Аналітичне моделювання однієї задачі квазіареальної нескінченно малої деформації поверхні

Лілія Леонтіївна Безкоровайна http://orcid.org/0000-0002-8305-3129 Юлія Степанівна Хомич http://orcid.org/0000-0002-3428-8001

Об'єктом дослідження в даній роботі є квазіареальна нескінченно мала деформація довільної однозв'язної регулярної поверхні ненульової гаусової кривини за умови, що при цій деформації відхилення поверхні від дотичної площини зберігається у будь-якому напрямі.

Ключові слова Квазіареальна нескінченно мала деформація; варіація; відхилення; система рівнянь.

УДК 514.76/77

1 Вступ

У тривимірному евклідовому просторі E_3 розглянемо область G, що належить площині x^1, x^2 . Нехай S— деяка однозв'язна поверхня класу C^3 , що в околі довільної своєї точки допускає параметризацію

$$\overline{r} = \overline{r}(x^1, x^2), \ x^1, x^2 \in G,$$

де \overline{r} – радіус-вектор точки поверхні, до того ж $\overline{r_1} \times \overline{r_2} \neq 0$, $\overline{r_i} = \frac{\partial \overline{r}}{\partial x^i}$. Тут і надалі всі індекси набувають значень 1, 2.

В роботі будемо розглядати нескінченно малу деформацію першого порядку поверхні S з деформуючим полем $\overline{U}(x^1, x^2)$ в класі C^3 і параметром

деформації $t \to 0$

$$\overline{r^*}(x^1, x^2, t) = \overline{r}(x^1, x^2) + t\overline{U}(x^1, x^2).$$
(1)

Надалі геометричні об'єкти здеформованої поверхні S^* , на відміну від відповідних об'єктів поверхні S, умовимося відмічати позначкою *, а варіації об'єктів поверхні S будемо позначати через δ .

Означення 1 Якщо при нескінченно малій деформації вигляду (1) елемент площі поверхні змінюється за заданим законом, то таку деформацію будемо називати квазіареальною нескінченно малою деформацією (к. н. м. d.) поверхні.

Частинні похідні вектора зміщення $\overline{U}(x^1, x^2)$ к. н. м. д. поверхні розкладемо за базисом $\overline{r}_1, \overline{r}_2, \overline{n}, \text{ де } \overline{n}$ – орт нормалі поверхні S [2]

$$\overline{U_i} = \left(c_{i\alpha}T^{\alpha\beta} - \mu\delta_i^\beta\right)\overline{r_\beta} + c_{i\alpha}T^\alpha\overline{n},\tag{2}$$

де $T^{\alpha\beta} = T^{\beta\alpha} \in C^2$ - деяке поле симетричного двічі контраваріантного тензора, $T^{\alpha} \in C^2$ - поле контраваріантного вектора, c_{ij} - дискримінантний тензор поверхні S ($c_{11} = c_{22} = 0, c_{12} = -c_{21} = \sqrt{g}, g = g_{11}g_{22} - g_{12}^2, g_{ij}$ коефіцієнти першої основної квадратичної форми поверхні), δ_j^i – символи Кронекера, $\mu = \mu(x^1, x^2) \in C^2$ – деяка функція. В [2] доведено, що функція μ визначає закон змінювання елемента площі поверхні при її к. н. м. д.. При $\mu = 0$ квазіареальна деформація поверхні зводиться до ареальної нескінченно малої деформації.

Основна система рівнянь квазіареальної нескінченно малої деформації поверхні має вигляд [2]

$$\begin{cases} T^{\alpha\beta}_{,\alpha} - T^{\alpha}b^{\beta}_{\alpha} + \mu_{\alpha}c^{\alpha\beta} = 0, \\ T^{\alpha\beta}b_{\alpha\beta} + T^{\alpha}_{,\alpha} = 0, \\ c_{\alpha\beta}T^{\alpha\beta} = 0. \end{cases}$$
(3)

Тут $b_{\alpha\beta}$ -коефіцієнти другої квадратичної форми, а комою позначено символ коваріантної похідної на базі метричного тензора g_{ij} поверхні *S*. Система рівнянь (3) містить три диференціальних рівняння відносно 6 невідомих функцій: $T^{\alpha\beta} = T^{\beta\alpha}, T^{\alpha}, \mu$.

2 Обчислення варіації відхилення *l* поверхні від дотичної площини

Відомо, що відхилення *l* від дотичної площини при переміщенні на поверхні *S* з точки дотику в нескінченно близьку точку по деякій кривій (далі, Отже, поставлена задача остаточно зводиться до п'яти незалежних диференціальних рівнянь

$$\begin{cases} T^{\alpha\beta}_{,\alpha} - T^{\alpha}b^{\beta}_{\alpha} + \mu_{\alpha}c^{\alpha\beta} = 0, \\ c_{i\alpha}T^{\alpha\beta}b_{\beta j} + c_{i\alpha}T^{\alpha}_{,j} - b_{ij}\mu = 0, \\ c_{\alpha\beta}T^{\alpha\beta} = 0. \end{cases}$$
(14)

відносно шести невідомих функцій: $T^{\alpha\beta} = T^{\beta\alpha}, T^{\alpha}, \mu.$

Має місце

Теорема 2 Для існування квазіареальної нескінченно малої деформації однозв'язної поверхні класу C^3 з відхиленням від дотичної площини, стаціонарним у будь-якому напрямі, необхідно і достатньо, щоб система рівнянь (14) мала ненульовий розв'язок ($T^{\alpha\beta}, T^{\alpha}, \mu$).

4 Дослідження системи рівнянь (14) та представлення її розв'язків для довільної поверхні

Теорема 3 Нехай довільна однозв'язна поверхня S класу C^3 ненульової гаусової кривини допускає квазіареальну нескінченно малу деформацію з відхиленням від дотичної площини, стаціонарним у будь-якому напрямі, тоді на поверхні S існує симетричне тензорне поле $T^{\alpha\beta} \in C^2$ і функція $\mu \in C^2$, які можна подати у вигляді

$$T^{\alpha\beta} = -\frac{1}{2} (T^{\alpha}_{,j} d^{j\beta} + T^{\beta}_{,j} d^{j\alpha}), \qquad (15)$$

$$\mu = \frac{1}{2} T^{\alpha}_{,j} d^{j\beta} c_{\beta\alpha}, \qquad (16)$$

де $d^{ij}-$ тензор, обернений до тензора $b_{ij},$ а тензор T^{lpha} є розв'язком системи рівнянь

$$T^{\alpha}_{,\alpha i} + T^{\alpha}_{,j} d^{j\beta}_{,\alpha} b_{\beta i} + T^{\beta} b_{\beta i} 2H = 0, \qquad (17)$$

Н- середня кривина поверхні.

Доведення Припустимо, що регулярна поверхня S допускає к. н. м. д., при якій відхилення від дотичної площини зберігається у будь-якому напрямі, тоді в силу теореми 2 система рівнянь (14) має ненульовий розв'язок $(T^{\alpha\beta}, T^{\alpha}, \mu)$. Доведемо, що на поверхні S тензорне поле $T^{\alpha\beta}$ та функцію μ можна подати у вигляді (15) і (16) відповідно через тензор T^{α} , який є розв'язком системи рівнянь (17). Надалі обмежимося розглядом поверхонь ненульової гаусової кривини Kі, наслідуючи І. Н. Векуа [1], введемо до розгляду тензор $d^{\alpha\beta}$, обернений до тензора $b_{\alpha\beta}$, за формулою

$$d^{ij} = \frac{1}{K} c^{i\alpha} c^{j\beta} b_{\alpha\beta}, \ d^{i\alpha} b_{j\alpha} = \delta^i_j.$$

Якщо домножимо другу рівність системи (14) на $c^{i\gamma}d^{j\nu}$, то одержимо вираз для тензора $T^{lphaeta}$

$$T^{\alpha\beta} = -(T^{\alpha}_{,j}d^{j\beta} + c^{\alpha\beta}\mu).$$
(18)

Тепер (18) помножимо на $c_{\alpha\beta}$ та згорнемо по індексах α, β . В силу $c_{\alpha\beta}T^{\alpha\beta} = 0$, дістанемо вираз (16) для функції μ . Далі підставимо μ з (16) у (18), внаслідок чого надамо тензорові $T^{\alpha\beta}$ симетричної форми (15). Отже, нам вдалося у явному вигляді виразити три компоненти тензорного поля $T^{\alpha\beta}$ та функцію μ через дві компоненти T^1, T^2 контраваріантного вектора T^{α} .

Підставимо в перше співвідношення системи рівнянь (14) вирази для тензорного поля $T^{\alpha\beta}$ і функції μ з (15) та (16), у підсумку отримаємо систему двох диференціальних рівнянь відносно двох компонент тензора T^{α}

$$T^{\alpha}_{,j\alpha}d^{j\beta} + T^{\alpha}_{,j}d^{j\beta}_{,\alpha} + T^{\alpha}b^{\beta}_{\alpha} = 0.$$
 (19)

Здійснимо перетворення системи рівнянь (19). Для цього застосуємо тотожність Річчі до тензора T^{α}

$$T^{\alpha}_{,jk} - T^{\alpha}_{,kj} = -T^i R^{\alpha}_{\cdot ijk}$$

де $R^{\alpha}_{.ijk}$ — тензор Рімана. Згорнемо останню рівність по індексах α і k, тоді дістанемо

$$T^{\alpha}_{,j\alpha} - T^{\alpha}_{,\alpha j} = -T^{i} R^{\alpha}_{\cdot i j\alpha}, \qquad (20)$$

де $R^{\alpha}_{.ij\alpha} = R_{ij}$ – тензор Річчі. Крім того, приймаємо до уваги наступні тотожності [3]

$$R_{ij} = -Kg_{ij}; \ d_i^\beta = \frac{1}{K} c_{i\alpha} c^{\beta\gamma} b_\gamma^\alpha; \ c_{i\alpha} c^{\beta\gamma} = \delta_i^\beta \delta_\alpha^\gamma - \delta_i^\gamma \delta_\alpha^\beta.$$
(21)

З урахуванням (21) рівнянням (19) можна надати вигляду

$$T^{\alpha}_{,\alpha j}d^{j\beta} + T^{\alpha}_{,j}d^{j\beta}_{,\alpha} + T^{\beta}2H = 0, \qquad (22)$$

Помножимо (22) на $b_{\beta i}$ і згорнемо по індексу β , внаслідок чого нарешті отримаємо систему рівнянь (17). Таким чином, ми довели, що при к. н. м. д. з зазначеним обмеженням на поверхні S по необхідності існує тензорне поле $T^{\alpha\beta}$ та функція μ , які виражаються через тензор T^{α} у вигляді (15) і (16) відповідно, а T^{α} в свою чергу є розв'язком системи рівнянь (17). Теорема доведена.

Має місце і обернена

Теорема 4 Нехай на довільній поверхні $S(K \neq 0)$ класу C^3 існує тензорне поле $T^{\alpha\beta} \in C^2$ та функція $\mu \in C^2$, які можна виразити у вигляді (15), (16) відповідно через тензорне поле $T^{\alpha} \in C^2$, яке є розв'язком системи рівнянь (17). Така поверхня допускає квазіареальну нескінченно малу деформацію з відхиленням від дотичної площини, стаціонарним у будь-якому напрямі. При цьому поле зміщення \overline{U} має представлення

$$\overline{U}(M) = \int_{M_0M} \left(\left(-\frac{1}{2} c_{i\alpha} T^{\alpha}_{,j} d^{j\beta} - \frac{1}{2} c_{i\alpha} T^{\beta}_{,j} d^{j\alpha} - \frac{1}{2} c_{k\alpha} T^{\alpha}_{,j} d^{jk} \delta^{\beta}_i \right) \overline{r_{\beta}} + c_{i\alpha} T^{\alpha} \overline{n} \right) dx^i +$$
(23)

 $+\overline{U_0},$

де $\overline{U_0}$ — сталий вектор, а криволінійний інтеграл береться по довільній спрямній лінії, що належить поверхні та з'єднує фіксовану точку M_0 зі змінною точкою M.

Доведення Припустимо, що на поверхні $S(K \neq 0)$ існує тензорне поле $T^{\alpha\beta} \in C^2$ та функція $\mu \in C^2$, які можна подати формулами (15), (16) відповідно через тензорне поле $T^{\alpha} \in C^2$, яке є розв'язком системи рівнянь (17). Покажемо, що за таких умов поверхня допускає к. н. м. д. зі стаціонарним відхиленням від дотичної площини у будь-якому напрямі. Для цього спочатку перевіримо, що за даного подання тензорного поля $T^{\alpha\beta}$ та функції μ формулами (15), (16) система рівнянь (14) задовольняється.

Дійсно, внесемо вирази для $T^{\alpha\beta}$ та μ з (15), (16) в перше співвідношення системи (14), внаслідок чого одержимо

$$T^{\alpha}_{,j\alpha}d^{j\beta} + T^{\alpha}_{,j}d^{j\beta}_{,\alpha} + T^{\alpha}b^{\beta}_{\alpha} = 0.$$
⁽²⁴⁾

Якщо тепер врахувати тотожність Річчі (20) та формули (21), то системі рівнянь (24) зможемо надати вигляду (22). Помножимо (22) на $b_{\beta i}$ і згорнемо по індексу β , в результаті чого переконаємося, що співвідношення (14₁) врешті решт зведеться до системи рівнянь (17). Оскільки за умовою теореми тензорне поле T^{α} є розв'язком системи рівнянь (17), то звідси випливає, що перше співвідношення системи рівнянь (14) тотожно виконується.

Переконаємося, що друге співвідношення системи рівнянь (14) за умови теореми також тотожно виконується. З цієї метою спершу покажемо, що з формул (15), (16) випливає співвідношення (18). Справді, помножимо (16) на $c^{\alpha\beta}$. У відповідності з тотожністю (21₃) дістанемо

$$c^{\alpha\beta}\mu = \frac{1}{2} \left(T^{\beta}_{,k} d^{k\alpha} - T^{\alpha}_{,k} d^{k\beta} \right).$$
⁽²⁵⁾

Внесемо тепер в (15) замість доданку $\frac{1}{2}T^{\beta}_{,k}d^{k\alpha}$ його вираз з (25), а саме

$$\frac{1}{2}T^{\beta}_{,k}d^{k\alpha} = \frac{1}{2}T^{\alpha}_{,k}d^{k\beta} + c^{\alpha\beta}\mu.$$

Тоді рівностям (15) можна надати вигляду (18). Підставимо нарешті вираз для $T^{\alpha\beta}$ з (18) в друге співвідношення системи рівнянь (14), внаслідок чого одержимо тотожність

$$c_{i\alpha}T^{\alpha\beta}b_{\beta j} + c_{i\alpha}T^{\alpha}_{,j} - b_{ij}\mu = -c_{i\alpha}T^{\alpha}_{,k}d^{k\beta}b_{\beta j} - c_{i\alpha}c^{\alpha\beta}\mu b_{\beta j} + c_{i\alpha}T^{\alpha}_{,j} - b_{ij}\mu \equiv 0.$$

Оскільки третє співвідношення системи рівнянь (14) є умовою симетричності тензора $T^{\alpha\beta}$, а сам цей тензор $T^{\alpha\beta}$ за умовою теореми подано в симетричному вигляді (15), то це співвідношення, очевидно, теж виконується.

Підставимо вирази для тензорного поля $T^{\alpha\beta}$ та функції μ з (15), (16) та вираз для T^{α} з (17) в систему двох диференціальних рівнянь (2)

$$\overline{U_i} = \left(-\frac{1}{2} c_{i\alpha} T^{\alpha}_{,j} d^{j\beta} - \frac{1}{2} c_{i\alpha} T^{\beta}_{,j} d^{j\alpha} - \frac{1}{2} c_{k\alpha} T^{\alpha}_{,j} d^{jk} \delta^{\beta}_i \right) \overline{r_{\beta}} + c_{i\alpha} T^{\alpha} \overline{n}.$$
(26)

З попереднього випливає, що умови інтегрованості (14) системи рівнянь (26) тотожно виконуються.

Отже, для довільної однозв'язної поверхні S класу C^3 ненульової гаусової кривини існує поле вектора зміщення \overline{U} у вигляді (23). Для будь-якого контраваріантного вектора T^{α} з (17) це деформуюче поле однозначно (з точністю до сталого вектора $\overline{U_0}$) визначає квазіареальну нескінченно малу деформацію, при якій зберігається відхилення від дотичної площини цієї поверхні у будь-якому напрямі. Теорема доведена.

Література

- 1. Векуа И. Н. *Обобщенные аналитические функции*, М: Наука. Гл. ред. физ.-мат. лит., 2-е изд., 512 с. (1988).
- 2. Безкоровайна Л. Л., Хомич Ю. С. Квазіареальна нескінченно мала деформація поверхні в E₃// Proc. Intern. Geom. Center, №7(2), С. 6-19, (2014).
- 3. Безкоровайна Л. Л. Ареальні нескінченно малі деформації і врівноважені стани пружної оболонки, Одеса: Астропринт, 168 с. (1999).

Лілія Леонтіївна Безкоровайна http://orcid.org/0000-0002-8305-3129

Одеський національний університет імені І. І. Мечникова, Одеса, Україна E-mail: liliyabezk@gmail.com

Юлія Степанівна Хомич http://orcid.org/0000-0002-3428-8001

Одеський національний університет імені І. І. Мечникова, Одеса, Україна E-mail: khomych.yuliia@gmail.com

Liliia L. Bezkorovaina, Yuliia S. Khomych

Analytical modeling of one problem of the quasiareal infinitesimal deformation of the surface

In this paper the object of the study is the quasiareal infinitesimal deformation of the unrestricted simply connected regular surface of non-zero Gauss curvature, provided that under this deformation the deviation of the surface from the tangent plane is preserved in any direction.