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K-theory and phase transitions at high energies

T.V. Obikhod

Abstract The duality between E8 × E8 heteritic string on manifold K3 × T 2

and Type IIA string compacti�ed on a Calabi-Yau manifold induces a cor-

respondence between vector bundles on K3 × T 2 and Calabi-Yau manifolds.

Vector bundles over compact base space K3 × T 2 form the set of isomorphism

classes, which is a semi-ring under the operation of Whitney sum and tensor

product. The construction of semi-ring V ect X of isomorphism classes of

complex vector bundles over X leads to the ring KX = K(V ect X), called

Grothendieck group. As K3 has no isometries and no non-trivial one-cycles, so

vector bundle winding modes arise from the T 2 compacti�cation. Since we have

focused on supergravity in d = 11, there exist solutions in d = 10 for which

space-time is Minkowski space and extra dimensions are K3×T 2. The complete

set of soliton solutions of supergravity theory is characterized by RR charges,

identi�ed by K-theory. Toric presentation of Calabi-Yau through Batyrev's toric

approximation enables us to connect transitions between Calabi-Yau manifolds,

classi�ed by enhanced symmetry group, with K-theory classi�cation.
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1 Introduction

M-theory, that �rst conjectured by Edward Witten in the spring of 1995, uni-

�es all versions of string theory: type I, type IIA, type IIB, and two �avors of

heterotic string theory (SO(32) and E8 ×E8). Each of these �ve string theories

is limiting case of M-theory, and should be approximated by eleven-dimensional

supergravity at low energies. M-theory is connected with the AdS/CFT cor-

respondence and should describe branes [1]. For connection of M-theory with

experimental data is used the mechanism of compacti�cation of its extra di-

mensions to four-dimensional world, that can be veri�ed at the LHC. One of

the fundamental questions of theoretical high energy physics is the question of

phase transitions of solitonic states, like D-branes. Due to the higher dimen-

sional models, ADD or RS [2] in some scenarios involving extra dimensions of

space, the Planck mass can be as low as the TeV range. As the Large Hadron

Collider (LHC) has energy 14 TeV for proton-proton collisions it was argued [3]

that black hole production could be an important and observable e�ect at the

LHC or future higher-energy colliders. Such quantum black holes or other high

energetic silitonic objects should decay emitting sprays of particles that could

be seen by detectors.

The purpose of the article is to study such solitonic objects with the help

of e�ective model - D-branes. Our attempts for connection string theory with

experiment are focused on the compacti�cation of extra dimensions to K3× T 2

for construction models of our four-dimensional world. The studied cases involve

higher-dimensional spaces - D6-branes in for-dimensional space, for example. In

section 2 we'll consider the equivalence of vector bundles on K3×T 2 and Calabi-

Yau manifolds. We are dealing with a special type of Calabi-Yau manifolds, when

it is both an elliptic bundle over Hirzebruch surface F2k and K3-�bration over

the one dimensional projective space. In accordance with [4] there is the corre-

spondence between the heterotic string compacti�cations on K3× T 2 and type

II string compacti�cations on Calabi-Yau threefolds of such type. This is con-

nected with fact that for compacti�cation of the heterotic string on K3 × T 2

is used the embedding, equating the spin connection of the manifold with the

gauge connection. Through examples, it is possible that the moduli spaces of

many di�erent N=2 heterotic vacua are connected in a similar way to type II

string compacti�cations on Calabi-Yau. To each type of Calabi-Yau corresponds

its enhanced symmetry according to Batyrev's toric approximation. In section

3 will be presented K-theory description of vector bundles over K3 × T 2. In

section 4 we consider D-brane RR charge calculation corresponding to orbifold.
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The conclusion is connected with received fact that breaking of enhanced sym-

metries of Calabi-Yau to Standard model is connected with K-theory description

of vector bundles over K3× T 2, which di�er from each other by the rank of the

bundle.

2 Calabi-Yau transitions

From [5] we know that there exist duality between (0, 4) compacti�cations of

the E8 × E8 heterotic string on the manifold K3 × T 2 and the type IIA string

compacti�ed on a Calabi-Yau manifold [6]. This duality corresponds to the equiv-

alence of vector bundles on K3×T 2 and Calabi-Yau manifolds. This Calabi-Yau

are of special type - K3-�bration over P1 projective space. In the context of M-

and F-theory [7] the dynamics on the moduli space of string theory would al-

low to determine the physical ground state of the string. The criterion which

distinguishes between di�erent vacua of string theory is the compacti�cations of

these theories to three and four dimensions, in particular to CalabiYau fourfolds.

Toric description of elliptic Calabi-Yau manifold according to Batyrev's approx-

imation [8] can be realized by dual polyhedron which is devided by triangle on

the top and bottom , For fourfolds of type X18k+18(1, 1, 1, 3k, 6k + 6, 9k + 9) the

gauge groups are written in the following way [9]:

H × SU(1) fork = 1,

H × SO(8) fork = 2,

H × E6 fork = 3,

H × E7 fork = 4,

H × E8 fork = 5,

H × E8 fork = 6.

Thus, to each type of Calabi-Yau corresponds its enhanced symmetry. The mod-

uli space of string theory vacuum can be deformed by vevs through breaking the

gauge group. For example, E8 can be completely broken through the chain

E8 → E7 → E6 → SO(10)→ SU(5)→ SU(4)→ SU(3)→ SU(2)→ SU(1) .

So, the breaking of the gauge group is connected with phase transitions between

di�erent Calabi-Yau manifolds.
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3 K-theory description of vector bundles over K3× T2

As transitions between Calabi-Yau, described in such technique, are known, it

would be interesting to understand an adequate mathematical method for de-

scription of transitions between di�erent vector bundles over compact base space

K3× T 2 according to duality [5]. The studying of such vector bundles was per-

formed by [9], where the bundle V on K3× T 2 is �xed as follows

V = ⊕ip
∗
1Lxi

⊗ p∗2Mi ,

where Lxi
are the line bundles on T 2 corresponding to xi - a point in the dual

torus Ť 2 , p1 and p2 are projections from the product K3×T 2 to the factors T 2

and K3, respectively.

As is known from [11], vector bundles over compact base spaces form the set

of isomorphism classes of vector bundles over X (in our case X is K3 × T 2).

This is a semi-ring under the operations of Whitney sum and tensor product. It

contains the disjoint union

VectX =

∞⋃
d=0

VectdX

where VectdX comprises the classes of vector bundles of rank d. Such construc-

tion of semi-ring Vect X of isomorphism classes of complex vector bundles over

X leads to the ring KX := K(VectX), which is called a Grothendieck group

a contravariant functor from compact topological spaces to rings. From [12] is

known that, there exists the isomorphism of free sheaves of rank n and classes of

vector bundles of rank n . The category Vecr(X) of vector bundles of rank r on

X and the category Locr(X) of locally free sheaves of rank r on X are equivalent,

as de�ned by Hartshorne, [11]. In [13] is written about D-brane as locally free

sheaf. From [14] it has been observed (for example, as in [15]) that branes sup-

ported on complex submanifolds of complex varieties are naturally described in

terms of coherent sheaves. Therefore, Grothendieck groups of coherent sheaves,

the holomorphic version of K-theory, can be used to describe D-branes in the

case that all D-branes are wrapped on complex submanifolds.

4 String theory and RR charge

Since we are dealing with M-theory theory of �ve string theories, it is necessary

to say that string looks like an ordinary particle, with its mass and charge. A

physical object that generalizes the notion of a point particle to higher dimen-

sions is a brane. A point particle can be viewed as a brane of dimension zero,
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while a string can be viewed as a brane of dimension one. It is also possible to

consider higher-dimensional branes. In dimension p, they are called p-branes.

Branes are dynamical objects which can propagate through spacetime according

to the rules of quantum mechanics. They can have mass and other attributes

such as RR-charge. Much of the current research in M-theory attempts to better

understand the properties of these branes. So, the studying of D-brane classi�ca-

tion with the help of K-theory description of RR-charge is of great importance.

Generally believed of K-theory as a �poor man's derived category� that knows

only about D-brane charge [13]. A D-brane charge corresponding to a vector

bundle E is given by formula

Q(E) = ch(E)
√

td(X) ,

where ch(E) is the Chern character of E and td(X) is the Todd class of the

tangent bundle of X. The charge of a D-brane given by a coherent sheaf can be

computed using the Grothendieck-Riemann-Roch theorem [13].

As is stressed in [16] blowing-up of T 4/Z2 is K3 space. Therefore, instead

of K3 × T 2 space we can consider T 6/Z2 space - orbifold. D-brane that passes

through an orbifold �xed point carries RR charge. In a supergravity approxima-

tion we can take the large volume limit to describe the backgrounds and these

are RR backgrounds [17]. Large volume charges are connected with RR charges

by formula:

Q4 = n1 − 2n2 + n3, Q2 = −n1 + n2, Q0 =
n1 + n2

2

which de�ne the Chern character

ch(n1n2n3) = Q4 + Q2ω + Q0ω
2 ,

ω is Wu parameter. The rank of the vector bundle E is Q4, Q2 = c1, Q0 =
c21
2 ,

where c1 is the �rst Chern class. From [10] the �rst Chern class of SU(N) bundle

E over K3× T 2, for example, is zero, therefore Q2 = 0 and Q0 = 0 and vector

bundles over K3× T 2 are di�er through the rank of the bundle.

5 Conclusion

The conclusion is connected with the fact that morphisms of distinct Calabi-

Yau permit an interpretation in terms of topological K theory or Grothendieck

groups. In spite of the fact that K3 T 4/Z2 and the full space K3 × T 2 T 6/Z2,

we can't use the notion of Aspinwall [13] that D-branes on the orbifold Cd/G

and open strings between them are described by the derived category of McKay
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quiver representations (with relations) because we cannot have the derived cat-

egory of a �compact� CY manifold represented by a quiver. Anyway, in spite of

the fact that K-theory contains much less information than the derived category

this is the beginning for understanding of brane classi�cation when the symme-

try is broken from E8 to the Standard molel. According to [18] when we focus

our attention on supergravity in d=11, solutions also exist for N=1 in d=10,

9 and 8 dimensions for which spacetime is Minkowski space and for which the

extra dimensions are K3 × T2, K3 × S1 and K3, respectively. Starting from

64+64 components of N=1 in d=10, we obtain 96+96 components in d=4 of

N=2 supergravity and so on to the Standard model.
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