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Homeotopy groups of one-dimensional
foliations on surfaces

Sergiy Maksymenko, Eugene Polulyakh, Yuliya Soroka

Abstract. Let Z be a non-compact two-dimensional manifold obtained
from a family of open strips R × (0, 1) with boundary intervals by gluing
those strips along their boundary intervals. Every such strip has a foliation
into parallel lines R × t, t ∈ (0, 1), and boundary intervals, whence we get
a foliation ∆ on all of Z. Many types of foliations on surfaces with leaves
homeomorphic to the real line have such “striped” structure. That fact was
discovered by W. Kaplan (1940-41) for foliations on the plane R2 by level-set
of pseudo-harmonic functions R2 → R without singularities.
Previously, the first two authors studied the homotopy type of the group

H(∆) of homeomorphisms of Z sending leaves of ∆ onto leaves, and shown
that except for two cases the identity path component H0(∆) of H(∆) is
contractible. The aim of the present paper is to show that the quotient
H(∆)/H0(∆) can be identified with the group of automorphisms of a cer-
tain graph with additional structure encoding the “combinatorics” of gluing.

1. INTRODUCTION
Let Z be a non-compact two-dimensional manifold and ∆ be a one-

dimensional foliation on Z such that each leaf ω of ∆ is homeomorphic to
R and is a closed subset of Z. These foliations on the plane often appear
as level-sets of pseudoharmonic functions and from that point of view they
were studied by W. Kaplan [6], [7], W. Boothby [1], [2], M. Morse and
J. Jenkins [5], M. Morse [11] and others.
In particular, Kaplan proved that for every such a foliation there exists

at most countably many leaves {ωi}i∈J such that for every connected com-
ponent S of R2 \{ωi}i∈J one can find a homeomorphism ϕ : S → R2×(0, 1)
sending the leaves in S onto horizontal lines R × {t}, i ∈ (0, 1). However
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his construction was not canonical, as he tried to minimize the total num-
ber of strips, and for that reason the closure S may have very complicated
structure. For instance the above homeomorphism ϕ not always extends to
an embedding of S into R× [0, 1].
In [9, Theorem 1.8] the first two authors gave sufficient conditions for a

one-dimensional foliation on a non-compact surface to have a similar striped
structure, and proposed a certain canonical decomposition into strips whose
closures homeomorphic to open subsets of R× [0, 1].
Also, in [8] the same authors considered arbitrary foliated surfaces (Z,∆)

glued from strips in the above way and studied the homotopy properties of
the group of homeomorphisms H(∆) of Z mapping leaves of the foliation ∆
into leaves. They proved that except for few cases the identity path com-
ponent H0(∆) of H(∆) is contractible. The principal technical assumption
in [8] was that the gluing maps between boundary intervals of strips must
be affine.
The quotient π0H(∆) = H(∆)/H0(∆) is an analogue of a mapping class

group for foliated homeomorphisms and we call it the homeotopy group of
the foliation ∆. In [12] and [13] the third author studied a special class of
so-called “rooted tree like” striped surfaces, completely described algebraic
structure of homeotopy groups of their foliations, and also related those
groups with the homeotopy groups of the space of leaves Z/∆.
The aim of the present paper is to extend the results of [8] to arbi-

trary “striped” surfaces and compute the corresponding homeotopy groups.
Namely, we show that π0H(∆) is isomorphic to a group of automorphism of
a certain graph with additional structure, see Theorem 8.1. In particular,
these results hold for all foliations considered in [9], [12], [13].
Structure of the paper. §2 contains a list of the principal results of

the paper. First we give a formal definition of a strip and then show in
Proposition 2.2 that up to a foliated homeomorphism it can be replaced by
a model strip having better disposition of boundary intervals.
Next, we characterize homeomorphisms between boundaries of strips

which extend to foliated homeomorphisms between strips, see Theorem 2.3.
§3 and §4 are devoted to proofs of those results.
In §5 we introduce a notion of a striped atlas on a surface Z, being a

decomposition into strips glued along boundary intervals, and prove that
gluing homeomorphisms can be made affine, see Theorem 5.8.
Further, in §6, we associate to each striped atlas a certain graph G which

encodes the “combinatorics” of gluing strips, and relate automorphisms of
G with self-equivalences of the corresponding atlas, see Theorem 6.2.
§7 establishes relationships between distinct properties of foliated sur-

faces considered in [8], [9], and [10], see Theorem 7.4.
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Finally, in §8 we consider the group H(∆) of homeomorphisms of the
foliation ∆ and deduce from [8] and results of previous sections that the
homeotopy group π0H(∆) is isomorphic with the group of automorphisms
of the graph associated to some special striped atlas of Z.

2. MODEL STRIPS
Let Z be a two-dimensional topological manifold. A foliated chart of

dimension 1 on Z is a pair (U,φ), where U ⊂ Z is an open subset and
φ : U → (a, b) × B is a homeomorphism with B being an open subset of
[0,+∞). The set Py = φ−1

(
(a, b)× {y}

)
, y ∈ B, is then called a plaque of

this foliated chart.
Suppose∆ = {ωα | α ∈ A} is a partition of Z into path connected subsets

and there exists an atlas A = {Ui, φi}i∈Λ of foliated charts of dimension 1
on Z such that for each α ∈ A and each i ∈ Λ every path component of a
set ωα ∩ Ui is a plaque. Then ∆ is said to be a one-dimensional foliation
on Z and {Ui, φi}i∈Λ is called a foliated atlas associated to ∆. Every ωα is
then a leaf of the foliation ∆ and the pair (Z,∆) is a foliated surface.
Let (Z1,∆1) and (Z2,∆2) be two foliated surfaces. Then a homeomor-

phism h : Z1 → Z2 is said to be foliated if for each leaf ω ∈ ∆1 its image,
h(ω), is a leaf of ∆2.
Definition 2.1. A subset S ⊂ R2 will be called a strip if

(i) R× (u, v) ⊂ S ⊂ R× [u, v];
(ii) S is open in the topology of R× [u, v]

for some u < v ∈ R. Denote

∂−S := S ∩ R× {u}, ∂+S := S ∩ R× {v},
∂S := ∂−S ∪ ∂+S, IntS := R× (u, v).

We will call ∂S the boundary of S, while ∂−S and ∂+S will be the sides of
S. It follows that ∂S is an open subset of R×{u, v}, and so it is a disjoint
union of at most countably many open (possibly unbounded) intervals.
If, in addition to (i) and (ii), the following conditions hold:
(iii) every connected component of ∂S is a bounded interval,
(iv) the closures of boundary intervals of ∂S in R × [u, v] are mutually

disjoint,
then S will be called a model strip.
Evidently, each strip S possesses an oriented one-dimensional foliation

into horizontal lines R× t, t ∈ (u, v) and boundary intervals of ∂S. We will
call that foliation canonical.
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The following statement allows to reduce any strip to a technically more
convenient form. It will be proved in Section 3.

Proposition 2.2. Each strip is foliated homeomorphic to a model strip.
Monotone homeomorphisms of ∂S. Notice that the boundary of a
strip can be regarded as a partially ordered set being a disjoint union of
two linearly ordered sets ∂−S and ∂+S that are incomparable with each
other. In other words, for (a, x), (b, y) ∈ ∂S we assume that (a, x) < (b, y)
if and only if a < b and x = y.
More generally, let A,B ⊂ ∂S be two subsets. Then we say that A < B

if and only if a < b for all a ∈ A and b ∈ B. In particular, this gives a linear
order on the boundary intervals of ∂−S and ∂+S. Thus, if Iα = (a, b)×{x}
and Iβ = (c, d)× {y} are boundary intervals of ∂S with x, y ∈ {u, v}, then
Iα < Iβ if and only if x = y and b < c.
Now let S1 and S2 be two strips, A ⊂ ∂S1 and B ⊂ ∂S2 be subsets, and

h : A→ B be a bijection. We will say that h preserves (resp. reverses) order
whenever for any a, a′ ∈ A we have that a < a′ if and only if h(a) < h(a′)
(resp. h(a) > h(a′)). In either of these cases h is said to be monotone.
Evidently, if h : S1 → S2 is a foliated homeomorhism between two strips,

then its restriction h|∂S1 : ∂S1 → ∂S2 is monotone. The following statement
is a converse to the latter observation. It will be proved in Section 4.

Theorem 2.3. Every monotone homeomorphism h : ∂S1 → ∂S2 between
boundaries of two strips S1 and S2 extends to a foliated homeomorphism
ĥ : S1 → S2.

3. PROOF OF PROPOSITION 2.2
Lemma 3.1. Let S be a half strip with R × [0, 1) ⊂ S ⊂ R × [0, 1]. Then
there exists a half strip S′ and foliated homeomorphism h : S → S′ such
that

• R× [0, 1) ⊂ S′ ⊂ S ⊂ R× [0, 1];
• the closures of boundary intervals of ∂+S′ are bounded in R2 and mu-
tually disjoint;

• h is fixed on R× 0;
• h preserves the second coordinate, and therefore is foliated.
Assuming lemma is true let us deduce Proposition 2.2. Let S be a strip

with Int(S) = R× (−1, 1). Consider two half strips

A = S ∩
(
R× [−1, 0]

)
, B = S ∩

(
R× [0, 1]

)
.
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Then by Lemma 3.1 one can find two half strips A′ and B′ and foliated
homeomorphisms f : A→ A′ and g : B → B′ such that

• R× (−1, 0] ⊂ A′ ⊂ A ⊂ R× [−1, 0];
• R× [0, 1) ⊂ B′ ⊂ B ⊂ R× [0, 1];
• the closures of boundary intervals of ∂−A′ and ∂+B′ are bounded in
R2 and mutually disjoint;

• f and g are fixed on R× 0 and preserve second coordinate.
Then S′ = A′ ∪B′ is a model strip with R× [0, 1) ⊂ S′ ⊂ S, and a foliated
homeomorphism h : S → S′ can be given by the formula: h|A′ = f and
h|B′ = g. This proves Proposition 2.2 modulo Lemma 3.1.
Proof of Lemma 3.1. a) First we will show how to make closures of
boundary intervals of ∂+S′ to be bounded though not necessarily disjoint.
Fix any a < b ∈ R and consider the following half strip:

T = R× [0, 1) ∪ (a, b)× {1}.
Then by [8, Lemma 3.2] there exists a homeomorphism h : R × [0, 1] → T
preserving second coordinate and fixed on R× 0. Hence S′ = h(S) is a half
strip with ∂S′ ⊂ ∂T = (a, b)× 1.
b) To simplify the notation replace S with S′ and assume that bound-

ary intervals of ∂+S′ are bounded in R2. We should make their closures
mutually disjoint.
Consider the following subset of R7:

A = { (a, u, b, c, v, d, t) | a < u < b, c < v < d, t ∈ [a, b] }
and define the function γ : A→ R by

γ(a, u, b, c, v, d, t) =


t− a

u− a
(v − c) + c, t ∈ [a;u],

t− u

b− u
(d− v) + v, t ∈ [u; b].

Then γ is continuous, and for any combination of the first six parameters
a, u, b, c, v, d the map t 7→ γ(a, u, b, c, v, d, t) homeomorphically maps the
segment [a, b] onto [c, d] so that u is sent to v.

Lemma 3.1.1. Let T be a closed triangle in the plane R2 with vertices
A(xa, ya), B(xb, yb), O(xo, yo) such that ya = yb > yo, and C be a point on
the open interval (A,B). Let also

T ′ = T \ {A,B} , T ′′ = T \ {A ∪ [B,C]} .

Then there exists a homeomorphism f : T ′ → T ′′ preserving second coor-
dinate. In particular, f is fixed on the sides (A,O], [O,B) and maps the
interval (A,B) onto (A,C).
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Proof. Not loosing generality one can assume thatA(−1, 0), B(1, 1), O(0, 0)
and C(0.5, 1). Then f can be given by the formula:

f(x, y) =

{(
γ(−y, y2, y,−y, 0, y, x), y

)
, 0 ⩽ y < 1,(

x+1
2 − 1, 1

)
, y = 1.

Evidently, f maps the curve x = y2 on the segment of the line x = 0.
Moreover, we have that f [Ay, Qy] = [Ay, Cy], and f [Qy, By] = [Cy, By], see
Figure 3.1, □

A AB BC

O O

Ay Ay

Qy Qy
By By

FIGURE 3.1. Triangles T ′ and T ′′

Returning back to the proof of Lemma 3.1 assume that

∂+S =
N⊔
i=1

(ai, bi)× {1},

where N is either a finite number of +∞. Fix a strictly monotone sequence
{uj}∞j=1 ⊂ [−1, 1] such that lim

j→∞
= 1 and for each i define the triangle Ti

with vertices Ai(ai, 1), Bi(bi, 1), Oi(ai+bi2 , ui), and let C(ai+bi2 , 1). Define
also the following model half strips:

Si = S \
∪
j≤i

[Cj , Bj)× {1},

and put

S0 = S, S′ = S \
N∪
i=1

[Ci, Bi)× {1} =

N∩
i=1

Si.

Then the closures of the boundary intervals of S′ are mutually disjoint.
Denote T ′

i = Ti \ {Ai, Bi} and T ′′
i = Ti \ {Ai ∪ [Bi, Ci]}. Then by

Lemma 3.1.1 there exists a homeomorphism fi : T
′
i → T ′′

i preserving second
coordinate and being identity on the sides (Ai, Oi] and [Oi, Bi). Therefore
fi extends by the identity to a homeomorphism fi : Si−1 → Si.
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Then a foliated homeomorphism φ : S → S
′ can be defined as the

composition of all fi:

φ = · · · ◦ fi+1 ◦ fi ◦ · · · ◦ f2 ◦ f1 : S = S0
f1−→ S1

f2−→ · · · fi−→ Si
fi+1−−−→ · · ·S′.

If N is finite, φ is well-defined.
For infinite N one should check that for each point z ∈ S the sequence{

gj = fj ◦ · · · ◦ f2 ◦ f1 : S → Sj ⊂ S
}
j∈N

of embeddings “stabilizes” on some neighborhood Uz of z, that is gj = gj+1

on U for all sufficiently large j.
So, let z = (x, y) ∈ S. If y < 1, then there exists i such that y < ui. Let

U = R × (0, ui). Then fj(U) = U for all j. Moreover, fj is fixed on U for
all j > i. Therefore gj = gi on U for all j > i.
Suppose y = 1, so (x, y) ∈ (ai, bi) × {1} for some i, then each fj with

j ̸= i is fixed on the triangle T ′
i . Then U = T ′

i \
(
(Ai, Oi] ∪ [Oi, Bi)

)
is an

open neighborhood of (x, y) in S, and gj = gi = fi on U for j > i. Thus φ
is a homeomorphism. Lemma 3.1 is completed. □

4. PROOF OF THEOREM 2.3
Let S1 and S2 be two strips and h : ∂S1 → ∂S2 a monotone homeo-

morphism. We should prove that h extends to a foliated homeomorphism
between S1 and S2.
If ∂S1, and so ∂S2, are empty, then any foliated homeomorphism be-

tween S1 and S2 can be regarded as an extension of h. Therefore we will
suppose that ∂S1 ̸= ∅. Not loosing generality one can also assume that
h(∂−S1) = ∂−S2, h(∂+S1) = ∂+S2, and the restrictions h|∂−S1 and h|∂+S1

are increasing.

Case 1. Suppose that both S1 and S2 are half strips such that

∂+S1 =

K⊔
i=1

Xi × {1}, ∂+S2 =

K⊔
i=1

X ′
i × {1},

∂−S1 = ∂−S2 = R× {0},

where K ∈ {0, 1, . . . ,+∞}, each Xi × {1} is a boundary interval of ∂+S1,
X ′
i is a boundary interval of ∂+S2, the closures Xi and X ′

i are bounded,

Xi ∩Xj = ∅, X ′
i ∩X ′

j = ∅, (4.1)

for all i ̸= j, and h(Xi × {1}) = X ′
i × {1}.

We will extend h to a homeomorphism h : S1 → S2 preserving second
coordinate and fixed on R× 0.



Homeotopy groups of one-dimensional foliations on surfaces 29

Fix an arbitrary strictly increasing sequence {uj}∞j=0 ⊂ [0, 1) such that
u0 = 0 and lim

j→∞
uj = 1. For each uj = 0, 1, . . . ,∞ we will now construct a

homeomorphism ψj : R → R by the following rule.
Since h(R × 0) = R × 0 one can write h(x, 0) = (ψ0(x), 0) for a unique

homeomorphism ψ0 : R → R.
Further notice that there exists a unique homeomorphism

h :

K⊔
i=1

Xi →
K⊔
i=1

X ′
i

such that h(Xi) = X ′
i. Then for j ≥ 1 define ψj :

j⊔
i=1

Xi →
j⊔
i=1

X ′
i by

ψj(x) = h(x). The assumption that h preserves the order of boundary
intervals means that Xi < Xj if and only if X

′
i < X

′
j , i, j ∈ 1, . . . ,K. Hence

one can apply the following Lemma 4.1 to extend ψj to a homeomorphism
ψj : R → R.

Lemma 4.1. Let α = {Xi}ni=1 and β = {X ′
i}ni=1 be two families of open

segments in R having the following properties:
(1) the closures Xi and X ′

i are bounded, and Xi ∩Xj = X ′
i ∩X ′

j = ∅ for
all i ̸= j = 1, . . . , n;

(2) α and β are “similarly ordered”, that is Xi < Xj if and only if X ′
i < X ′

j

for all i ̸= j = 1, . . . , n.
Suppose also that for each i = 1, . . . , n we have an orientation preserving
homeomorphism ψi : Xi → X ′

i. Then there is a homeomorphism ψ : R → R
such that ψ|Xi = ψi.
Proof. Due to assumptions on α and β one can renumber the elements
in these families and assume that Xi = (ai, bi) and X

′
i = (ci, di) for some

ai, bi, ci, bi ∈ R such that

a1 < b1 < a2 < b2 < . . . < an < bn, c1 < d1 < c2 < d2 < . . . < cn < dn.

Then the homeomorphism ψ can be given by the formula:

ψ(x) =


x− a1 + c1, x ∈ (−∞, a1],

ψi(x), x ∈ (ai, bi), i = 1, . . . , n,
ci+1−di
ai+1−bi (x− bi) + di, x ∈ [bi, ai+1], i = 1, . . . , n− 1,

x− bn + dn, x ∈ [bn,+∞).

Lemma 4.1 is proved. □
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Now define h : S1 → S2 by the formula:

h(x, y) =


(
ψj(x), y

)
, y = uj ,

0 ≤ j ≤ K,(
εj(y)ψj(x) + (1− εj(y))ψj+1(x), y

)
, y ∈ (uj , uj+1),

0 ≤ j ≤ K − 1,

(4.2)

where εj(y) = uj+1−y
uj+1−uj .

Evidently, h is bijective, preserves the second coordinate and homeomor-
phically maps S1 \ ∂+S1 onto S2 \ ∂+S2.
It remains to check that h is a homeomorphism. Since ψj = ψj+1 = h

on Xi for i ≤ j, it follows from the second line in (4.2) that
h(x, y) = (h(x), y).

for all (x, y) ∈ Xi × (ui, 1]. Therefore h homeomorphically maps the open
set Xi × (ui, 1] of S1 onto the open set X ′

i × (ui, 1] of S2. Since the family
{Xi × (ui, 1]}Ki=1 ∪ {S1 \ ∂+S1}

constitutes an open covering of S1, it follows that h is a homeomorphism.
Case 2. Suppose S1 and S2 are arbitrary half strips.
One can assume that R × [0, 1) ⊂ Si ⊂ R × [0, 1], i = 1, 2. Then by

Lemma 3.1 one can find a half strip S′
i and a homeomorphism ϕi : Si → S′

i
such that

• R× [0, 1) ⊂ S′
i ⊂ Si ⊂ R× [0, 1],

• the closures of boundary intervals in ∂+S′
i are bounded and mutu-

ally disjoint;
• ϕi is fixed on R× 0 and preserves the second coordinate.

Hence the composition h′ = ϕ2 ◦ h ◦ ϕ−1
1 : ∂S′

1 → ∂S′
2 is a homeomorphism

preserving order and orientations of boundary intervals and coincides with
h on R× 0. Therefore, by Case 1, it extends to a foliated homeomorphism
h′ : S′

1 → S′
2. Hence ϕ−1

2 ◦ h′ ◦ ϕ1 : S1 → S2 is the required extension of h.
Case 3. Consider the general case when S1 and S2 are strips. Not loosing
generality one can assume that

R× (−1, 1) ⊂ Si ⊂ R× [−1, 1]

for i = 1, 2. Similarly to the proof of Proposition 2.2 consider two half
strips

Ai = Si ∩ R× [−1, 0], Bi = Si ∩ R× [0, 1].

Evidently,
∂−Ai = ∂−Si, ∂+Ai = ∂−Bi = R× 0, ∂+Bi = ∂+Si.
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Define two homeomorphisms f : ∂A1 → ∂A2 and g : ∂B1 → ∂B2 by the
rule:

f |∂−A1 = h|∂−A1 , f |∂+A1 = g|∂−B1 = idR×0, f |∂+B1 = h|∂+S1 .

Then, by Case 2, f and g extend to foliated homeomorphisms f : A1 → A2

and g : B1 → B2. Hence a required extension h : S1 → S2 of h can be given
by the formula: h|A′ = f and h|B′ = g. Theorem 2.3 is completed. □

5. STRIPED ATLAS
Let Z be a two-dimensional topological manifold.

Definition 5.1. A striped atlas on Z is a map q : Z0 → Z having the
following properties:
(1) Z0 =

⊔
λ∈Λ

Sλ is at most countable family of mutually disjoint strips;

(2) q is a quotient map, which means that it is continuous, surjective, and
has the property that a subset U ⊂ Z is open if and only if q−1(U)∩Sλ
is open in Sλ for each λ ∈ Λ;

(3) there exist two disjoint families X = {Xγ}γ∈Γ and Y = {Yγ}γ∈Γ of
mutually disjoint boundary intervals of Z0 enumerated by the same set
of indexes Γ such that
(a) q is injective on Z0 \ (X ∪ Y);
(b) q(Xγ) = q(Yγ) for each γ ∈ Γ;
(c) the restrictions q|Xγ : Xγ → q(Xγ) and q|Yγ : Yγ → q(Yγ) are

embeddings with closed images;
Definition 5.2. A surface Z admitting a striped atlas will be called a
striped surface.
Notice that a striped surface Z is a non-compact two-dimensional mani-

fold which can be non-connected and non-orientable, and each of its bound-
ary component is an open interval.
Moreover, Z admits a one-dimensional foliation obtained from canonical

foliations on the corresponding model strips Sλ. We will call it the canonical
foliation associated to the striped atlas q and denote by ∆. Evidently, each
leaf of ∆ is a homeomorphic image of R and is also a closed subset of Z.
Definition 5.3. We will say that a foliated surface (Z,∆) admits a striped
structure if there exists a striped atlas q : Z0 → Z which maps each leaf of
the canonical foliation of each strip in Z0 onto some leaf of ∆.
Remark 5.4. Due to (c) for each γ ∈ Γ one get the following “gluing”
homeomorphism ϕγ : Yγ → Xγ defined by

ϕγ =
(
q|Xγ

)−1 ◦ q|Yγ . (5.1)
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Therefore one can think that a striped surface is obtained from a family of
model strips by gluing them along certain boundary intervals by homeo-
morphisms ϕγ . It is allowed that two strips are glued along more than one
pair of boundary components. Moreover, one may glue together boundary
components of the same strip S.
Definition 5.5. Two striped atlases q : Z0 → Z and q′ : Z ′

0 → Z ′ on
striped surfaces Z and Z ′ will be called equivalent if there exist two foliated
homeomorphisms h : Z0 → Z ′

0 and k : Z → Z ′ making commutative the
following diagram:

Z0
h−−−−→ Z ′

0

q

y yq′
Z −−−−→

k
Z ′

(5.2)

Turning back to the definition of a striped surface notice that for each
γ ∈ Γ the intervals Xγ , Yγ are horizontal, and so

Xγ = (a, b)× {xγ}, Yγ = (c, d)× {yγ}

for some xγ , yγ ∈ {u, v} and a, b, c, d ∈ R ∪ {±∞} with a < b and c < d.
Hence ϕγ : Yγ → Xγ can be written as follows:

ϕγ(s, yγ) = (ψγ(s), xγ), s ∈ (c, d), (5.3)
where ψγ : (c, d) → (a, b) is a certain homeomorphism.
Remark 5.6. Notice that if a < b and c < d, then there exist exactly two
affine homeomorphisms ψ+, ψ− : (c, d) → (a, b) given by

ψ+(t) =
b− a

d− c

(
t− c

)
+ a, ψ−(t) =

a− b

d− c

(
t− c

)
+ b, (5.4)

for t ∈ (a, b). Evidently, ψ+ preserves the orientation and ψ− reverses it.
Definition 5.7. A striped atlas q : Z0 → Z will be called affine if the
following two conditions hold:
(a) Z0 consists of model strips only;
(b) each gluing map ϕγ : Yγ → Xγ , γ ∈ Γ, is affine, that is the homeomor-

phism ψγ in (5.3) is given by either of the formulas from (5.4).

Theorem 5.8. Each striped atlas q : Z0 =
⊔
λ∈Λ

Sλ → Z on a striped surface

Z is equivalent to an affine one. Moreover, if Z0 consists of model strips
only, then there exists a foliated homeomorphism h : Z0 → Z0 such that the
composition q′ = q ◦ h : Z0 → Z is an affine atlas.
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Proof. First we show that q is equivalent to an atlas consisting of model
strips only. By Proposition 2.2 for every strip Sλ there exists a model strip
S′
λ ⊂ Sλ and a foliated homeomorphism hλ : S′

λ → Sλ. Put Z ′
0 =

⊔
λ∈Λ

S′
λ

and define a homeomorphism h : Z ′
0 → Z0 by h|S′

λ
= hλ, λ ∈ Λ. Then

q′ = q ◦ h : Z ′
0 → Z is an atlas on Z consisting of model strips and the pair

(h, idZ) is an equivalence between q′ and q.
Assume now that each strip Sλ in Z0 is model. For each γ ∈ Γ let

σγ : Yγ → Xγ be a unique affine homeomorphism preserving or reversing
orientation mutually with ϕγ .
Let Sλ, λ ∈ Λ, be a model strip from Z0 and ∂Sλ = ⊔

α∈A
Iα be the family

of its boundary intervals. We will now define a certain homeomorphism
hλ : ∂Sλ → ∂Sλ preserving each Iα with its orientation. If Iα = Xγ for
some γ ∈ Γ, then we set

hλ = ϕγ ◦ σ−1
γ : Xγ → Xγ ,

otherwise put hλ to be the identity map idIα .
Then hλ satisfies assumptions of Theorem 2.3 and therefore extends to

a foliated homeomorphism hλ : Sλ → Sλ. Hence we get a homeomorphism
h : Z0 → Z0 defined by h|Sλ

= hλ.
Then one easily checks that the map q′ = q ◦ h : Z0 → Z is a striped

atlas for Z. Moreover, q′ glues the same strips along the same boundary
intervals and in the same directions as q, but its gluing maps

ϕ′γ =
(
q′|Xγ

)−1 ◦ q′|Yγ : Yγ → Xγ

differs from the ones of q. It follows from the following commutative dia-
gram:

Yγ
h|Yγ=idYγ

//

ϕ′γ
��

q′|Yγ
,,

Yγ
q|Yγ

//

ϕγ

��

σγ

ssggggg
ggggg

ggggg
ggggg

ggggg
ggggg

g q(Yγ)

Xγ

q′|Xγ

22
h|Xγ=ϕγ◦σ

−1
γ

// Xγ

q|Xγ // q(Xγ)

that ϕ′γ = σγ is affine. Hence q′ is an affine striped atlas for Z. □

6. GRAPH OF A STRIPED ATLAS
Let q : ⊔

λ∈Λ
Sλ → Z be a striped atlas on Z. We will now associate to q a

certain graph G which encodes a “combinatorial” information about gluing
strips via q. It was firstly considered in [12] for a special class of “rooted
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tree like” striped surfaces. That graph may have multiple edges and loops
and also half-open edges.
(1) The vertices of G are strips of ⊔

λ∈Λ
Sλ.

(2) It will be convenient to call each boundary interval X of some strip Sλ
a half-edge incident to the vertex Sλ. The set of all half edges of ∂±Sλ
will be denoted by d±(Sλ). We also put d(Sλ) = d−(Sλ) ∪ d+(Sλ).

(3) The edges of G are of the following two types.
(a) If two strips S1 and S2 are glued along their boundary intervals

Xγ and Yγ , then we assume that the vertices S1 and S2 of G are
connected by an edge eγ . Thus formally, an edge eγ is an unordered
pair of half edges (Xγ , Yγ) and will be called a closed edge of G.

(b) If X is a boundary interval of some strip Sλ which is not glued to
any other interval, so it represents a boundary interval of Z, then
we assume that X is a half-open edge with one vertex Sλ.

We also add to G the information about directions of gluing boundary
intervals, and the disposition of boundary intervals along each strip.
For a homeomorphism f : (a, b) → (c, d) define a number or(f) = +1

if f preserves orientation and or(f) = −1 otherwise. It is evident, that if
g : (c, d) → (e, f) is another homeomorphism, then or(g◦f) = or(g)·or(f).
(4) To each closed edge (Xγ , Yγ) corresponding to the gluing of bound-

ary components ϕγ : Yγ → Xγ we associate the number σ(Xγ , Yγ) :=
or(ϕγ) and call it the orientation of gluing.

(5) Recall that for each strip Sλ the set of its boundary intervals is at most
countable partially ordered set being a disjoint union of two linearly
ordered subsets corresponding to ∂−Sλ and ∂+Sλ respectively. There-
fore we have a linear order on each of the sets d−(Sλ) and d+(Sλ) of
all half-edges incident to the vertex Sλ of G.
Thus, “very formally”, a graph of a striped atlas is the following object

G = (Λ,H, ξ, σ)

where
• Λ is a set, called the set of vertices of G.
• H =

⊔
λ∈Λ

(
d−1(λ) ⊔ d+1(λ)

)
is a family of mutually disjoint at most

countable linearly ordered sets, d−1(λ) and d+1(λ), called half-edges
incident to λ. We also denote d(λ) = d−(λ) ⊔ d+(λ).

• ξ : H → H is an involution, i.e. a bijection such that ξ2 = idH . In this
case if X ̸= ξ(X) for some X ∈ H, then the unordered pair {X, ξ(X)}
is called a closed edge of G. Otherwise X is fixed point of ξ and is called
a half-open edge of G.
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• σ : E → {±1} is a map from the set
E =

{
{X, ξ(X)} | X ∈ H, X ̸= ξ(X)

}
of all closed edges of G to {±1}, called orientation of gluing.
Equivalently, σ can be regarded as a map σ : H \ Fix(ξ) → {±1}

such that σ ◦ ξ = σ.
Definition 6.1. Let G = (Λ,H, ξ, σ) and G′ = (Λ′,H ′, ξ′, σ′) be graphs of
striped atlases of some striped surfaces. Then by an isomorphism of these
graphs we will mean four maps

ν : Λ → Λ′, ε : H → H ′, l, τ : Λ → {±1},
having the following properties.
(a) ν and ε are bijections satisfying the identity

ε(ds(λ)) = d′τ(λ)·s(ν(λ))

for all λ ∈ Λ and s ∈ {±1}, where d′±1(λ
′) ⊂ H ′ is the set of half edges

of G′ incident to λ′ ∈ Λ. Moreover, both bijections
ε|d−1(λ) : d−1(λ) → d′−τ(λ)(ν(λ)),

ε|d+1(λ) : d+1(λ) → d′τ(λ)(ν(λ)),

are increasing for l(λ) = +1 and decreasing for l(λ) = −1.
(b) ξ′ ◦ ε = ε ◦ ξ, in particular, ε induces a bijection between closed edges

of G and G′.
(c) Let {X,Y } be a closed edge of G with X ∈ d(λ) and Y = ξ(X) ∈ d(µ)

for some λ, µ ∈ Λ. Then
l(λ) · σ(X,Y ) = σ′(ε(X), ε(Y )) · l(µ). (6.1)

Notice that the set Aut(G) of all automorphisms of a graph G is a group
with respect to the following multiplication: if

a′ = (ν ′, ε′, l′, τ ′), a = (ν, ε, l, τ) ∈ Aut(G),
then their product a′′ = a′a = (ν ′′, ε′′, l′′, τ ′′) is defined as follows:

ν ′′ = ν ′ ◦ ν, ε′′ = ε′ ◦ ε, (6.2)
l′′(λ) = l′(ν(λ)) · l(λ), τ ′′(λ) = τ ′(ν(λ)) · τ(λ), (6.3)

for all λ ∈ Λ.
Let 1 : Λ → {±1} be the constant function taking value +1. Then

(idΛ, idH ,1,1) is the unit of Aut(G) and (ν, ε, l, τ)−1 = (ν−1, ε−1, l, τ).
For a set X denote by Σ(X) the group of all bijections of X, that is

the permutation group on X. For a group A let also AX be the group of
all maps X → A with respect to the point-wise multiplication. Then the
group Σ(X) naturally acts from the right on AX by the rule: the result
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of the action of a bijection ν : X → X from Σ(X) on a map a : X → A
belonging to AX is the composition map

a ◦ ν : X
ν−−−→ X

a−−−→ A.

The corresponding semidirect product AX⋊Σ(X) is called the wreath prod-
uct of Σ(X) and A over X and denoted by A ≀X Σ(X). Thus, by definition,
A≀XΣ(X) is a direct product of sets AX×Σ(X) with respect to the following
multiplication:

(a′, ν ′)(a, ν) =
(
(a′ ◦ ν) · a, ν ′ ◦ ν),

where · denotes multiplication in AX . Notice that there is a natural sur-
jective homomorphism η : A ≀X Σ(X) → Σ(X), η(a, ν) = ν, whose kernel
is AX × idX . Moreover, we also have an inclusion 1× Σ(X) ⊂ A ≀X Σ(X),
where 1 : X → A is the constant map into the unit of A. In other words
the following short exact sequence

1 → AX → A ≀X Σ(X)
η−−−→ Σ(X) → 1

admits a section s : Σ(X) → A≀XΣ(X), s(ν) = (1, ν), i.e. a homomorphism
such that η ◦ s = id(Σ(X)).
Rewriting (6.2) and (6.3) in the form:

(ν ′, ε′, l′, τ ′) (ν, ε, l, τ) =
(
ν ′ ◦ ν, ε′ ◦ ε, (l′ ◦ ν) · l, (τ ′ ◦ ν) · τ

)
we see that Aut(G) is a subgroup of(

{±1}2 ≀Λ Σ(Λ)
)
× Σ(H).

Theorem 6.2. Each equivalence of striped atlases induces an isomorphism
between their graphs. Conversely, each isomorphism between their graphs
is induced by some striped atlases equivalence.
Before proving Theorem 6.2 let us first consider several illustrating ex-

amples. To preserve the formalism we need to talk about maps from empty
set. As usual, we identify a map f : A → B between sets with its graph
{(a, f(a)) | a ∈ A} ⊂ A × B. Therefore a map ∅ → B from empty set is
an empty subset of the empty set ∅×B.
Example 6.3. Let S = R × (−1, 1) and q = idS : S → S be a striped
atlas consisting of one strip, see Figure 6.1(a). Then Λ = {∗} consists of a
unique point, H = ∅, and so ξ : H → H and σ : H \ Fix(ξ) → {±1} are
maps of empty set.
Let (ν, ε, l, τ) ∈ Aut(G). Then ν = idΛ and ε = idH are uniquely

determined, while l, τ : {∗} → {±1} can be arbitrary maps. It easily
follows that Aut(G) ∼= {±1} × {±1}.
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(a) (b)

FIGURE 6.1. Striped atlases consisting of one strip and being
the identity homeomorphisms

Example 6.4. Let S = R× (−1, 1) ∪ {(−2,−1) ∪ (1, 2)} × {1} and again
q = idS : S → S be a striped atlas consisting of one strip, see Figure 6.1(b).
Then Λ = {∗} consists of a unique point, H = {a, b} = d+1(∗), where
a = (−2,−1)×{1}, b = (1, 2)×{1}, and a < b in the sense of the linear order
in d+1(∗). As these intervals are not glued, we see that ξ = idH : H → H
and so σ : H \ Fix(ξ) → {±1} is a map from empty set.
Let x = (ν, ε, l, τ) ∈ Aut(G). Then ν = idΛ. Moreover, as H = d+1(∗),

and so d−1(∗) = ∅, it follows that ε(d+1(∗)) = d+1(∗), whence τ(∗) = +1.
If ε(a) = a, then ε = idH , whence l(∗) = +1, and so x is the unit

of Aut(G). Suppose ε(a) = b, then ε(b) = a, so ε is an order reversing
bijection of H = d+1(∗), whence l(∗) = −1. Thus Aut(G) consists of two
elements, i.e. Aut(G) ∼= {±1}.
Example 6.5. Let S = R × [0, 1], ϕ : R × {0} → R × {+1} be a homeo-
morphism given by ϕ(x, 0) = (x, 1), then the quotient Z = S/ϕ is an open
cylinder R × S1, and the quotient map q : S → Z is a striped atlas, see
Figure 6.2(a).
In this case Λ = {∗} again consists of a unique point, H = {a, b}, where

a = R × {0}, b = R × {1}, ξ : H → H is given ξ(a) = b, ξ(b) = a, and
σ : H → {±1} is defined by σ(a) = σ(b) = or(ϕ) = +1.
Let x = (ν, ε, l, τ) ∈ Aut(G). Then ν = idΛ. Moreover, since G has a

unique edge {a, b}, ε preserves this edge, whence it follows from (6.1) that
l(a) = l(b).
Suppose ε(a) = a, then ε = idH , whence τ(∗) = +1. Otherwise, ε(a) = b,

ε(b) = a, and τ(∗) = −1. Notice that in both of those cases, the common
value l(a) = l(b) can be taken arbitrary.
This implies that Aut(G) ∼= {±1} × {±1}.

Example 6.6. Suppose as in the previous example S = R× [0, 1], but now
ϕ : R × {0} → R × {+1} is given by ϕ(x, 0) = (−x, 1), and so it reverses
orientation. In this case the quotient Z = S/ϕ is an open Möbius band, see
Figure 6.2(b). One easily check that Aut(G) ∼= {±1} × {±1} as well.

Proof of Theorem 6.2. Let
q : Z0 = ⊔

λ∈Λ
Sλ → Z, q′ : Z ′

0 = ⊔
λ′∈Λ′

S′
λ′ → Z ′
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(a) (b)

FIGURE 6.2. Foliated open cylinder and Möbius band

be striped atlases on surfaces Z and Z ′ respectively, and G = (Λ,H, ξ, σ)
and G′ = (Λ′,H ′, ξ′, σ′) be the their graphs.
1) Suppose (h, k) is a pair of homeomorphisms defining an equivalence

of atlases, so we have a commutative diagram (5.2). Then h induces a
bijection between the connected components of Z0 and Z ′

0 which yields a
bijection ν : Λ → Λ′ between the corresponding sets of indices (being in
turn vertices of G and G′) such that h(Sλ) = S′

ν(λ).
In particular, h yields also a bijection between the boundary components

of Z0 and Z ′
0 being sets of half edges of G and G′. Thus we get a bijection

ε : H → H ′.
It remains to define the functions l, τ : Λ → {±1}. Take λ ∈ Λ and

consider the restriction h|Sλ
: Sλ → S′

ν(λ). Assume that IntSλ = R× (a, b)

and IntSν(λ) = R × (c, d) for some a < b, c < d ∈ R. Since h|Sλ
preserves

leaves being horizontal lines, we have that
h|Sλ

(x, y) = (α(x, y), β(y))

where
• α : Sλ → R is a continuous function such that for each y ∈ (a, b) the
correspondence x 7→ α(x, y) is a homeomorphism αy : R → R;

• β : (a, b) → (c, d) is a homeomorphism.
Evidently, all homeomorphisms αy are increasing or decreasing mutually
for all y ∈ (a, b), i.e. or(αy) does not depend on y ∈ (a, b). Therefore we
set

l(λ) = or(αy), τ(λ) = or(β).
We claim that (ν, ε, l, τ) is an isomorphism between graphs G and G′ in

the sense of Definition 6.1.
Notice that the restriction h|∂Sλ

: ∂Sλ → ∂S′
ν(λ) is a monotone homeo-

morphism which easily implies conditions (a) and (b) of Definition 6.1. We
leave the verification for the reader and will check condition (c) only.
Let {X,Y } be a closed edge of G with X ∈ d(λ) and Y = ξ(X) ∈ d(µ)

for some λ, µ ∈ Λ, and X ′ = ε(X) and Y ′ = ε(Y ). This means that
X ⊂ ∂Sλ and Y ⊂ ∂Sµ are boundary components with q(X) = q(Y ),
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X ′ = h(X) ⊂ ∂S′
ν(λ), and Y ′ = h(Y ) ⊂ ∂S′

ν(µ). Then we have the following
commutative diagram:

Y
h|Y−−−−−−−−−−−−−−−−−−−−→

or(h|Y )=l(µ)
Y ′

ϕ

yor(ϕ)=σ(X,Y ) or(ϕ′)=σ′(X′,Y ′)

yϕ′
X

or(h|X)=l(λ)−−−−−−−−−−−−−−−−−−−−→
h|X

X ′

where ϕ and ϕ′ are gluing homeomorphisms. Hence
l(λ) · σ(X,Y ) = or(h|Y ) · or(ϕ) = or(ϕ ◦ h|Y ) =

= or(h|X ◦ ϕ′) = or(h|X) · or(ϕ′) = l(µ) · σ′(X ′, Y ′).

2) To prove the converse statement, notice that due to Theorem 5.8, one
can assume in addition that both atlases q and q′ are affine.
Let (ν, ε, l, τ) be an isomorphism between G and G′ in the sense of Def-

inition 6.1.
Let λ ∈ Λ and λ′ = ν(λ). We will now construct a homeomorphism

hλ : Sλ → S′
λ′ in the following way.

(i) First suppose ∂Sλ = ∅, that is d(λ) = ∅. Since ε bijectively maps
d(λ) onto d′(λ′), it follows that d′(λ′) = ∅, and so ∂S′

ν(λ) = ∅ as well. Not
loosing generality, one can assume that Sλ = S′

λ′ = R × (−1, 1). Then we
define hλ by the formula:

hλ(x, y) =
(
l(λ)x, τ(λ)y).

(ii) Now assume that ∂Sλ ̸= ∅. LetX ∈ d(λ) be a half-edge in G incident
to the vertex λ, that is X is a boundary component of Sλ. Then ν(X) is
a boundary interval of S′

ν(λ). Since we assumed that strips Sλ and S′
ν(λ)

are model, the intervals X and ν(X) are bounded. Define hλ on X to be a
unique affine homeomorphism ψX : X → ν(X) with or(ψX) = l(λ).
The family of all {ψX}X∈d(λ) give a homeomorphism hλ : ∂Sλ → ∂S′

ν(λ).
Due to property (a) of Definition 6.1, hλ is monotone, and therefore by
Theorem 2.3 h extends to a foliated homeomorphism hλ : Sλ → S′

ν(λ).
Thus we obtain a foliated homeomorphism h : ⊔

λ∈Λ
Sλ → ⊔

λ′∈Λ′
S′
λ′ defined

by h|Sλ
= hλ for λ ∈ Λ.

We claim that h induces a foliated homeomorphism k : Z → Z ′ such that
the pair (h, k) is an equivalence of striped atlases q and q′.
Let D ⊂ Z0, (resp. D′ ⊂ Z ′

0), be the set of boundary intervals on which
q, (resp. q′), is not injective. Then h yields a homeomorphism of Z0 \ D
onto Z ′

0 \ D′, whence the restriction k : q(Z0 \ D) → q′(Z ′
0 \ D′) must be

given by k = q′ ◦ h ◦ q−1.
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Therefore it remains to show that h is “compatible” with q and q′ on D
and D′ in the sense that for each pair of boundary intervals X ⊂ ∂Sλ and
Y ⊂ ∂Sµ with q(X) = q(Y ), we have that q′(h(X)) = q′(h(Y )) and the
following commutative diagram holds true:

q(X) X
qoo h|X=ψX //

ϕ

��

X ′ q′ //

ϕ′

��

q′(X ′)

q(Y ) Y
qoo h|Y =ψY // Y ′ q′ // q′(Y ′)

(6.4)

where ϕ and ϕ′ are gluing homeomorphisms. Then for each z ∈ D we will
set k(q(z)) = q′ ◦ h(z).
In term of graphs we have that {X,Y } is a closed edge of G such that

X ∈ d(λ), Y = ξ(X) ∈ d(µ), X ′ = ε(X), and Y ′ = ε(Y ). Then by (b)
Y ′ = ε(Y ) = ε ◦ ξ(X) = ξ′ ◦ ε(X) = ξ′(X)

and so {X ′, Y ′} is a closed edge of G′, that is q′(h(X)) = q′(h(Y )).
Then we have the diagram (6.4) but need to check commutativity of its

central square consisting of affine homeomorphisms. It follows from (c)
that or(ϕ′ ◦ ψX) = or(ψY ◦ ϕ). Since ϕ′ ◦ ψX , ψY ◦ ϕ : X → Y ′ are affine
homeomorphisms, it follows that they coincide, and so diagram (6.4) is
commutative.
Thus (h, k) is an equivalence of striped atlases inducing given isomor-

phism (ν, ε, l, τ) between G and G′. □

7. CHARACTERIZATION OF A CERTAIN CLASS OF STRIPED SURFACES
Let (Z,∆) be a foliated surface with countable base, Z/∆ the set of

leaves of ∆, and p : Z → Z/∆ be the quotient map. We will endow Z/∆
with the quotient topology, so a subset V ⊂ Z/∆ is open if and only if
p−1(V ) is open in Z. Notice that a priori Z/∆ is not even a T0-space.
For each leaf ω of ∆ let Jω = [0, 1) if ω ⊂ ∂Z and Jω = (−1, 1) otherwise.

Then a cross-section of∆ passing through ω is a continuous map γ : Jω → Z
such that γ(0) ∈ ω and for distinct s, t ∈ Jω their images γ(s) and γ(t)
belong to distinct leaves of ∆.
A subset U ⊂ Z is called saturated if it is a union of leaves. For each

leaf ω ∈ ∆ denote by c(ω) the intersection of closures of all saturated
neighbourhoods of ω. Evidently ω ⊂ c(ω).
Definition 7.1. [8] A leaf ω will be called special whenever ω ̸= c(ω), see
Figure 7.1. We will denote by Σ the family of all special leaves of ∆.
In [4] and [3] special leaves were called branch points of Z/∆.
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FIGURE 7.1. Special and non-special leaves

Lemma 7.2. Suppose there exist a striped atlas q : ⊔
λ∈Λ

Sλ → Z such that ∆

is its canonical foliation. Let also D = q
(

⊔
λ∈Λ

∂Sλ

)
be the union of images

of boundary components of strips. Then
(i) Σ ∪ ∂Z ⊂ D;
(ii) Σ, ∂Z, and D are a locally finite families of leaves;
(iii) Σ, ∂Z, and D are closed subsets of Z.
Proof. (i) By definition ∂Z ⊂ D. Moreover, one easily check that a leaf
ω ∈ ∆ is special, i.e. ω ⊂ Σ, if and only if there exists a boundary interval
X ⊂ ∂ϵSλ for some λ ∈ Λ and ϵ ∈ {±} such that q(X) = ω and X ̸= ∂ϵSλ.
Hence Σ ⊂ D as well.
(ii). Evidently, each leaf ω in D has an open neighbourhood containing

no other leaves from D. This implies that D is a locally finite family of
closed subsets of Z, whence so any subfamily of D. In particular, this holds
for Σ and ∂Z.
(iii) follows from (ii), since each leaf of ∆ is a closed subset of Z. □

A striped atlas on Z will be called reduced whenever D = Σ ∪ ∂Z.

Theorem 7.3. [8, Theorem 3.7]. Let Z be a striped surface with countable
base. Then one of the following statements holds true: either

(1) Z is foliated homeomorphic to the open cylinder or Möbius band
from Examples 6.5 and 6.6, or

(2) Z admits a reduced atlas.
Idea of proof. We briefly discuss the proof in terms of the graph G of the
striped atlas q. It will be convenient to say that an edge {X,Y } of G is
unessential whenever X = ∂ϵS and Y = ∂ϵ′S

′ for some distinct strips S, S′

of the atlas and some ϵ, ϵ′ ∈ {±}, see Figure 7.2.
In particular, each unessential edge corresponds to a non-special leaf

ω ⊂ D \ (Σ ∪ ∂Z). The principal observation of Theorem 7.3 is that
gluing S and S′ along X and Y gives again a strip S1, see [8, Lemma 3.2].
Therefore one can replace S and S′ in the atlas q with S1.
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FIGURE 7.2. Reduction of non-special leaves from D

On the graph this means that we replace a closed edge between S and S′

with one vertex. That techniques also allows to eliminate even countable
paths of such edges. Hence if G does not contain finite cycles of unessential
edges, then, using the assumption that Z has a countable base, one can
remove all unessential edges and obtain a reduced atlas.
However, if there is a finite cycle of unessential edges, then one can re-

move all of them but one. This gives two special surfaces: open cylinder and
Möbius band from Examples 6.5 and 6.6 in which we glue X = ∂−S with
Y = ∂+S. But the corresponding closed edge {X,Y } is not unessential,
since now X and Y belong to the same strip. □

Consider the following five conditions on (Z,∆).
(StrAtlas): Z admits a striped atlas whose canonical foliation is ∆.
(ΣLocFin): The family Σ of all special leaves of ∆ is locally finite.
(PrjLocTriv): The quotient map p : Z → Z/∆ is a locally trivial fibration

and the space of leaves Z/∆ is locally homeomorphic with [0, 1)
(though it is not in general a Hausdorff space).

(SatNbh): For each leaf ω ∈ ∆ there exist an open ∆-saturated neighbour-
hood U of ω and a homeomorphism η : R × Jω → U such that
η(R× t) is a leaf of ∆ and η(R× 0) = ω.

(CrossSect): Each leaf ω ∈ ∆ has a cross-section passing through ω.
The following statement summarizes relations between the above prop-

erties obtained in [8], [9], [10], and in the present paper.

Theorem 7.4. [9], [10]. Let (Z,∆) be a foliated surface satisfying the
following two conditions:

(i) each leaf of ∆ is a non-compact closed subset of Z;
(ii) each boundary component of Z is a leaf of ∆.

Then we have the following implications:
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• (PrjLocTriv) ⇒ (SatNbh) + (CrossSect);
• (StrAtlas) ⇒ (ΣLocFin) ⇒

[
(PrjLocTriv) ⇔ (SatNbh) ⇔ (CrossSect)

]
;

• (ΣLocFin) + (SatNbh) ⇒ (StrAtlas).
In particular, if either (SatNbh) or (CrossSect) hold, then the conditions
(ΣLocFin) and (StrAtlas) are equivalent.
Proof. The implication (PrjLocTriv) ⇒ (SatNbh) + (CrossSect) and the
equivalence of conditions (SatNbh), (PrjLocTriv), and (CrossSect) under
assumption (ΣLocFin) is proved in [9, Theorem 2.8].
The implication (StrAtlas) ⇒ (ΣLocFin) is contained in statement (ii)

of Lemma 7.2.
Finally, the implication (ΣLocFin) + (SatNbh) ⇒ (StrAtlas) is estab-

lished in [10, Theorem 1.8]. □
Remark 7.5. For a striped surface (Z,∆) with a striped atlas q condi-
tion (SatNbh) is equivalent to the requirement that q does not glue together
boundary intervals belonging to the same side of the same strip. More pre-
cisely, if q(X) = q(Y ) for some distinct boundary intervals X ⊂ ∂ϵS and
Y ⊂ ∂ϵ′S

′, then either S ̸= S′ or ϵ ̸= ϵ′.
7.6. Foliated surface that does not admit a striped atlas. Consider
the sequence zn = (0, 1n), n ∈ N, of points of y-axis on the plane converging
to the origin O and put K = {zn}n∈N ∪ O. Let also Z = R2 \K. Then Z
admits a foliation ∆ into non-compact leaves being connected components
of the intersection of Z with horizontal lines.

FIGURE 7.3.

Lemma 7.6.1. The pair (Z,∆) satisfies condition (CrossSect) and violates
(ΣLocFin). Hence it also violates (StrAtlas), that is Z does not admit a
striped atlas for which ∆ is a canonical foliation.
Proof. (CrossSect). For each leaf ω ∈ ∆ there exists a cross-section being
just an one vertical interval in Z transversal to ω.
To show that (ΣLocFin) fails, denote

αn = (−∞, 0)× zn, βn = (0,+∞)× zn,
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α = (−∞, 0)×O, β = (0,+∞)×O.

Then Σ = {αn, βn}n∈N ∪ {α, β} is the family of all special leaves of ∆.
Evidently,

c(αn) = c(βn) = {αn, βn}, n ∈ N, c(α) = c(β) = {α, β},
whence Σ is not locally finite, since αn converges to α and βn converges
to β. Therefore by Theorem 7.4 Z does not admit a striped atlas with a
canonical foliation ∆. □
Notice also that Z ′ = Z \{α, β} is disconnected and each of its connected

components admits a striped atlas.
7.7. Foliation on the plane that does not admit a striped atlas.
We will construct a more complicated example on the plane R2. Consider
the foliation ∆0 on the strip S = R × [0, 1] shown in Figure 7.4(a). As
indicated in Figure 7.4(b) it is glued from four strips. For each k ∈ N

(a) (b)

FIGURE 7.4.

define the following strip Sk = R× [ 1
2k
, 1
2k−1 ] and a homeomorphism

ϕn : S → Sk, ϕk(x, y) = (kx, (y + 1)/2k),

so it expands strip along x-axis and shrinks it along y-axis.
Denote by ∆k foliation on Sk being the image of ∆0 under ϕk. Then the

union of all ∆k gives a foliation on R× [0, 1] which extends to the foliation
on all of R2 by parallel lines R × y for y ∈ (−∞, 0] ∪ (1,+∞). We will
denote that foliation on R2 by ∆.
Then Σ = {ϕk(I1), ϕk(I2), ϕk(J1) = ϕk+1(J2)}k∈N is the family of all

special leaves of ∆. This set is not locally finite since the leaves ϕk(J1)
converge to the leaf R × 0. One easily check that ∆ satisfies (CrossSect),
whence by Theorem 7.4 (R2,∆) does not admit a striped atlas.

8. HOMEOTOPY GROUP OF A CANONICAL FOLIATION
Let Z be a connected striped surface with a canonical foliation∆. Denote

by H(∆) the group of all foliated homeomorphisms of (Z,∆). Thus, by
definition, H(∆) consists of all homeomorphism h : Z → Z such that for
each leaf ω ∈ ∆ its image h(ω) is a leaf of ∆ as well. Endow H(∆) with the
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compact open topology and let H0(∆) be the identity path component of
H(∆). It consists of all homeomorphisms h ∈ H(∆) isotopic to idZ inH(∆).
Then H0(∆) is a normal subgroup of H(∆) and the quotient H(∆)/H0(∆)
can be identified with the set π0H(∆) of all path components of H(∆), that
is π0H(∆) = H(∆)/H0(∆). This group will be called the homeotopy group
of the foliation ∆.

Theorem 8.1. c.f. [8, Theorem 4.4]. Let q : ⊔
λ∈Λ

Sλ → Z be a reduced
affine striped atlas on a connected surface Z, G be its graph, and ∆ be
the corresponding canonical foliation.

(i) If Z is foliated homeomorphic either to an open cylinder from Exam-
ple 6.5 or a Möbius band from Example 6.6 then Hid(∆) is homotopy
equivalent to the circle S1.

(ii) Otherwise, Hid(∆) is contractible.

In all the cases we have an isomorphism ρ : π0H(∆) ∼= Aut(G).
Proof. (i) Suppose Z is either an open cylinder or a Möbius band. Since
by Examples 6.5 and 6.6 Aut(G) ∼= {±1}×{±1} we need only to show that
Hid(∆) is homotopy equivalent to the circle and π0H(∆) ∼= {±1} × {±1}
as well. We leave this statement as an exercise for the reader.
(ii). Now let Z be neither an open foliated cylinder nor a foliated Möbius

band. Then the following statement is a reformulation of [8, Theorem 4.4]
in terms of striped atlases and their graphs. In particular, it contains (ii).

Lemma 8.1.1. c.f. [8, Theorem 4.4]. For each k ∈ H(∆) there exists a
unique homeomorphism h : Z0 → Z0 such that q ◦ h = k ◦ q, i.e. (h, k) is a
self-equivalence of the atlas q. Moreover, k ∈ Hid(∆) if and only if (h, k)
induces the identity automorphism of G.
Also the group Hid(∆) is contractible. □
It remains to construct an isomorphism ρ : π0H(∆) ∼= Aut(G). Let

k ∈ H(∆) and (h, k) be the self-equivalence of the atlas q. Denote by
ρ(k) the automorphism of G induced by (h, k), see Theorem 6.2. Then
one easily check that the correspondence k 7→ ρ(k) is a homomorphism
ρ : π0H(∆) ∼= Aut(G).
Moreover, by Theorem 6.2 ρ is surjective, and by Lemma 8.1.1 its kernel

is Hid(∆). This gives the required isomorphism

π0H(∆) = H(∆)/Hid(∆) = H(∆)/ ker(ρ) ∼= Aut(G).

Theorem 8.1 is completed. □
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