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On colorings and isometries
Igor Protasov

Abstract. In the first section we prove some isometric versions of the clas-
sical Ramsey theorem. In the second section we discuss open problems on
metrically Ramsey ultrafilters. Given a metric space (X, d), we say that a
mapping χ : [X]2 → {0.1} is an isometric coloring if d(x, y) = d(z, t) implies
χ({x, y}) = χ({z, t}), where [X]2 is the set of all two-element subsets of X. A
free ultrafilter U on an infinite metric space (X, d) is called metrically Ramsey
if, for every isometric coloring χ of [X]2, there is a member U ∈ U such that
the set [U ]2 is χ-monochrome.

1. ISOMETRIC VERSIONS OF RAMSEY THEOREM
Motivation and results. For any natural numbers n, r, there exists a
natural number m, such that for any r-coloring of edges of the complete
graph Km, there is a monochrome copy of Kn.

This elegant statement is a graph version of Ramsey theorem, one of the
milestones of Ramsey Theory. For history (with exposition of the original
paper of Frank Ramsey) and foundations of this branch of Combinatorics,
see [1]. For geometrical aspects, in particular, chromatic numbers of Rn,
see [8].

Clearly, Kn contains an isomorphic copy of any graph with ≤ n vertices,
so for every finite graph Γ and a natural number r, there exists a natural
number m such that, for any r-coloring of edges of Km, there is a mono-
chrome copy Γ′ of Γ. But this Γ′, as a rule, lies in Km very non-isometrically
with respect to Γ. We need some definitions to explain this passage.

All graphs are supposed to be finite and connected. Every graph Γ
with the set of vertices V (Γ) and the set of edges E(Γ) (each edges in
an unordered pair {u, v} of two distinct vertices) can be considered as the
metric space (V (Γ), dΓ) with the path metric dΓ defined by the rule: d(u, v)
is the length (by edges) of a shortest path (called geodesic) between u and
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v. Given two graphs Γ and G, a mapping f : V (Γ) → V (G) is an isometric
embedding if, for any u, v ∈ V (Γ), dΓ(u, v) = dG(f(u), f(v)). Thus, Γ is
isometrically embedded into Km if and only if Γ is complete.

Now we take an arbitrary graph Γ, natural number r and ask if there
exists a graph G such that, for every r-coloring of E(G), there is a mono-
chrome isometric copy of Γ? The answer is positive and follows from The-
orem 1.3 in [4]. But the construction of that G in [4] essentially depends
on Γ and could be very complicated.

We show that the choice of G is very simple if Γ is isometrically embed-
dable into the Cartesian product of complete graphs.

For some characterization of graphs isometrically embeddable into Km
n

see [9].

Theorem 1.1. Assume that a graph Γ is isometrically embedded into Km
n ,

and let r be a natural number. Then there exists a natural number N such
that, for G = Kmr−r+1

N and any r-coloring of V (G) and r-coloring of E(G),
the graph G contains an isometrically embedded, vertex-monochrome, and
edge-monochrome copy of Γ.

We recall that the Cartesian product G = G1 × . . . × Gn of graphs
G1, . . . , Gn is a graph with the set of vertices

V (G) = V (G1)× . . .× V (Gn)

and the set of edges
E(G) =

∪
i≤n

Ei(G),

defined by the rule: for u = (u1, . . . , un) and v = (v1, . . . , vn),
uv ∈ Ei(G) ⇐⇒ uivi ∈ E(Gi), uk = vk, k ∈ {1, . . . , i− 1, i+ 1, . . . , n}.

By Km
n , we denote the Cartesian product of m complete graphs Kn.

If S1, . . . , Sn are subgraphs of G1, . . . , Gn, we say that S1 × . . .× Sn is a
box in G. We say that a graph H1 × . . . ×Hk is box embeddable into G if,
after some rearrangement of {1, . . . , n}, there is a box

S1 × . . .× Sk × {uk+1} × . . .× {un}

in G such that Si ≃ Hi, i ∈ {1, . . . , k}, where the sign ≃ means an isomor-
phism.

We extract Theorem 1.1 from the following statements announced in [6].

Theorem 1.2. For any natural numbers n, m, r there exists a natural
number N such that for every r-coloring of V (Km

N ) the graph Km
N contains

a monochrome box copy of Km
n .
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Theorem 1.3. For any natural numbers n, m, r there exists a natural num-
ber N such that, for every r-coloring of E(Kmr−r+1

N ) the graph Kmr−r+1
N

contains a monochrome box copy of Km
n .

If G1, . . . , Gn are directed graphs, we consider G = G1 × . . . × Gn as a
graph endowed with the unique orientation O such that the restriction of
O to each Ei(G) coincides with orientation of E(Gi).

Theorem 1.4. Let n, m be natural numbers and let G1, . . . , Gm be acycli-
cally oriented copies of Kn. Then there exists a natural number N such that
for any acyclic orientation of Km

n there is a directed box copy of G1, . . . , Gm

in Km
N .

PROOFS
Theorem 1.2 is a simple corollary of Lemma 1 from [2].
We will extract Theorem 1.3 from some more general result.
Say that an edge-coloring χ of G1 × . . . × Gn is a face coloring if the

restrictions of χ to each Ei(G1 × . . .×Gn) is monochrome.

Theorem 1.5. For any natural numbers n, k, r there exists a natural num-
ber N such that for G = Kk

N and any r-coloring χ of E(G) the restriction
of χ to some box G1 × . . .×Gk, Gi ≃ Kn is a face coloring.
Proof. Let us fix n, r and proceed on induction by k. For k = 1, we have
the Ramsey theorem.

The transition from k to k + 1 will be done in five steps.
Step 1. At first we use Theorem 1.2 to choose p such that, for P = Kk

p

and any r-coloring of V (P ), there is a monochrome box P1 × . . . × Pk,
Pi ≃ Kn in P .

Now apply the inductive assumption to choose q such that, for Q = Kk
q

and any r-coloring Ψ of E(Q), the restriction of Ψ to some box Q1×. . .×Qk,
Qi ≃ Kp in Q is a face coloring.

Step 2. Given a natural number t, we put s(t) = t r|E(Q)| and note that,
by the pigeonhole principle, for every r-coloring Φ of E(Q × Ks(t)) there
is a subset T ⊂ V (Ks(t)) such that |T | = t and all restrictions of Φ to
E(Q× {t}), t ∈ T coincide.

Step 3. We define the iterated Ramsey numbers R(i)(n, r) by
R1(n, r) = R(n, r), R(i+1)(n, r) = R(R(i)(n, r), r),

where R(l, r) is the minimal natural number such that for any r-coloring
of E(KR(l,r)) there is a monochrome copy of Kl.
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Step 4. We put t = R(|V (P )|)(n, r), choose N such that N > s(t), N > q,
and take an arbitrary r-coloring χ of E(Kk

N ×KN ).
Regard Q as a box of Kk

N . Then it follows from the definition of s(t),
there exists a subset X of V (KN ) such that |X| = t and all restrictions of χ
to E(Q×{x}), x ∈ X, coincide. Then by the choice of Q, each restrictions
of χ to E(P × {x}), with P = Q1 × . . .×Qk and x ∈ X, is a face coloring.

Step 5. Enumerate V (P ) = {u1, . . . , u|V (P )|} and use Step 4 to choose
subsets X1, . . . , X|V (P )| of X such that X1 ⊃ . . . ⊃ X|V (P )|, |X|V (P )|| = n,
and each E({ui}×Yi) is χ-monochrome, where Yi is a complete graph with
the set of vertices Xi.

By the choice of P , there exists a box P1 × . . . × Pk in P such that
Pi ≃ Kn and all E({u} × Y|V (P )|), u ∈ V (P1 × . . . × Pk), are of the same
color.

Hence, χ is a face coloring on P1 × . . .× Pk × Y|V (P )|. □

To get Theorem 1.3, we apply Theorem 1.5 with k = (m− 1)r + 1.

Proof of Theorem 1.4. We fix n and proceed on induction by m. For
m = 1, the statement is evident because each acyclic orientation of a com-
plete graph is uniquely determined by some ordering of its vertices.

We make the transition from m to m+ 1 in four steps.
Step 1. Use Theorem 1.2 to choose p such that for P = Km

p and any
n!-coloring of V (P ) there exists a monochrome box P1× . . .×Pm in P with
Pi ≃ Kn.

Now we use the inductive assumption to choose q such that for Q = Km
q

and any acyclic orientation Ψ of E(Q) the restriction of Ψ to some box
Q1×. . .×Qm with Qi ≃ Kp is induced by orientations of E(Q1), . . . , E(Qm).

Step 2. Put s(n) = 2|E(Q)|n and choose N so that N > s(n) and N > q.
We also take an arbitrary acyclic orientation O of Km

N ×KN .
Step 3. Regard Q as a box of Km

N . By the definition of s(n), there
exists a subset X of V (KN ) such that |X| = n and all restrictions of O to
E(Q × {x}), x ∈ X, coincide. By the choice of Q, each restriction χ to
E(P ×{x}), with P = Q1× . . .×Qm and x ∈ X, is induced by orientations
of E(Q1), . . . , E(Qm).

Step 4. Denote by Y the complete graph on the set of vertices X. Since
there are n! acyclic orientations of Y , it follows from the choice of P that
there exists a box P1 × . . .× Pm in P such that Pi ≃ Kn and all {u} × Y ,
u ∈ P1 × . . .×Pm, have the same type of orientation: {u}× vw ∈ O if and
only if {u′} × vw ∈ O.

Hence, P1 × . . .× Pm × Y is the desired box in Km+1
N . □
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2. METRICALLY RAMSEY ULTRAFILTERS
We recall that a family F of subsets of a set X is a filter if X ∈ F and

A,B ∈ F, B ⊆ C imply A
∩

B ∈ F, C ∈ F. A filter being maximal by
inclusion is called an ultrafilter. An ultrafilter U is free if

∩
U = ∅.

Let X be an infinite set and let F be some family of {0, 1}-colorings of the
set [X]2 of all two-elements subsets of X. We say that a free ultrafilter U on
X is Ramsey with respect to F if for any coloring χ ∈ F there exists U ∈ U
such that [U ]2 is χ-monochrome. In the case in which F is the family of all
{0, 1}-colorings of [X]2 we get the classical definition of Ramsey ultrafilters.
It is well-known that U is a Ramsey ultrafilter if and only if U is selective,
i.e. for every partition P of X either P ∈ U for some P ∈ P or there exists
U ∈ U such that |U

∩
P | ≤ 1 for each P ∈ P.

Given a metric space (X, d), we say that a mapping χ : [X]2 → {0, 1}
is an isometric coloring if d(x, y) = d(z, t) implies χ({x, y}) = χ({z, t}).
We note that every isometric coloring χ is uniquely determined by some
mapping

f : d(X,X) \ {0} → {0, 1}.
Indeed, take an arbitrary r ∈ d(X,X) \ {0} and choose {x, y} ∈ [X]2

such that d(x, y) = r, and put f(r) = χ({x, y}). Conversely, given a map
f : d(X,X) \ {0} → {0, 1}, we define χ by χ({x, y}) = f(d(x, y)).

We say that a free ultrafilter on an infinite metric space (X, d) is met-
rically Ramsey if U is Ramsey with respect to all isometric colorings of
[X]2.

Let G be a group and let X be a G-space with an action

G×X → X, (g, x) 7→ gx.

A coloring χ : [X]2 → {0.1} is called G-invariant if χ({x, y}) = χ({gx, gy})
for all {x, y} ∈ [X]2 and g ∈ G. A free ultrafilter U on X is called G-Ramsey
if U is Ramsey with respect to the family of all G-invariant colorings of [X]2.

We consider the following special case: X is a metric space and G is a
group of isometries of X. Clearly, every isometric coloring of [X]2 is G-
invariant. If G is metrically 2-transitive (if d(x, y) = d(z, t) then there is
g ∈ G such that g{x, y} = {z, t}), then every G-invariant coloring of [X]2

is an isometric coloring.
We take the group Z of integers, put X = Z and consider the action Z

on X by (g, x) = g + x.
• Is each Z-Ramsey ultrafilter selective?

This question appeared in [5] and, to our knowledge, remains open. We
endow Z with the metric d(x, y) = |x−y|. By above paragraph an ultrafilter
U on Z is Z-Ramsey if and only if U is metrically Ramsey.
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• Is each metrically Ramsey ultrafilter on Z-selective?
This is an equivalent form of the above question. The case of Z is evidently
equivalent to the case of N.

Some partial results are obtained in [5], [7].

Theorem 2.1. Let U be a metrically Ramsey ultrafilter on N and f : N → N
be a mapping such that f(x) > x for each x ∈ N. Then there exists a member
U ∈ U having no subsets of the form {a, a+x, a+ f(x)}. In particular, for
f(x) = 2x, some member of U has no arithmetic progressions of length 2.

We say that a subset T = {tn : tn < tn+1, n < ω} of N is thin if
(tn+1 − tn) → ∞ as n → ∞.

The following theorem is Corollary 2 from [5].

Theorem 2.2. Every metrically Ramsey ultrafilter U on N has a member
with no subsets of the form {x, y, x+ y}, x ̸= y.

Theorem 2.3. If a metrically Ramsey ultrafilter U on N has a thin subset
T ∈ U then there exists a mapping φ : N → ω such that the ultrafilter φ(U)
is selective and φ is finite-to-one on some member U ∈ U .

Surprisingly or not, the case of ultrametric spaces is cardinally different
and much more easy to explore. By [7] every infinite ultrametric space X
has a countable subset Y such that any ultrafilter U on X satisfying Y ∈ U
is metrically Ramsey.

In connection with Theorem 2.3, we ask

Question 2.4. Let U be a metrically Ramsey ultrafilter on N. Does there
exist a thin subset U ∈ U?

Question 2.5. Assume that a metrically Ramsey ultrafilter U on N has a
thin member. Is U selective?

By [3, Theorem 6.2], there is a coloring χ : [R]2 → {0, 1} such that if
X ⊂ R and [X]2 is χ-monochrome then |X| ≤ ω.

We endow R with the natural metric d(x, y) = |x− y| and ask

Question 2.6. Does there exist an isometric coloring χ : [R]2 → {0, 1}
such that if [X]2 is monochrome then |X| ≤ ω?

We endow the Cantor cube {0, 1}ω with the standard metric and ask
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Question 2.7. Does there exist an isometric coloring
χ : [{0, 1}ω]2 → {0, 1}

such that if [X]2 is monochrome then |X| ≤ ω?
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