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Warped product semi-slant submanifolds
in locally conformal Kaehler manifolds

Koji Matsumoto

Abstract. In 1994, in [13], N. Papaghiuc introduced the notion of semi-slant
submanifold in a Hermitian manifold which is a generalization of C'R- and
slant-submanifolds. In particular, he considered this submanifold in Kaehle-
rian manifolds, [13]. Then, in 2007, V. A. Khan and M. A. Khan considered
this submanifold in a nearly Kaehler manifold and obtained interesting results,
[11]. Recently, we considered semi-slant submanifolds in a locally conformal
Kaehler manifold and gave a necessary and sufficient conditions for two dis-
tributions (holomorphic and slant) to be integrable. Moreover, we considered
these submanifolds in a locally conformal Kaehler space form, [4]. In this
paper, we define 2-kind warped product semi-slant submanifolds in a locally
conformal Kaehler manifold and consider some properties of these submani-
folds.

1. INTRODUCTION

A Hermitian manifold M with structure (J,g) is called a locally conformal
Kaehler (an l.c.K.-) manifold if each point x € M has an open neighbour-
hood U with differentiable function p : U — R such that §* = e=2" g is a
Kaehlerian metric on U, that is, V*J = 0, where J is the almost complex
structure, g is the Hermitian metric, V* is the covariant differentiation with
respect to g* and R is a real number space, [14]. A typical example of an
l.c.K.-manifold which is not Kaehlerian is Hopf manifold, [14].

Then we know the following statement, see [10]:
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Proposition 1.1. A Hermitian manifold M(J, g) is l.c.K. if and only if
there exists a global closed 1-form a which is called Lee form satisfying
(Vv U = —g(af, U)JV + g(V,U)B* + g(JV.U)af —g(5%,U)V  (L.1)
for any V,U € T]\7, where ¥ denotes the covariant differentiation with
respect to g, of is the dual vector field of «, the 1 form B is defined by
B(X) = —a(JX), B is the dual vector field of B and TM is the tangent

bundle of M.

An l.c.K.-manifold M(J, g, ) is called an l.c.K.-space form if it has a
constant holomorphic sectional curvature. Then, [10], the Riemannian cur-
vature tensor R with respect to g of an l.c.K.-space form with the constant
holomorphic sectional curvature c is given by the following formulas:

AR(X,Y, Z,W) = {g(X, W) §(Y, Z) — §(X, Z) §(Y, W)+
+g(JX,W)g(JY,2Z) —g(JX, Z2)g(JY,W)—
—29(JX,Y)g(JZ,W)}+
+3{P(X,W)g(Y,Z) — P(X, Z)g(Y,W)+
+9(X, W) P(Y,Z) — g(X,Z) P(Y,W) } —
— P(X,W)g(JY, Z)+ P(X,2)§(JY,W)—
—G(JX,W)P(Y, Z)+ §(JX, Z) P(Y, W)+
+2{P(X,Y)§(JZ,W) +G(JX,Y) P(Z,W)}
forany X, Y, Z, W € TM , where P and P are respectively defined by
PX.Y) = ~(Txa)V —a(X)a(¥) + Jal?G(X.V),  (13)

and

P(X,Y)=P(JX,Y) (1.4)
for any X,Y € TM, where ||« is the length of the Lee form o.

Let (My,g1) and (Ma, g2) be two Riemannian manifolds. Then we put
M = M; x Ms be the product manifold of M; and Ms. For a positive
differentiable function f on My, we define a Riemannian metric tensor g on
M as

g(U, V) = €f291(7T1*U, 1 V') + g2(mosU, w2, V) (1.5)
for any U,V € T'M, where 71 (resp. m2) denotes the projection operator of
M to My (resp. Ma) and 7y, (resp ma.) is the differential of w1 (resp. m2).
Then the Riemannian manifold M is called a warped product manifold of
M, and My with the warping function f and we write it My ® ¢ Mo, [12].



10 K. Matsumoto

Let V, V1 and V3 be the covariant differentiation with respect to g, g1
and go, respectively. Then, we have from (1.5)

VxY = VixY — f2e/” g1 (X,Y)(dy log f)*,
VxZ=VzX = f*(Zlog f)X, (1.6)
VW =V, W
forany X,Y € TMy and Z, W € T'M>, where ds log f means the differential
of log f and (dslog f)* is the dual vector field of dslog f.
By virtue of (1.6), the curvature tensor R with respect to g is written
as
R(X1, Xp, X3, Xa) = e/ [Ry (X1, Xp, X3, Xa)
— 1| V2 log £1*{g1 (X1, X4)g1 (X3, X3)—
— 91(X1, X3)91 (X2, X3)}],
R(X1, 21, 25, X2) = —f*/" {(24 [*)(Z1 log f)(Z2 log f)+ (1.7)
+ Vaz,Vaz, log f} g1(X1, X2),
R(Zy1, 23,73, Z4) = Ra(Z1, Za, Z3, Z4),
Other =0,
and the Ricci tensor p with respect to g is separated as
p(X1, X2) = p1(X1, X2)—
— P22+ 1 f?)||Valog £ + Sada} g1(X1, Xa),
p(Xl, Zl) = 0, (18)
(21, Zs) = p2(Z1, Za)—
—n f2{(2+ f*)(Vaz, log f)(Vaz, log f) + Vaz,Vaz, log £},

for any X1,Xo € TM; and Z1,Zy € T M, where R; (resp. Ra) is the
Riemannian curvature tensor with respect to g; (resp. g2) and p; (resp.
p2) is the Ricci tensor with respect to g; (resp. g¢2), d2 (resp. J2) means
the differential (resp. codifferential) with respect to go, ||V2log f|| is the
length of Valog f with respect to go and ny = dim M;.

Finally, if we respectively put 7, 71 and 7o the scalar curvature with
respect to g, g1 and g, then from (1.8), we can easily have

T:ef271+72—(n1 —1)n1f4HV210ng2. (1.9)
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2. SEMI-SLANT-SUBMANIFOLDS IN AN ALMOST HERMITIAN MANIFOLD

In general, between a Riemannian manifold (M ,g) and its Riemannian
submanifold (M, g), we know the Gauss and Weingarten formulas

VxY = VxY +0(X,Y), VxN = —AxyX + V1 xN (2.1)

for any X,Y € TM and N € T+M, where V is the covariant differenti-
ation with respect to g, o is the second fundamental form and Ay is the
shape operator with respect to N and V' is the normal connection, [6].
The second fundamental form o and the shape operator A are related by
J(ANY, X) = G(o(Y,X),N) for any Y, X € TM and N € T+ M.

The Gauss equation is given by

RU,V,\W,Z) = R(U,V,W, Z) + g(o(U, Z),0(V,W)
- E(U(U7 W): J(V7 Z)),

for any U, V,W,Z € TM, [6].

A submanifold M is said to be totally geodesic, if the second fundamental
form o identically vanishes, [6].

We recall a warped product submanifold in a Riemannian manifold.

Let (M,g) be a Riemannian manifold. A submanifold (M, g) is called a
warped product submanifold of M if it satisfies

(i) M is a product manifold of 2 submanifolds M; and Ma,
(ii) two submanifolds are orthogonal with respect to g,
(iii) for certain Riemannian metric g; in Mj, g2 in M and a certain

positive differentiable function f in Ms, the metric tensor g is defined
by

(2.2)

g(U,V) = e g1 (m.U, w1 V) + go(mau U, ma, V) (2.3)
for any U,V € TM is the induced metric of g, [5].

By virtue of (1.7) and (2.3) the Riemannian curvature R is separated
as

R(X1, X, X3, X4) = /" {R1 (X1, X2, X3, X4)

— [ log f1Pg1 (X1, X4)g1 (X2, X3) — 91 (X1, X3)01(X2, Xa) }
+9(0(X1, X4),0(X2, X3)) — g(0 (X1, X3),0(X2, X4)),

E(Xl,XQ, Xg, Zl) = :qv(J(Xl, Zl),O'(XQ, Xg)) — :qv(0'<X1,X3),O'(X2, Zl)),

R(X1, Xo, 21, Zs) = g(0(X1, Z2),0(X2, Z1)) — §(0(X1, Z1), 0(Xa, Z2)),

R(X1, 21, 25, X5) = — {27 {2+ £*)(Z1 log f)(Zalog f) (2.4)
+ Vaz,Vaz log f1g1(X1, X2) + g(0(X1, X2),0(Z1, Z2))
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- g(a(leZQ)vo-(ZleQ))a
E(Xl, 71,729, 73) = g(0(X1,23),0(Z1,Z2)) — g(0(X1, Z2),0(Z1, Z3)),

R(Zy, 25,73, Z4) = Ro(Z1, Z2, Z3, Za)+
+ g(U(Zl) Z4)7 U(ZZa Z3)) - 5(0(217 Z3)7 U(ZQa Z4))a

for any Xl,XQ,X37X4 € TM; and Zl, ZQ, Zg, Zy € T]w'g7 where R (resp.
R») is the Riemannian curvature tensor with respect to g1 (resp. ga).

For a vector field U € T M, the angle between JU and T'M is called the
Wirtingar angle of U.

A differentiable distribution D? : 2 — D on M is said to be a slant one
if for each U, € DY, the Wirtingar angle of U, is constant (= 6) for any
x € M. In this case, the Wirtingar angle is said to be the slant angle. In
particular, if T'M is slant, then the submanifold is called a slant one, [9]. A
slant submanifold is holomorphic (resp. totally real) if its slant angle 6 = 0
(resp. 0 = 5). A slant submanifold is said to be proper if it is neither
holomorphic nor totally real.

A submanifold M in M is called a semi-slant submanifold if there exists a
differentiable distribution D : x — D, C T, M on M satisfying the following
conditions:

(i) D is holomorphic, i.e., JD, = D, for each x € M and

(ii) the complementary orthogonal distribution D? : x — DY C T, M is

slant with slant angle 6, where T, M is the tangent vector space of M
at x, [13].

Remark 2.1. A semi-slant submanifold is a C R-submanifold if the slant
angle is equal to 3, [1], [2], [3], [7], [8], etc.

A semi-slant submanifold M is said to be proper if it is neither CR-,
holomorphic, nor totally real.

In a submanifold M of an almost Hermitian manifold M (J,9), for any
UecTM and € € T+M, we write

JU = TU + FU, JE =t + he, (2.5)

where TU (resp. FU) means the tangential (resp. normal) component of
JU and t£ (resp. h€) means the tangential (resp. normal) component of J¢.

For a semi-slant submanifold M of an almost Hermitian manifold M, the
tangent bundle T'M and the normal bundle T+ M of M are decomposed as

TM =D o DY, T+M7=FD’ 3, (2.6)

where v denotes the orthogonal complementary distribution of FD? in
T+M.
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Further, in a semi-slant submanifold M we write
U=TU+1T,U, (2.7)

for any U € TM, where T1U (resp. ToU) denotes the D (resp. D) com-
ponent of U.
By virtue of (2.7) and (2.7), we can write

JU = JTU +T1T2U + FT5U, (28)
where JT\U € D, TToU € DY and FT,U € FDY ¢ T+ M. Thus if we put
QU = JTWU + TThU (2.9)

for any U € T'M, then @ is an automorphism on T'M.
The covariant differentiation V of Ty, Ts, T, F', t and h are defined as

(VuT1)V = Vy(T1V) — TiVyV,
(VoT)V = Vi (TbV) — ToVyV,
(VuT)V = Vu(TV) — TVGV,
(VuF)V = VE(FV) = FVyV, (2.10)
(Vut)é = Vy(té) — tV5é
(Vuh)€ = Vii(h€) — 5

for any U,V € TM and £ € T+M. B
Moreover, if we define the covariant differentiation V of )

(VuQ)V =Vy(QV) - QVyV (2.11)
for any U,V € T'M, then using (2.10), we have

(VuQ)V = (Vu )TV + J(VyT)V + (VuT)(T2V)

_ 2.12
+T(VUT2)V+JO'(U,T1V)—U(U, JT1V) ( )

for any U,V € TM. In particular, for any X,Y € D, the equation (2.12) is
written as

(VxQ)Y = (VxJ)Y+FTVxY+to(X,Y)+ho(X,Y)—o(X,TY). (2.13)
Now, for U,V € T M, we write
(VuJ)V =PyV + QuV, (2.14)

where PyV (resp. QuV) denotes the tangential (resp. normal) part of
(VuJ)V.
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3. SEMI-SLANT SUBMANIFOLDS IN AN L.C.K.-MANIFOLD

Let M be a semi-slant submanifold of an l.c.K.-manifold M (J,9, ).
Then we have from (1.1) and (2.14)

PuV = —§(ad,V)TU + (U, V)(Ta! + tad) + §(TU, V)al
— §(Tak +ta, VU, (3.1)
QuV = —j(e}, V)FU + §(U,V)(Fo! + hod) + §(TU, V)b,

where a% (resp. aﬁz) means the tangential (resp. normal) component of af.

In a semi-slant submanifold in an l.c.K.-manifold, we have from (3.1),
OxY — Qy X = 25(TX,Y)d (3.2)

for any X,Y € D.

Using theorems of V. A. Khan and M. A. Khan on integrability of the
distributions D and DY of a semi-slant submanifold in an almost Hermitian
manifold, in [4], we proved

Proposition 3.1. (I) The holomorphic distribution D of a semi-slant sub-
manifold M in an l.c.K.-manifold M(J,g,«) is integrable if and only if
o(X,TY) —o(Y,TX) = QxY — Oy X = 25(TX,Y)od  (3.3)

for any X,Y € D.
(IT) The slant distribution D? of a semi-slant submanifold M in an locally

conformal Kaehler manifold M(J, g, ) is integrable if and only if
T (VzTW —VwTZ + Ap;W — Apw Z+

3.4
F it W)TZ — et 2)TW 4 25(TW, Z)ad) =0

or equivalently
T{(V D)W — (VwT)Z +T(Z,W) + ApzW — Apw Z+ 55)

+ G, W)TZ — Glaa®, Z)TW + 25(TW, Z)ah} = 0
for any Z,W € DY,

4. WARPED PRODUCT SEMI-SLANT SUBMANIFOLDS IN L.C.K.-MANIFOLDS

Let D and D? be two integrable distributions on a semi-slant submanifold
M of an lLc.K.-manifold M(J,§,). Then (3.3) and (3.4) hold true. Let
also Mp (resp. Mps) be the maximal integral submanifold of D (resp. D?).
Then M is a product manifold of Mp and Mpe, that is,
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We call the submanifold Mp (resp. Mps) the holomorphic (resp. slant)
component of M.
We define the following two type warped product submanifolds

My := Mp @, Mpe (4.2)
for a certain differentiable function f; on Mpe and
My := Mpo f, Mp (43)

for a certain differentiable function fo on Mp. We say that M; (resp. M)
the first (resp. second) type warped product semi-slant submanifold of an
l.c.K.-manifold.

In this paper, we mainly consider the first type warped product semi-
slant submanifold.

Let M be the first type warped product semi-slant submanifold in an
l.c.K.-manifold M. Then the induced metric tensor g on M from M is
given by

g(U, V) = 6f12gD(7TD x U, mp * V') + gpe(mpe x U, mpe x V) (4.4)
for any U,V € TM, where gp (resp. gpe) denotes the Riemannian metric
on Mp (resp. Mpe), mp (resp. mpe) is the projection operator of M to Mp
(resp. Mpe) and fi is a certain positive differentiable function on Mpe.
Now, we denote by V, V, VP and VP’ the covariant differentiations with
respect to g, g, gp and gpe, respectively. Since we have from (1.6)

VxY = VPxY — flefi(dilog fi)"gn(X,Y),
VxZ=VzX = f{(Zlog f1)X, (4.5)
VoW =vP W

for any X,Y € D and Z, W € DY, where we put (d; log f1) is the differential
of log f1 with respect to gpe.
Using Gauss formula and the above equation, we obtain

VY = VPy X — f2ef7 (dy log f1)*gp(X,Y) + o(X,Y),
VxZ=VzX = f2(Zlog f1)X + 0(X, Z), (4.6)
VoW =V W+ o(Z,W)

for any X, Y € D and Z,W € DY.
Due to (4.6) between the Riemannian curvature tensors
e R(Uy,Us,Us,Uy) with respect to g,
o RP(X1, X2, X3, X,) with respect to gp, and
. RDB(Z17ZQ723,Z4) with respect to gpe,
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we know the following relations:

R(X1, Xa, X3, X4) = /T [RP (X1, Xa, X3, X4)
— fLe T |V log f1]*{gp (X1, X4)gp(Xs, X3)
— gp(X1, X3)gp (X2, X4)}],
R(X1, 21, Z2, Xo) = —f2eS1{ (2 + f2)(Z1 1og 1)(Zs log f1)
+ VP, VP’ 4, log f1top(X1, Xo),
R(Zy, 25, Z3, Z4) = R (21, Zs, Z3, Z4),
Others = 0,

(4.7)

for any X1, X9, X3, X4 € D and Z1, Zo, Z3, Z4 € D°.

By virtue of the above equation and the Gauss equation, we have the
following

R(X1, Xo, X3, X4) = e/T[RP (X1, Xo, X3, X4)

— [tV log f1]{gp(X1, Xa)gp(Xa2, X3)
— g9p(X1, X3)9p(X2, X4)}] + g(0(X1, X4), 0(X2, X3))
— g(o(X1, X3),0(X2, X4)),

R(X1, X2, X3, Z1) = g(0(X1, 21),0(X2, X3))—
—g(0(X1,X3),0(X2, Z1)),
R(X1, Xo, Z1, Zo) = §(0(X1, Zo),0(Xa, Z1))—
—g(0(X1,21),0(X2, Z2)), (4.8)
ﬁ(Xth,Zz,Zs) =g(0(X1,23),0(Z1, Z3))—
—9(0(X1, 22),0(Z1, Z3)),
R(X1,21, 22, X2) = — f2e/t{(2 + f2)(Z1log f1)(Z2log f1)
+ VP 2V 4 log f1}gp (X1, Xa)
+ g(U(Xla Xg), U(Zlﬂ ZQ)) - g(U(Xla ZQ)? U(Z17 XQ))?
R(Zy, 23, Z3, Z4) = RP" (21, Za, Z3, Za) + §(0(Z1, Z4), 0(Za, Z3))
- g(g(zlv Z3)’ 0-(227 Z4))a
for any X1, X9, X3, X4 € D and Z1, Zo, Z3, Z4 € D°.
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Next, we assume that our ambient manifold is an l.c.K.-space form. Then
the curvature tensor R satisfies (1.2). Using this, we can separate the
curvature tensor R as

4§(X1,X2,X3, Xy) = c{9(X1, X4) 9( X2, X3) — (X1, X3) g(X2, X4)+

+9(TX1,X4)g(TXo, X3) — g(TX1,X3) (T X2, X4)—
—29(T X1, X2) g(T X3, X4) }+
+ 3{P(X1, X4) §(X2, X3) — P(X1, X3) 9(Xo, Xq)+
+ P(X2, X3) 9(X1, X4) — P(X2, X4) 9(X1, X) } -
— P(X1, X4) §(T X9, X3) + P(X1, X3) §(T X2, X4)—
— P(Xy, X3) (T X1, X4) + P(Xo, X4) §(T X1, X3)+
+2{P(X1, X2) §(T'X3, X4) + P(X3, X4) §(T X1, Xo) },

AR(X1, X2, X3, Z1) = 3{P(X1, Z1) §(X2, X3) — P(X2, Z1) §(X1, X3)}
— P(X1,21) §(T X2, X3) + P(X2, Z1) §(T X1, X3)
+2P(X3, Z1) §(T X1, X3),

QR(X1, X, Z1, Zy) = —c§(T X1, X2) §(T Z1, Zs)
+ P(X1, X2) §(TZ1, Za) + P(Z1, Z2) §(T X1, Xa), (4.9)

AR(X1, Z1, Za, Xo) = c{§(X1, X2) §(Z1, Zo) + §(T X1, X2)§ (T Z1, Z2) }
+ 3{P(X1,X2) §(Z1, Z2) + P(Z1, Z2) (X1, X2) }
— P(X1,X2) §(T 21, Z) — P(Z1, Z2) §(T X1, Xa),

AR(X1, Z1, 72, Z3) = 3{P(X1, Z3) §(Z1, Z3) — P(X1, Z3) §(Z1, Z3)}
— P(X1,23) §(TZ1, Zo) + P(X1, Z2) §(T Z1, Z3)
+ 2P (X1, Z1) §(T Zs, Zs3),

AR(Z1, Za, Z3, Z4) = c{G(Z1, Z4) §(Z2, Z3) — §(Z1, Z3) §(Z2y X7)+
+9(T 21, 24) §(TZ2, Z3) — g(T'Zn, Z3) g(TZ2, Zs)—
—29(T 2y, Z3) §(TZ3, X4) }+
+3{P(Z1, Z4) §(Z2, Z3) — P(Z1, Z3) §(Za, Zs)—
+ P(Za, Z3)9(Zn, Z4)}—
— P(Zy, 23) (T Za, Zs) + P(Zy, Z3) §(T Za, Zs)—
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- 13(22, Z3)g(TZy, Zy) + 15(22, Z4)g(TZy, Z3)+
+2{P(Z1,25) §(T Z3, Zs) + P(Z3, Z1) §(T Z1, Z) }

for any X1, Xo, X3, X, € D and Zy, Zo, Z3, Z4 € D’.
Thus we have from (4.8) and (4.9) that

Hg(o(X1, X4),0(X2, X3)) — g(0(X1, X3),0(X2, X4))} =
— 4/ RP (X1, Xo, X3, X4)
+ {e+ 4f2( V" log f1PHG(X1, X4)G(Xa, X3)
— 9(X1, X3)9(X2, Xa)} + e{g(T X1, X4)g(T X2, X3)
—9(T Xy, X3)g(T X2, X4) — 29(T X1, X2)g(T X3, X4) }
+3{P(X1, X4)§(X2, X3) — P(X1, X3)5(X2, X4)
+ P(Xa, X3)3(X1, X4) — P(X2, X0)§(X1, X3)}
— P(X1, X4)§(T X2, X3) + P(X1, X3)§(T X2, X4)
— P(X2, X3)§(TX1, X4) + P(Xa, X4)§(T X1, X3)
+2{P(X1, X2)g
Hg(o(X1,21),0(X2, X3)) — g(0(X1, X3),0(X2, Z1))} =
3{P(X1,21)§(X2, X3) — P(X2, Z1)g(X1, X3)} (4.10)
— P(X1,20)§(T Xy, X3) + P(X2, Z1)§(T X1, X3)
+2P(X3, Z1)3(T X1, Xa),

2{g(0 (X1, Z2),0(X2, Z1)) — g(0(X1, Z1),0(X2, Z2))} =
— cg(TX1, X2)§(TZ1, Zs) + P(X1, X2)§(T 21, Zs)
+ P(Z1, Z2)3(T X1, X3),

4g(o(X1, X2),0(Z1, Z2)) — g(0(X1, Z2),0(Z1, X2))} =
Af2elT{(2+ F1)(Z1 log f1)(Z2 log fr)
+ VP 5V 4, log fi}gp (X1, X2)
+ c{9(X1, X2)9(Z1, Z2) + (T X1, X2)g(TZ1, Z2) }
+ 3{P(X1, X2)g(Z1, Z2) + P(Z1, Z2)g( X1, X2)}
— P(X1, X2)§(T'Z1, Za) — P(Z1, Z2)§(T X1, Xa),

Hg(o(Xy, Z3),0(Z1, Z2)) — g(0(X1, Z2),0(Z1, Z3))} =
3{P(X1,23)9(Z1, Z2) — P(X1, Z2)9(Z1, Z3)}

(T X3, X4) + P(X3, X4)3(T X1, X2)},
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— ﬁ(Xl, Z3)§(TZl, ZQ) + ﬁ(le Z2)§(TZD Z3)
+2P(X1, 21)§(T 2, Z3),

4g(o(Z1,24),0(Z2, Z3)) — §(0(Z1, Z3), 0(Z2, Z4))} =
—ARP" (21, 25, Z3, Z4)
+ e 9(Z1, 24)9(Z2, Z3) — g(Z1, Z3)§(Z2, Za)
+9(TZ1, Z4)g(T Za, Z3) — g(TZ1, Z3)g(T Z2, Z4)
—29(TZ1, Z2)g(TZ3, Xa)} + 3{ P(Z1, Z4)§(Z2, Z3)
— P(Zy1,Z3)9(Z2, Z4) + P(Z2, Z3)§(Z1, Z4)
P(Za, 24)§(Zy, Z3} — P(Zy1, Z43)§(T Za, Zs3)
+ P(Zy1, Z3)§(T Z, Zs) — P(Za, Z3)§(T Z1, Z4)
+ P(Zs, Z1)§(T 21, Z3) + 2{P(Z1, Z2)3(T Z3, Z4)
+ P(Z3, Z4)§(T 21, Za)},

for any X1, X0, X3, Xy € D and 71,725,735, 724 € DY Let

* *
€1,---5€p, €1 ,...,€p ,
* *
€2p+1y---€2p+qy €2p+1 5---5€2ptq
* *
€ntq+1s- -5 Cntqtss Cntqt+l 5.+ Cntgts

be a generalized adapted local frame of M, [4].
Using this frame, the Gauss equation (4.10) is written as

Hg(okn, 0ji) — g(okis o5n)} =
— 46T RP i, + f21IVP Tog 12 (0kndsi — Gidin)
— 3(Prndji — Pridjn + Pjiogn — Pjnoy;)
+ P(Jeg,en)g(Jej, ei) — P(Jeg, e;)g(Jej, en)
+ P(Jej,e)g(Jek,en) — P(Jej, en)g(Jex, €;)
—2{P(Jex,e;)g(Jei,en) + P(Jei,en)g(Jex, €j)},
Hg(oja,0in) — §(0jn: 0ia)} = 3(Pjadin — Piadjn)
— P(Jej,eq)g(Jes, en) + P(Jej,eq)g(Jej, en)
+2P(Jen,eq)g(Jej, €:),

2{9(0ia,ons) — 9(Ci, Oha) } = —cg(Je;, en)g(Tep, eq)
+ P(Jeb.ea)'g(Jei, Ch) + P(Jei, Ch)g(Teb, ea),
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4{G(0in: ova) — G(0ias o0n) } = 4F7{(2+ f7)(ep1og f1)(eqlog f1)
+ VDeebVDQGQ log f1}0in + c{0indba + g(Jei, en)g(Tep, eq)}
3(Pindpa + Poadin) — P(Jei,en)g(Tep, eq)
— P(Jep,eq)g(Jei, en), (4.11)

4Hg(Oha, o) — §(Onh, 0ca)} = 3(Prhadeb — Pridca)
— P(Jep,eq)g(Tec,ep) + P(Jen, ep)g(Tec, eq)
+2P(Jep,ec)g(Teyp, €q),

4{G(Tdas oeb) — G(0avs Ten)} = —4R”” tepa + {Bdabep — Sandea
+g(Tea, ea)g(Tec, ev) — g(Teq, ep)g(Tec, €q)
—2¢(Teq,ec)g(Tep, eq) }
+ 3(Paadeb — Pavdea + Pepdda — Peadap)
— P(Jeq,eq)g(Tec, ep) + P(Jeq, ep)g(Tec, €q)
— P(Jec,e0)g(Tea, ea) + P(Jec, eq)g(Teq, ep)
+2{P(Jeq, ec)g(Tev, eq) + P(Jep, €a)g(Teq, ec)},
for any
kg i he{1,2,...,2p)
and
dye,byae {2p+1,2p+2,....2p+ q},

where we put o(e,, ex) = o, etc.
The mean curvature vector H and the mean curvature ||H|| are respec-
tively given by

1< 1 <
H="3 0w IHI? = =5 > 50 o) (4.12)
p=1 wA=1
and the length ||| of the second fundamental form o is given by
n n m
o2 =Y Glowmowm) = > Y {dome)? (413
HA=1 wA=1r=n+1
for any local orthonormal frame {e1,es,..., e} of TM.

By virtue of the Gauss equations, we have

n

Y By = Buan) = lloll* = nllH|*. (4.14)
A A=1
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On the other hand, we have from (4.10) that

4ZR“>‘W‘_ n +2n—3q)c—6 ZPW
pwA=1
2p+q 2p+q 2p+q (4.15)
—6 > Pp—3c > TwTha+6 Y P(Jey ea)Tha,
b=2p+1 ba=2p+1 b,a=2p+1

where Tyy = g(Tp ec, €4) for any ¢,b,a € {2p+1,2p+2,...,2p+ q = n}.
We know Ty, is skew-symmetric.
Moreover, we have from (1.9) and (4.7) that

0
4 Z Ryun=— (/TP + 7 P") 4 8pfR{(2p — 1) f2IVP Log f1 ]2+
pA=1

2p+q 2p+q . . (4.16)
+22+f7) Y (ealogfi)®+2 Y VP, V7, log fi},
a=2p+1 a=2p+1
where 77 (resp. TDG) denotes the scalar curvature with respect to gp (resp.
9po)-

Substituting (4.15) and (4.16) into (4.14), we obtain

6
Allo|* = 4n[|H|* + 8pf{(2p — 1) f7|IV" log frl[*+

2p+q
202+ f1) D (ealog f1)’} + (n* + 2n = 3g)c+
a=2p+1
2p+q
+ 3¢ Z (Tpa)? — 4(ef127'D + TD9)+
b,a=2p+1 (4.17)
2p+q
+16pff Y V2 V2 log fi + 6(n — 2 ZPW+
b,a=2p+1
2p+q 2p+q
+6 Y Pu—6 > P(Jeyeq)Tha
a=2p+1 b,a=2p+1

Thus we have
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Theorem 4.1. In a first type warped product semi-slant submanifold in an
l.c.K.-space form, the mean curvature satisfies the inequality

o
An||H|? + 8pfi{(2p — 1) fEIV® log f1]?

2p+q
+22+f2) D (ealog f1)*} + (n? +2n — 3q)c
a=2p+1
2p+q
Z {Tyo}? — 4(6f127'D + TDG)
b,a=2p+1 (4.18)
2p+q n
+16pf2 > VIV log f1 +6(n—2) > By,
b,a=2p+1 =1
2p+q 2p+q
+6 Z Paa—6 Z J@b,eaTbazo
a=2p+1 b,a=2p+1

Corollary 4.2. Under the same condition with Theorem 4.1, the equality
case of (4.18) is that the submanifold is locally totally geodesic and the
warping function fi satisfies

8pf2{(2p — 1) 2|V’ log f1]+

2p+q
+2(2+ f3) Z (eqlog f1)?} + (n® + 2n — 3¢)c+
a=2p+1
2p+q
ST (T — 4P 4 7P )+
b,a=2p+1
2p+q
+16pf2 Y VP, VP, log fi+ 6(n — ZPWJr
b,a=2p+1 p=1
2p+q 2p+q
+6 Y Pua—6 Y P(Jeyea)Tho = 0.
a=2p+1 b,a=2p+1
and
2p+q
(n* + 2n — 3q¢)c + 3¢ Z (Tha}?2 — (/7P + 77"+
b,a=2p+1
2p+q

16pf? Z VD9 VD . log fi +6(n—2) ZPW+
b,a=2p+1 p=1
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2p+q 2p+q
+6 Y Pua—6 Y P(Jeyea)Tha < 0.
a=2p+1 b,a=2p+1
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