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Abstract The notion of idempotent measure is a counterpart of that of

probability measure in the idempotent mathematics. In this note, we consider

a metric on the set of compact, idempotent measure spaces (mim-spaces) and

prove that this space is separable and non-complete.
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1 Introduction

The notion of metric measure space (i.e., a space endowed with a measure;

brie�y, mm-space) plays an important role in di�erent parts of mathematics.

This notion also has numerous applications in computer science, in particular,

in computer vision.

The notion of probability measure has its counterpart in the idempotent

mathematics; the latter is a part of mathematics in which the usual arithmetic

operations are replaced by idempotent ones (e.g., max). Namely, in [3] there

were de�ned the idempotent measures (called also Maslov measures).

In this note, we introduce the notion of metric, idempotent measure space

(brie�y, mim-space). Recently, there were de�ned the so-called idempotent frac-

tals as (ultrametric) spaces endowed with idempotent measures [4]; they can be

considered as natural examples of mim-spaces.

We de�ne a metric on the set of all compact mim-spaces and prove that the

obtained space of mim-spaces is a separable noncomplete space.
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2 Preliminaries

We begin with the notion of idempotent measure and space of idempotent mea-

sures (see [6] for details).

Let (M,d) be a compact metric space. As usual, by C(M) we denote the

Banach space of continuous functions on M (with the sup-norm). Given λ ∈
R, by λM we denote the constant function in C(M) equal to λ. Consider the

following operations:

� : R× C(M)→ C(M) : (λ, ϕ) 7→ λM + ϕ;

⊕ : C(M)× C(M)→ C(M) : (ψ,ϕ) 7→ max{ψ,ϕ}.

A functional µ : C(M) 7→ R is called an idempotent measure if it satis�es the

following properties:

1. µ(cM ) = c;

2. µ(c� ϕ) = c� µ(ϕ);

3. µ(ψ ⊕ ϕ) = µ(ψ)⊕ µ(ϕ).

Consider some examples of idempotent measures. For any x ∈M , we denote

by δx the Dirac measure concentrated at x, i.e. δx(ϕ) = ϕ(x), ϕ ∈ C(M). Clearly,

δx ∈ I(M). More generally, given x1, . . . , xn ∈ M and λ1, . . . , λn ∈ R such that

max{λ1, . . . , λn} = 0, one can de�ne µ = ⊕n
i=1λi � δxi

∈ I(M).

Denote by I(M) the set of all idempotent measures on M. We consider the

weak*-topology on I(M); the base of this topology consists of the sets

〈µ;ϕ1, . . . , ϕn; ε〉 = {ν ∈ I(M) | |µ(ϕi)− ν(ϕi)| < ε, i = 1, . . . , n},

where µ ∈ I(M), ϕi ∈ C(M), i = 1, . . . , n, ε > 0.

Let µ ∈ I(M). The support of µ is a minimal (with respect to inclusion)

closed set A inM such that µ(ϕ) = µ(ψ) whenever ϕ,ψ ∈M(X) and ϕ|A = ψ|A.
We denote the support of µ by supp(µ′).

Given a map f : M → M ′ of compact metric spaces, we de�ne a map

I(f) : I(M) → I(M ′) by the formula I(f)(µ)(ϕ) = µ(ϕf), µ ∈ I(M), ϕ ∈
C(M ′). In particular, if µ = ⊕n

i=1λi � δxi ∈ I(M), then

I(f)(µ) = ⊕n
i=1λi � δf(xi) ∈ I(M ′).

We thus obtain a functor I on the category of compact metrizable spaces and

continuous maps [6].

The following is proved in [1].
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Proposition 1 If f : X 7→ Y is a non-expanding map, then I(f) : I(X) 7→ I(Y )

is also a non-expanding map.

By expX we denote the set of nonempty compact subsets in a metric space

(X, d) (the hyperspace of X). The Hausdor� metric dH on expX is de�ned by

the formula:

dH(A,B) = inf{ε > 0 | A ⊂ Oε(B), B ⊂ Oε(A)}, A,B ∈ expX.

The Gromov-Hausdor� distance between compact metric spaces X1 and X2

is de�ned as follows:

dGH(X1, X2) = inf{dH(f1(X1), f2(X2)) | fi : Xi → Z, i = 1, 2,

is an isometric embedding into a metric space Z}

(see, e.g., [2]).

3 mim-spaces

Here we introduce the notion of mim-space.

De�nition 1 A mim-space is a triple (M,d, µ), where

1. (M,d) is a metric space;

2. µ is an idempotent measure on M ;

3. supp(µ) = M .

We say that mim-spaces (M,d, µ) are (M ′, d′, µ′) isomorphic, if there exists

an isometry f : M0 7→M ′0 such that

ψ ∗ µ = µ′.

By [(M,d, µ)] we denote the class of all mim-spaces isomorphic to (M,d, µ)

mim-spaces. Denote M = {[(M,d, µ)] | (M,d, µ) is an mim-space}.
In order to simplify notation we will identify every mim-space (M,d, µ) and

the class [(M,d, µ)]. This allows us to interpret M as a set.

Let us de�ne a metric on M. First, we recall the de�nition of the metric on

M(X) (see [1]). A function ϕ : M 7→ R is called n-Lipschitz, if

|ϕ(x)− ϕ(y)| ≤ nd(x, y), x, y ∈ X.

Let n ∈ N. It is known (see [1]) that the function d̂n : I(M) × I(M) → R
de�ned by the formula

d̂n(µ, ν) = sup{|µ(ϕ)− ν(ϕ) || ϕ is n-Lipschitz}
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is a continuous pseudometric on the space I(M).

The metric d̃ on M is de�ned by

d̃(µ, ν) =

∞∑
n=1

d̂n(µ, ν)

n2n
, µ, ν ∈ I(M).

Let

Iω(M) = {⊕n
i=1λi�δxi

| λ1, . . . , λn ∈ R, max{λ1, . . . , λn} = 0, x1, . . . , xn ∈M, n ∈ N}.

In other words, Iω(M) consists of elements of �nite support in I(M). It is known

(see [6]) that the set Iω(M) is dense in the space I(M).

4 Metric on the set of mim-spaces

Let (Mi, di, µi), i = 1, 2, be mim-spaces. Consider the function

D((M1, d1, µ1)(M2, d2, µ2)) = inf
{
d̂(I(f1)(µ1), I(f2)(µ2)) |

fi : Mi → Z is an isometric embedding}

on the set M.

We �rst remark that D is a well-de�ned function on M ×M. To this end,

we have to show that the set from the right side of the formula de�ning D is

nonempty.

Indeed, let M = M1 ×M2 and d be the metric on M de�ned by the formula

d((x1, x2), (y1, y2)) = d1(x1, y1) + d2(x2, y2). Let m0
i ∈Mi, i = 1, 2. De�ne maps

fi : Mi →M , i = 1, 2, by the formula f1(x) = (x,m0
2), f2(y) = (m0

1, y). Clearly,

f1, f2 are isometric embeddings.

Theorem 1 The function D is a metric on M.

Proof Nonnegativity and symmetry of D are obvious.

We are going to prove nondegeneracy of D. Suppose that

D((M1, d1, µ1)(M2, d2, µ2)) = 0. Then for every natural n there exists a

compact metric space (Zn, %n) and isometric embeddings gn : M1 → Zn,

hn : M2 → Zn such that

lim
n→∞

%̂n(I(gn)(µ1), I(hn)(µ2)) = 0.

Without loss of generality, one may assume that Zn = M tM ′n and gn is

the inclusion map. Also, we assume that M ′i ∩M ′j = ∅ whenever i 6= j. De�ne

H = ∪∞n=1Zn.
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De�ne % : H ×H → R as follows:

%(x, y) =

%i(x, y), if x, y ∈ Zi,

inf{%i(x, a) + %i(a, y) | a ∈ Z}, if x ∈ Zi, y ∈ Zj , i 6= j.

It is not di�cult to show that % is a metric on H and Zn is a subspace of Z for

every n.

We are going to prove that Zn → Z in the hyperspace expH. Suppose the

contrary. Without loss of generality, one may assume that there exists ε > 0

and a nonempty open subset U of M2 such that hn(U) lies in the complement

of the ε-neighborhood of Z in H. Since supp(µ2) = M2, there exists a function

ϕ ∈ C(M2) such that supp(ϕ) ⊂ U and µ2(ϕ) = c 6= 0.

De�ne ψ : H → R as follows: ψ(x) = ϕh−1n (x) if x ∈ Zn and ψ(x) = 0

otherwise. Then I(hn)(µ2)(ψ) = c, for every n, and µ1(ψ) = 0. We therefore

obtain a contradiction.

Thus, Zn → Z in the hyperspace expH and therefore H is compact. Let

{xi | i ∈ N} be a dense set in M2. By induction, we construct monotonically

increasing subsequences S1 ⊃ S2 ⊃ . . . such that the sequence (hn(xi))n∈Si

is convergent. Denote its limit by yi. Clearly, the map xi 7→ yi, i ∈ N, is an

isometry. It has a unique extension u : M2 →M1, which is also an isometry such

that I(u)(µ2) = µ1.

Let us prove the triangle inequality. Suppose that (Xi, di, µi), i = 1, 2, 3, are

mim-spaces,

D((X1, d1, µ1), (X2, d2, µ2)) = a, D((X2, d2, µ2), (X3, d3, µ3)) = b.

Given ε > 0, �nd metric spaces (Y1, %1), (Y2, %2) and isometric embeddings

f1 : X1 → Y1, f2 : X2 → Y1, f3 : X2 → Y2, f4 : X3 → Y2

such that

%̂(I(f1)(µ1), I(f2)(µ2)) < a+ ε, %̂(I(f3)(µ2), I(f4)(µ3)) < b+ ε.

Without loss of generality, one may assume that

Y1 = f1(X1) t f2(X2), Y2 = f3(X2) t f4(X3).

De�ne Y = (Y1 t Y2)/ ∼, where the equivalence relation ∼ is de�ned by the

condition: Y1 3 y ∼ f3(f−12 (y)) ∈ Y2. Let q : Y1 t Y2 → Y be the quotient map.
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Let a metric d on Y be de�ned by the conditions:

d(y, z) =


di(y, z), if y, z ∈ q(fi(Xi)), i = 1, 2,

inf{d1(y, a) + d2(a, z) | a ∈ q(Y1) ∩ q(Y2)}, if y ∈ q(Y1) \ q(Y2),

z ∈ q(Y2) \ q(Y1).

It is easy to see that d is a metric on Y . Then

D((X1, d1, µ1), (X3, d3, µ3)) ≤ d̂(I(qf1)(µ1), I(qf3)(µ3))

≤ d̂(I(qf1)(µ1), I(qf2)(µ2)) + d̂(I(qf2)(µ2), I(qf4)(µ3))

= d̂(I(qf1)(µ1), I(qf2)(µ2)) + d̂(I(qf3)(µ2), I(qf4)(µ3))

= %1(I(f1)(µ1), I(f2)(µ2)) + %2(I(f3)(µ3), I(f4)(µ3))

< a+ b+ 2ε

(here we used the fact that the functor I preserves isometries; this easily follows

from Proposition 1). Letting ε→ 0, we are done.

The following statement is an immediate consequence of the de�nition.

Proposition 1 Let X1, X2 be closed subspaces of a metric space (Y, d). If

µ1, µ2 ∈ I(Y ), then

D((supp(µ1), µ1, d|(supp(µ1)× supp(µ1)), (supp(µ2), µ2, d|(supp(µ2)× supp(µ2))))

≤ d̃(µ1, µ2).

We say that an idempotent measure µ = ⊕k
i=1αi � δxi

is rational if αi ∈ Q,
for every i = 1, . . . , k.

Proposition 2 The space X of all mim-spaces is separable.

Proof We let

Y = {(X,µ, d) | X is �nite, d(X ×X) ⊂ Q, µ is rational}.

Let X = {x1, . . . , xk) and let d be a metric on X. For any ε > 0, one can �nd

a metric space Y = {y1, . . . , yk} (we will denote its metric by %) with rational

distances and such that dGH(X,Y ) < ε. Without loss of generality, one may

assume that X and Y are subspaces of a common metric space (we will denote

its metric by D) such that D(xi, yi) < ε, for every i = 1, . . . , k.

Given a rational µ = ⊕k
i=1αi � δxi , de�ne ν = ⊕k

i=1αi � δyi . Let ϕn be an

n-Lipschitz function on Z. Then it is easy to see that |µ(ϕn) − ν(ϕn)| ≤ nε.

Therefore, d(µ, ν) ≤
∑∞

n=1
nε
n2n = ε.
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Proposition 3 The space X is not complete.

Proof Consider a sequence of mim-spaces ((Xi, di, µi))
∞
i=1, where:

1. Xi = {0, 1, . . . , i} ⊂ R;
2. the metric di on Xi is inherited from R;
3. µi = ⊕i

k=0αi ⊕ δi, where α0 = 0 and αi ∈ (−∞, 0] is such that d̂(µi−1, µi) ≤
2−i; moreover, α0 ≥ α1 ≥ . . . .

In order to choose αi, i > 0, by induction so that (3) is satis�ed note that

limk→∞ µi−1⊕ (k� δi) = µi−1. Note also that (3) and Proposition 1 imply that

D((Xi−1, di−1, µi−1), (Xi, di, µi)) ≤ d̂(µi−1, µi) ≤ 2−i.

Now we are going to show that the sequence ((Xi, di, µi))
∞
i=1 is not conver-

gent. Suppose the contrary and denote the limit by (X, d, µ). Let C be an integer

number with C ≥ diam(X).

Without loss of generality, one may assume that X ∪ (
⋃∞

i=1Xi⊂ Y , for some

metric space (Y, %), and the following are satis�ed:

1. the metric di on Xi is inherited from Y ;

2. limi→∞ µi = µ (in the sense that limi→∞ %̂(µi, µ) = 0).

Let U denote the closed 1-neighborhood of X in Y . Clearly, the function

ψn : Y → R, ψn(y) = %(y,X) is an n-Lipschitz function. For every i ≥ C+3 �nd

j(i) ≤ C + 3 such that xj(i) ∈ Xi \U . Let n > −αC+3 + 1 be a natural number.

Then µi(ψn) ≥ n+ αj(i) and, since µ(ψn) = 0, we see that

%̂(µi, µ) ≥ |µ(ψn)| ≥
∣∣∣∣n+ αj(i)

n2n

∣∣∣∣ ≥ ∣∣∣∣n+ αC+3

n2n

∣∣∣∣ ≥ 1

n2n
.

This contradicts to the assumption that limi→∞ µi = µ.

Remarks

One can consider another metric on the space I(M), for a compact metric space

(M,d). Namely,

ď(µ, ν) = ⊕∞n=1

d̂n(µ, ν)

n2n
, µ, ν ∈ I(M).

One can similarly prove that counterparts of the above results are also valid for

this metric.

It is known that the space of mm-spaces is complete and separable (see, e.g.,

[5]). We do not know, however, what is a geometric model for this space. The

same question is open also for the (completed) space of mim-spaces.

Another open problem is that of description of the elements of the completion

of the space M.
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