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1 Introduction

In [1] it is proved that the correspondence assigning to every probability mea-

sures on two coordinate spaces the set of probability measures on the product

is continuous. Earlier, a similar result was proved by Ei�er [2] and Schief [6].

In this note we develop a di�erent approach to this problem and apply some

known properties of probability measures in order to prove a more general re-

sult. Note that problems of this type arise in mathematical economy (see, e.g.,

introduction in [1]). Consider the income distributions at the time period k as

probability measures µk on a space Y of possible incomes. Then any redistri-

bution policy can be interpreted as a probability measure, τ , on the product

Y × · · · × Y such that the marginal distributions of τ are µi and this leads

to the problem of welfare maximization for prescribed sequence µ1, . . . , µk and

dependence of this maximum on µ1, . . . , µk.

A part of this text circulated as a preprint of the second-named author (see

also the preprint [3]). In this note, we consider the problem not in full generality,

our aim is rather unveiling the basic idea, which consists in reducing the situation
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to the case of �nite spaces. Remark that the methods used in this note are based

on general properties of functors in the category of compact Hausdor� spaces

and Shchepin's theory of uncountable inverse spectra [7].

2 Preliminaries

By 1X we denote the identity map of X. Given a product
∏
iXi, we denote by

πi its projection onto the ith coordinate.

Given a topological space X, denote by expX its hyperspace, i.e., the set of

nonempty compact subsets in X endowed with the Vietoris topology. A base of

this topology consists of the sets of the form

〈U1, . . . , Un〉 = {A ∈ expX | A ⊂ ∪ni=1Ui, A ∩ Ui 6= ∅ for all i},

where U1, . . . , Un are open subsets in X and n ∈ N.
Given a compact-valued map (correspondence) F : X → Y , we regard it as a

(single-valued) map from X into expY . The continuity of the correspondence F

is equivalent to the continuity of f if we endow expY with the Vietoris topology.

Every continuous onto map f : X → Y determines the inverse map f−1 : Y →
expX, y 7→ f−1(y). It is a well-known fact that f is open if and only if f−1 is

continuous.

2.1 Inverse systems and bicommutative diagrams

A commutative diagram

X[r]f [d]gY [d]uZ[r]vT (1)

is called bicommutative [5] if its characteristic map

χ = (f, g) : X → Y ×T Z = {(y, z) ∈ Y × Z | u(y) = v(z)}

is onto. The following lemma is proved by Shchepin [7].

Lemma 1 Suppose that in diagram (1) the spaces X,Y, Z, T are compact, the

maps f, g, u, v are continuous and g, u are onto. If f is an open map, then so is

v.

The necessary de�nitions and results concerning σ-spectra (inverse systems) can

be found in [7]. Here we only recall that a morphism (fα)α∈A of an inverse

system S = {Xα, pαβ ;A} into an inverse system S ′ = {X ′α, p′αβ ;A} is called

bicommutative if, for every α ≥ β, the diagram

Xα[r]
fα [d]pαβX

′
α[d]

p′αβXβ [r]fβX
′
β
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is bicommutative.

In [7], it is proved that for any bicommutative morphism of σ-spectra con-

sisting of open maps the limit map lim←−(fα) : lim←−S → lim←−S
′.

2.2 Probability measures and bicommutative diagrams

By P we denote the probability measure functor in the category Comp of com-

pact Hausdor� spaces and continuous maps.

Lemma 2 For arbitrary maps fi : Xi → X ′i, i = 1, . . . , k, the diagram

P (
∏

Xi)[d]P (
∏
fi)[rr]

MX1,...,Xk

∏
P (Xi)[d]

∏
P (fi)P (

∏
X ′i)[rr]MX′1,...,X

′
k

∏
P (Xi)

(2)

is bicommutative. We will use the fact that P is a bicommutative functor in the

sense that it preserves the class of bicommutative diagrams (see [6]).

Proof Given τ ′ ∈ P (
∏
X ′i) and (µ1, . . . , µk) ∈

∏
P (X ′i) such that

MX′1,...,X
′
k
(τ ′) =

∏
P (fi)(µ1, . . . , µk) = (P (f1)(µ1), . . . , P (fk)(µk))

we proceed as follows.

For every j ≤ k denote by Di the diagram∏
i≤j

Xi ×
∏
i>j

X ′i[d]
∏
i≤j fi×1∏i>j X′i [rr]

πiXj [d]
fj
∏

X ′i[rr]πjX
′
j ,

which is obviously bicommutative.

Since P (π1)(τ
′) = P (f1)(µ1), applying the functor P to the diagram D1 we

�nd τ1 ∈ P (X1 ×
∏
i>1X

′
i) such that

P (π1)(τ1) = µ1, P (f1 × 1∏
i>1X

′
i
)(τ1) = τ ′.

Consider natural l, 1 ≤ l ≤ k, and suppose that, for every j < l, we

have de�ned τi ∈ P
(∏

i≤j Xi ×
∏
i>j X

′
i

)
such that P (πj)(τj) = µj and

P
(
fi × 1∏

i>j X
′
i

)
(τj) = τj−1. Note that

P (fl)(µl) =P (πl)(τ
′) = P (πl)

(
P
(
f1 × 1∏

i>1X
′
i

))
= . . .

=P (πl)

P
f1 × 1∏

i>1X
′
i
. . . P

 ∏
i≤l−1

fi × 1∏
i>l−1X

′
i


=P (πl)(τl−1).
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Applying the functor P to the bicommutative diagram Dj we conclude

that there exists τl ∈ P
(∏

i≤lXi ×
∏
i>lX

′
i

)
such that P (πl)(τl) = µl and

P
(∏

i≤l fi × 1∏
i>lX

′
i

)
(τl) = τl−1.

It is easy to see that τ = τk has the following properties: MX1...Xk(τ) =

(µ1, . . . , µk) and P (
∏
fi) = τ ′. This proves the bicommutativity of diagram (2).

3 Result

The following is the main result of this note.

Let X1, . . . , Xk be a �nite sequence of compact spaces. Then the multivalued

map assigning to every µ1, . . . , µk, where µi ∈ P (Xi), i = 1, . . . , k, the set

M(µ1, . . . , µk) =MX1,...,Xk(µ1, . . . , µk) = {ν ∈ P
(∏

Xi

)
| P (πi) = µi, i = 1, . . . , k}

is continuous.

Proof Our proof consists of three steps.

1) Suppose that the spaces X1, . . . , Xk are �nite. Then the map MX1,...,Xk

is an a�ne surjective map of compact convex polyhedra. In order to prove that

every such map, say, f : A → B is open, it su�ces to show that any point a

of A lies in the image of a selection of f . Denote by C the union of simplices

of the geometric boundary of B that do not contain the point f(a). For every

vertex c of a simplex in C let g(c) be an arbitrary point of f−1(c). Extend the

so-de�ned map g onto C a�nely onto every simplex of C. Now, every point b in

B can be uniquely represented in the form tf(a) + (1− t)c, where c ∈ C. De�ne
g(b) = ta+ (1− t)g(c). We see that fg = 1B and a ∈ g(B).

2) Suppose now that the spaces X1, . . . , Xk are zero-dimensional. Then, for

each i, there exists an inverse σ-system Si = {Xiα, piαβ ;A} consisting of �nite

spaces and surjective maps such that Xi = lim←−Si, i = 1, . . . , k.

By Lemma 2, the maps (MX1α,...,Xkα)α form a bicommutative morphism of

the systems {P (
∏
iXiα), P (

∏
i piαβ);A} and {

∏
i P (Xiα),

∏
i P (piαβ);A}. The

result of Shchepin mentioned above together with was proved in case 1) show

that the limit map of the morphism, namely, the map MX1,...,Xk is continuous.

3) X1, . . . , Xk are arbitrary compact Hausdor� spaces. Then there exist maps

fi : Yi → Xi, where Yi are compact Hausdor� zero-dimensional spaces. Conse-

quently applying Lemmas 1 and 2 we obtain the result.

ne can generalize the main result in di�erent directions. First of all, the

products in Theorem 3 need not be �nite. The proof requires trans�nite induction

instead of �nite one.
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Second, one can replace the probability measure functor by another functors

acting in the category Comp (see, e.g., the preprint [3]). Namely, consider the

functor ccP de�ned as follows. The space ccP (X) is the subspace in expP (X)

consisting of convex sets; for a map f : X → Y , the map ccP (f) : ccP (X) →
ccP (Y ) acts by the formula ccP (f)(A) = P (f)(A), for A ∈ ccP (X). The proof

that a counterpart of Theorem 3 holds also for the functor ccP consists in

establishing a counterpart of Lemma 2 for the functor ccP and �nite spaces

X1, . . . , Xk. Note that this approach leads to a proof which is simpler than that

in [3].

The second-named author considered the functor of idempotent measures

(Maslov measures) in the category Comp (see [8]). In [8], it is proved, in partic-

ular, that one cannot replace the probability measure functor by the idempotent

measure functor in Theorem 3.

A functor in the category Comp is said to be open-bicommutative if this

functor preserves the class of open-bicommutative diagrams, i.e., diagrams (1)

for which the characteristic maps are onto and open. A more general notion of

open multi-commutativity of functors is introduced in the preprint [4].
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