be unfolded without ambiguity. The embedding dimension, dE , must be

greater, or at least equal, than a dimension of attractor, dA, i.e. dE > dA. In

other words, we can choose a fortiori large dimension dE , e.g. 10 or 15, since

the previous analysis provides us prospects that the dynamics of our system

is probably chaotic. The correlation integral analysis is one of the widely used

techniques to investigate the signatures of chaos in a time series. If the time

series is characterized by an attractor, then correlation integral C (r) is related

to a radius r as d = lim

r → 0, N →∞

logC(r)
log r , where d is correlation exponent.

As input data we have used measured data for the temporal dependences of

the intensity of the laser [9]: i) - time series, showing the random walk between

the ground state and state of third harmonics of the laser system; ii) - the time

series for the system in a state of a global chaotic attractor.

It table 1 we list the values of the autocorrelation function CL and the �rst

minimum of mutual information Imin1 for the laser intensity.

Table 1. Time lags (hours) subject to di�erent values of CL, and �rst minima

of average mutual information,Imin1, for the laser emission intensity.

Series 1 Series 2 Series 3 Series 4

CL=0.1 67 82 112 124

CL=0.5 10 12 9 21

Imin1 12 14 18 28

The values, where the autocorrelation function �rst crosses 0.1, can be chosen

as τ , but in [10]�[12] it's showed that an attractor cannot be adequately re-

constructed for very large values of τ . So, before making up �nal decision we

calculate the dimension of attractor for all values in Table 1. The large values of

τ result in impossibility to determine both the correlation exponents and attrac-

tor dimensions using Grassberger-Procaccia method [12]. Here the outcome is

explained not only inappropriate values of τ but also shortcomings of correlation

dimension method. If algorithm [4] is used, then a percentages of false nearest

neighbours are comparatively large in a case of large τ . If time lags determined by

average mutual information are used, then algorithm of false nearest neighbours

provides dE = 6 .
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The fundamental problem of theory of any dynamical system is in predicting

the evolutionary dynamics of a chaotic system. Let us remind following to [14]�

[16] that the cited predictability can be estimated by the Kolmogorov entropy,

which is proportional to a sum of positive LE. As usually, the spectrum of LE

is one of dynamical invariants for non-linear system with chaotic behaviour.

The limited predictability of the chaos is quanti�ed by the local and global

LE, which can be determined from measurements. The LE are related to the

eigenvalues of the linearized dynamics across the attractor. Negative values show

stable behaviour while positive values show local unstable behaviour. For chaotic

systems, being both stable and unstable, LE indicate the complexity of the

dynamics. The largest positive value determines some average prediction limit.

Since the LE are de�ned as asymptotic average rates, they are independent of

the initial conditions, and hence the choice of trajectory, and they do comprise

an invariant measure of the attractor. An estimate of this measure is a sum

of the positive LE. The estimate of the attractor dimension is provided by the

conjecture dL and the LE are taken in descending order. The dimension dL gives

values close to the dimension estimates discussed earlier and is preferable when

estimating high dimensions. To compute LE, we use a method with linear �tted

map, although the maps with higher order polynomials can be used too. Non-

linear model of chaotic processes is based on the concept of compact geometric

attractor on which observations evolve. Since an orbit is continually folded back

on itself by dissipative forces and the non-linear part of dynamics, some orbit

points [4]�[6] yr (k), r = 1 , 2 , ..,N B can be found in the neighbourhood of any

orbit point y(k), at that the points yr (k) arrive in the neighbourhood of y(k) at

quite di�erent times than k . One can then choose some interpolation functions,

which account for whole neighbourhoods of phase space and how they evolve

from near y(k) to whole set of points near y(k + 1 ). The implementation of this

concept is to build parameterized non-linear functions F(x, a) which take y(k)

into y(k + 1 ) = F(y(k), a) and use various criteria to determine parameters

a. Since one has the notion of local neighbourhoods, one can build up one's

model of the process neighbourhood by neighbourhood and, by piecing together

these local models, produce a global non-linear model that capture much of the

structure in an attractor itself. Table 2 shows the correlation dimension (d2),

embedding dimension (dE), Kaplan-Yorke dimension (dL), and average limit of

predictability (Prmax, hours) for time series of the laser intensities.
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Table 2. The Time lag (τ), correlation dimension (d2), embedding dimension

(dE), Kaplan-Yorke dimension (dL) for time series of the laser intensity (chaos

and hyperchaos regimes).

Chaos Hyperchaos

τ 6 10

(d2) 2.2 7.4

(dE) 4 8

dL 2.16 7.18

The sum of the positive LE determines the Kolmogorov entropy, which is in-

versely proportional to the limit of predictability (Prmax. Let us remind since

the conversion rate of the sphere into an ellipsoid along di�erent axes is deter-

mined by the LE, it is clear that the smaller the amount of positive dimensions,

the more stable is a dynamic system. Consequently, it increases the predictabil-

ity of it. As the numerical calculation shows the presence of the two (from six)

positive λi (one LE pair for chaos regime: 0.151 and 0.0001; for hyperchaos :

0.517 and 0.192) suggests the system broadens in the line of two axes and con-

verges along four axes that in the six-dimensional space. The time series of laser

intensity in the chaos regime have the highest predictability than other time

series, for example, in the hyperchaos one.

3. Conclusions

In this paper we considered an advanced chaos-geometrical approach to nu-

merical modelling and analysis of nonlinear processes dynamics in quantum-

generator system on example of the semiconductor laser system. The approach

combines together application of the advanced mutual information approach,

correlation integral analysis, Lyapunov exponent's analysis etc.We have investi-

gated a chaotic behaviour in the time series of the laser intensity in two regimes

of chaos and hyperchaos and computed the key numerical parameters of chaotic

dynamics.
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