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New chaos-geometric and information technology
analysis of chaotic generation regime in a single-
mode laser system with absorbing cell
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Abstract Here we present the results of application of a new chaos-geometric

approach and some information technology algorithms to analysis of chaotic

generation regime in a single-mode laser system with absorbing cell. Earlier

developed chaos-geometric approach to modelling and analysis of nonlinear

processes dynamics of the complex systems combines together application of the

advanced mutual information approach, correlation integral analysis, Lyapunov

exponent's analysis etc.
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1. Introduction

As it is known a chaos theory establishes that apparently complex irregular

behaviour could be the outcome of a simple deterministic system with a few

dominant nonlinear interdependent variables. The past decade has witnessed a

large number of studies employing the ideas gained from the science of chaos

to characterize, model, and predict the dynamics of various systems phenomena

[1]�[10]. The outcomes of such studies are very encouraging, as they not only

revealed that the dynamics of the apparently irregular phenomena could be

understood from a chaotic deterministic point of view but reported very good

predictions using such an approach for di�erent systems too.

Earlier [1]�[8] we have developed a new, chaos-geometrical and information

technology combined approach to treating of chaotic low- and high-D attractor
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dynamics of complex dynamical systems and forecasting its temporal evolution.

Here we use this approach to carry out an analysis of chaotic self-oscillations

in a single-mode laser system with absorbing cell. Such systems have a great

practical interest and are used in di�erent technical applications. Our approach

combines together application of a few techniques, namely, an advanced info-

mation technolgy, including a mutual information approach, correlation integral

analysis, Lyapunov exponent's analysis etc.

2. Chaos-geometrical approach to complex self-oscillations in a single-

mode laser system with absorbing cell

In this work we study complex self-oscillations in a single-mode laser system with

absorbing cell. As an analysis technique use an advanced non-linear prediction

approach, based on some chaos theory methods and information technolgy algo-

rithms (in versions) [1]�[8]. We consider the output data of a theoretical model

of a single-mode laser resonator in which the reinforcement is placed along with

a nonlinear absorbing medium [9]. Each of the environments consists of identi-

cal two-level atoms. The gain and absorption lines are uniformly broadened and

their centers align and coincide with one of the frequencies of the cavity. Such a

model can describe the real system of �ve di�erential equations, which have been

numerically solved within di�erent approximations [9]�[10]. At last, let us note

that the system studied is used for the experimental observation of a dynamical

chaos.

The fundamental aspects of our chaos-geometric approach version have been in

details presented earlier. So, here we are limited only by a short description of

the key aspects, following to our papers [1]�[8]. As usually, one should formally

consider scalar measurements s(n) = s(t0+ n∆t) = s(n), where t0 is a start

time, ∆t is time step, and n is number of the measurements. In a general case,

s(n) is any time series (f.e. atmospheric pollutants concentration). As processes

resulting in a chaotic behaviour are fundamentally multivariate, one needs to

reconstruct phase space using as well as possible information contained in s(n).

Such reconstruction results in set of d -dimensional vectors y(n) replacing scalar

measurements. The main idea is that direct use of lagged variables s(n+τ), where

τ is some integer to be de�ned, results in a coordinate system where a structure

of orbits in phase space can be captured. Using a collection of time lags to create

a vector in d dimensions, y(n) = [s(n), s(n + τ), s(n + 2 τ), .., s(n +(d−1 )τ)],

the required coordinates are provided. In a nonlinear system, s(n + j τ) are some

unknown nonlinear combination of the actual physical variables. The dimension

d is the embedding dimension, dE .
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Let us remind that following, for example, to [7]�[8], the choice of proper time

lag is important for the subsequent reconstruction of phase space. If τ is chosen

too small, then the coordinates s(n + j τ), s(n +(j + 1 )τ) are so close to each

other in numerical value that they cannot be distinguished from each other. If τ

is too large, then s(n + j τ), s(n + (j + 1 )τ) are completely independent of each

other in a statistical sense. If τ is too small or too large, then the correlation

dimension of attractor can be under-or overestimated. One needs to choose some

intermediate position between above cases. First approach is to compute the

linear autocorrelation function CL(δ) and to look for that time lag where CL(δ)

�rst passes through 0. This gives a good hint of choice for τ at that s(n + j τ)

and s(n + (j + 1 )τ) are linearly independent.

It's better to use approach with a nonlinear concept of independence, e.g.

an average mutual information [10]�[12]. The mutual information I of two mea-

surements ai and bk is symmetric and non-negative, and equals to 0 if only the

systems are independent. The average mutual information between any value ai

from system A and bk from B is the average over all possible measurements of

I AB (ai , bk ). Earlier it was suggested, as a prescription, that it is necessary to

choose that τ where the �rst minimum of I (τ) occurs.

Earlier (look [5]�[12]) it has been stated that an aim of the embedding dimension

determination is to reconstruct a Euclidean space Rd large enough so that the

set of points dA can be unfolded without ambiguity. The embedding dimension,

dE , must be greater, or at least equal, than a dimension of attractor, dA, i.e.

dE > dA. In other words, we can choose a fortiori large dimension dE , e.g.

10 or 15, since the previous analysis provides us prospects that the dynamics of

our system is probably chaotic. The correlation integral analysis is one of the

widely used techniques to investigate the signatures of chaos in a time series. If

the time series is characterized by an attractor, then correlation integral C (r)

is related to a radius r as d = lim

r → 0, N →∞

logC(r)
log r , where d is correlation

exponent [13].

3. Some results and Conclusions

As it has been noted above as data for analysis we use the output data of theoret-

ical model of a single-mode laser resonator, more exactly, solutions of a system

of �ve di�erential equations, which have been numerically solved within di�erent

approximations [9]�[10]. The cited system includes the equations for intensity,

and simuteniously for absorbing medium. The functions to be determined are

amplitude of the laser of the �eld, polarizations in the environment and di�er-

ence between populations of the working levels in the two-level atomic ensemble.
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The key physical parameters include longitudinal and transverse relaxation rates

dk , related to the half-width of the resonator dw/2, the ratio of the coe�cients

of saturation of the absorbing and amplifying media b. We are interested by a

chaotic regime of the system, when there is realized a chaotic attractor. Indeed,

according to [9]�[10], strange attractors occur as a result of the sequence of bi-

furcations of solutions of above cited dynamical equations system, the �rst of

which is the Hopf bifurcation of stationary solutions with zero intensity of the

laser �eld. Appearance of bifurcations is linked with the governing parameter

N = F [di, bi] (i=1,2). Our analysis shows that the Hopf bifurcation occurs at

moderate values N, if the relative width of the absorption line d2 is quite small,

and the relative width of the gain line d1 is quite large. The numerical calcula-

tion showed that in order to get the chaotic lasing it is necessary the following:

to saturate the absorber should be saturated stronger than the ampli�er (b>1).

At low b the limit cycles generated from the stationary solutions with the zeroth

intensity is stable up to very large values of N.

It table 1 we list the values of the autocorrelation function CL and the �rst

minimum of mutual information Imin1 for time series of the output function

(amplitude, polarization)for the studied single-mode laser system with absorbing

cell (four sets of data).

Table 1. Time lags subject to di�erent values of CL, and �rst minima of average

mutual information,Imin1, (see text).

Series 1 Series 2 Series 3 Series 4

CL=0.1 42 53 68 96

CL=0.5 7 8 10 16

Imin1 8 10 12 112

The values, where the autocorrelation function �rst crosses 0.1, can be chosen

as τ , but in [10]�[13] it's showed that an attractor cannot be adequately re-

constructed for very large values of τ . So, before making up �nal decision we

calculate the dimension of attractor for all values in Table 1. The large values

of τ result in impossibility to determine both the correlation exponents and at-

tractor dimensions using Grassberger-Procaccia method [13]. Here the outcome

is explained not only by inappropriate values of τ but by shortcomings of cor-

relation dimension method too. If algorithm [4] is used, then a percentages of

false nearest neighbours are comparatively large in a case of large τ . If time

lags determined by average mutual information are used, then algorithm of false

nearest neighbours provides dE = 8 .
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Table 2 shows the time lags, correlation dimension (d2), embedding dimen-

sion (dE), Kaplan-Yorke dimension (dL) for time series of the output function

(amplitude, polarization)for the studied single-mode laser system with absorbing

cell (two sets of data, accordingly, regimes: chaos 1 and chaos 2).

Table 2. The Time lag (τ), correlation dimension (d2), embedding dimension

(dE), Kaplan-Yorke dimension (dL) for time series of the the output function for

the studied single-mode laser system with absorbing cell.

Chaos 1 Chaos 2

τ 7 8

(d2) 4.7 4.7

(dE) 5 5

dL 4.15 4.17

The further computing give the following values for two Lyapunov's exponents

(LE) λi , namely, one LE pair for chaos 1 regime: 0.215 and 0.154 and for the

chaos 2 regime: 0.218 and 0.152). Naturally, the positive values of the �rst two

Lyapunov's exponents con�rm a chaotic feature of the system dynamics [14]�[16].

So, in this paper we have presented results of computing and numerical analysis

of the strange attractor dynamics of the single-mode laser system with absorb-

ing cell with using an advanced chaos-geometrical and information technology

approach (combinatin of the advanced mutual information approach, correlation

integral analysis, Lyapunov exponent's analysis etc). The numerical data on the

time lags, correlation dimension, embedding dimension (dE), Kaplan-Yorke di-

mension (dL) and the LE for time series of the output function for the studied

single-mode laser system with absorbing cell are listed.
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