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Some remarks concerning strongly
separately continuous functions on

spaces ℓp with p ∈ [1,+∞]

Olena Karlova, Tomáš Visnyai

Abstract. We give a sufficient condition on strongly separately continuous
function f to be continuous on space ℓp for p ∈ [1,+∞]. We prove the
existence of an ssc function f : ℓ∞ → R which is not Baire measurable.
We show that any open set in ℓp is the set of discontinuities of a strongly
separately continuous real-valued function for p ∈ [1,+∞).

1. INTRODUCTION
The notion of real-valued strongly separately continuous (ssc) function

defined on Rn was introduced and studied by Dzagnidze in his paper [1].
Later, the authors extended in [7] the notion of the strong separate conti-
nuity to functions defined on the Hilbert space ℓ2 equipped with the norm
topology and proved, in particular, that there exists a real-valued ssc func-
tion on ℓ2 which is everywhere discontinuous. Visnyai [8] constructed an
ssc function f : ℓ2 → R which belongs to the third Baire class and is not
quasi-continuous at every point. Moreover, he gave a sufficient condition
for a strongly separately continuous function to be continuous on ℓ2.

In [3] Karlova extended the concept of an ssc function on any S-open
subset of a product of topological spaces and investigated ssc functions
with open set of discontinuities defined on a special subsets of a product of
a sequence of normed spaces. Karlova and Mykhaylyuk obtained a char-
acterization of the set of all points of discontinuity of strongly separately
continuous functions defined on subspaces of products of finite-dimensional
normed spaces [4].
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Karlova and Visnyai proved in [5] that any open set in ℓp is the set of
discontinuities of a strongly separately continuous real-valued function for
p ∈ [1,+∞) (see [5, Theorem 4.1]). Unfortunately, the proof of this result
contains a gap, which we remove in Theorem 5.3 of this paper.

The Baire classification of ssc functions was investigated in [3] and [5].
It was proved that for every 2 ≤ α < ω1 there exists a strongly separately
continuous function f : ℓp → R which belongs the α’th Baire class and does
not belong to the β’th Baire class on ℓp for β < α, p ∈ [1,+∞).

In this paper we continue to study ssc functions defined on spaces ℓp
with p ∈ [1,+∞]. In Section 3 we give a sufficient condition on ssc function
f defined on ℓp to be continuous. Further, we prove in Section 4 that
there exists an ssc function f : ℓ∞ → R which is not Baire measurable.
Section 5 contains a result on a construction of ssc functions with open set
of discontinuities.

2. DEFINITIONS AND NOTATIONS
We denote by ℓp, p ∈ [1,+∞), the normed space consisting of all se-

quences x = (xk)
∞
k=1 of reals such that

∑∞
k=1|xk|p < +∞ endowed with the

standard norm ∥ · ∥p defined by the rule

∥x∥p =

( ∞∑
k=1

|xk|p
)1/p

for all x = (xk)
∞
k=1 ∈ ℓp.

Let ℓ∞ be the space of all bounded sequences of reals with the norm
∥x∥∞ = sup

k∈N
|xk|

for all x = (xk)
∞
k=1 ∈ ℓ∞.

If p ∈ [1,+∞], x0 ∈ ℓp and δ > 0, then we write
Bp(x

0, δ) = {x ∈ ℓp : ∥x− x0∥p < δ}.

Definition 2.1. Let p ∈ [1,+∞], x0 = (x0k)
∞
k=1 ∈ ℓp and (Y, | · − · |) be a

metric space. A function f : ℓp → Y is said to be
• separately continuous at a point x0 with respect to the k-th variable if

the function φk : R → Y ,
φk(t) = f(x01, . . . , x

0
k−1, t, x

0
k+1, . . .)

for all t ∈ R, is continuous at x0k.
• strongly separately continuous at a point x0 with respect to the k-th
variable if

∀ε > 0 ∃δ > 0 ∀x = (xk)
∞
k=1 ∈ Bp(x

0, δ)
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|f(x1, . . . , xk, . . . )− f(x1, . . . , xk−1, x
0
k, xk+1, . . . )| < ε. (2.1)

If f is strongly separately continuous at x0 with respect to each variable,
then f is said to be strongly separately continuous at x0. Moreover, f is
(strongly) separately continuous on ℓp if it is (strongly) separately contin-
uous at each point of ℓp.

It is easy to see that
continuity ⇒ strong separate continuity ⇒ separate continuity.

None of the converse implications is true as the following examples show.
Example 2.2. Let

f(x1, x2, . . .) =


x1 · x2
x21 + x22

, x21 + x22 ̸= 0,

0, otherwise.

The function f : ℓp → R is separately continuous on ℓp for every p ∈ [1,+∞],
but is not strongly separately continuous at (0, 0, . . . ) for any p ∈ [1,+∞]
(see remarks after Theorem 3.1).
Example 2.3. Let A =

{
x = (xk)

∞
k=1 ∈ ℓp : |{k : xk ∈ Q}| < ℵ0

}
. We put

f(x1, x2, . . .) =

{
1, x ∈ A,

0, otherwise.

The function f : ℓp → R is strongly separately continuous on ℓp, but is
everywhere discontinuous for every p ∈ [1,+∞].
Proof. Fix p ∈ [1,+∞]. It is easy to see that both A and ℓp \ A are
everywhere dense in ℓp. This imply that f is everywhere discontinuous on
ℓp. Moreover, if x and y differs in at most one coordinate, then x ∈ A if
and only if y ∈ A. Therefore, |f(x)− f(y)| = 0 and (2.1) holds. □

3. CONTINUITY OF SSC FUNCTIONS
We will prove in this section the sufficient condition on strongly sepa-

rately continuous functions to be continuous on spaces ℓp.
For p ∈ [1,+∞], x, y ∈ ℓp and n ∈ N we put

γnp (x, y) =


∑
k>n

|xk − yk|p, p < +∞,

sup
k>n

|xk − yk|, p = +∞.
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Theorem 3.1. Let p ∈ [1,+∞], x0 =
(
x0k
)∞
k=1

∈ ℓp, (Y, | · − · |) be a metric
space, and f : ℓp → Y be a strongly separately continuous function at x0.
If for every ε > 0 there exist δ > 0 and K ∈ N such that

γKp (x0, y) < δ ⇒ |f (y1, . . . )− f
(
y1, . . . , yK , x

0
K+1, . . .

)
| < ε (3.1)

for all y = (yk)
∞
k=1 ∈ ℓp, then f is continuous at x0.

Proof. Fix ε > 0. According to the assumption there exists δ0 > 0 and
K ∈ N such that the inequality

γKp (x0, y) < δ0

implies the inequality

|f (y1, y2, . . . )− f
(
y1, . . . , yK , x

0
K+1, x

0
K+2, . . .

)
| < ε

2

for all y ∈ ℓp. Since f is strongly separately continuous at the point x0, for
every k ∈ {1, 2, . . . ,K} there exists δk > 0 such that

|f (x1, . . . , xk, . . . )− f
(
x1, . . . , xk−1, x

0
k, xk+1, . . .

)
| < ε

2K

for all x ∈ Bp(x
0, δk). We put

δ =

min
{

p
√
δ0, δ1, . . . , δK

}
, p <∞,

min
{
δ0, δ1, . . . , δK

}
, p = ∞.

Let us take x = (xk)
∞
k=1 ∈ Bp

(
x0, δ

)
and observe that(

x01, . . . , x
0
k, xk+1, . . .

)
∈ Bp

(
x0, δ

)
for every k ∈ {1, . . . ,K}. It follows that∣∣f (x1, x2, . . . )− f

(
x01, x

0
2, . . .

) ∣∣ ≤ ∣∣f (x1, x2, . . . )− f
(
x01, x2, . . .

) ∣∣+
+
∣∣f (x01, x2, x3, . . . )− f

(
x01, x

0
2, x3, . . .

) ∣∣+ · · ·+
+
∣∣f (x01, . . . , x0K−1, xK , xK+1, . . .

)
− f

(
x01, . . . , x

0
K−1, x

0
K , xK+1, . . .

) ∣∣+
+
∣∣f (x01, . . . , x0K−1, x

0
K , xK+1, . . .

)
− f

(
x01, . . . , x

0
K , x

0
K+1, x

0
K+2, . . .

) ∣∣ <
< K · ε

2K
+
ε

2
= ε.

Hence, f is continuous at x0. □

Now we are ready to show that the function f from Example 2.2 is not
strongly separately continuous at x0 = (0, 0, . . . ). Assume the contrary and
observe that for K = 2 we have |f(y1, y2, . . . )− f(y1, y2, 0, . . . )| = 0 for all
y ∈ ℓp. It follows that condition (3.1) holds for any ε > 0 and for any δ > 0.
Therefore, f has to be continuous at x0 by Theorem 3.1, a contradiction.
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As a straightforward corollary from Theorem 3.1 we obtain the next
result.

Theorem 3.2. Let p ∈ [1,+∞], (Y, |·−·|) be a metric space and f : ℓp → Y
be a strongly separately continuous function. If

∀x ∈ ℓp ∀ε > 0 ∃δ > 0 ∃K ∈ N
|f (y1, y2, . . . )− f (y1, . . . , yK , xK+1, xK+2, . . . )| < ε

for all y ∈ ℓp with γKp (x, y) < δ, then f is continuous on ℓp.

4. BAIRE CLASSIFICATION OF SSC-FUNCTIONS
Let us recall the definition of Baire classes of functions. We denote the

collection of all continuous maps f : X → Y between topological spaces X
and Y by B0(X,Y ). Assume that the classes Bξ(X,Y ) are already defined
for all 0 ≤ ξ < α, where α < ω1. Then f : X → Y is said to be of the α-th
Baire class, f ∈ Bα(X,Y ), if f is a pointwise limit of a sequence of maps
fn ∈ Bξn(X,Y ), where ξn < α.

Let 0 ≤ α < ω1, X be a metrizable space, Y is a topological space and
let Z be a locally convex space. According to Rudin’ result [6] each map
f : X × Y → Z, which is continuous with respect to the first variable
and is of the α-th Baire class with respect to the second one, belongs to
the (α + 1)-th Baire class on X × Y . It is easy to prove the corollary of
the Rudin Theorem (see [3, Proposition 3.1]): if n ∈ N, X1, . . . , Xn are
metrizable spaces and Z is a locally convex space, then every separately
continuous map f :

n∏
i=1

Xi → Z belongs to the (n− 1)-th Baire class.
On the other hand, it was proved in [3, Corollary 2.8] that any strongly

separately continuous map f :
n∏
i=1

Xi → Z is continuous. Therefore, it is
interesting to study Baire classification of ssc functions defined on subsets
of products of infinitely many factors, in particular, on spaces ℓp.
Definition 4.1. A subset A ⊆ X of a Cartesian product X =

∏∞
k=1Xk of

sets X1, X2, . . . is called S-open [3], if
{x = (xk)

∞
k=1 ∈ X : |{k : xk ̸= ak}| ≤ 1} ⊆ A (4.1)

for all a = (ak)
∞
k=1 ∈ A.

Notice that any space ℓp as a subset of the set Rω of all sequences is an
example of S-open set.

Proposition 4.2. For every p ∈ [1,+∞] there exists an S-open set A ⊆ ℓp
which is not Borel measurable.
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Proof. Firstly, we consider the case p < +∞. Define a relation ∼ on ℓp in
the following way:

x ∼ y ⇔ the set {k ∈ N : xk ̸= yk} is finite
for all x = (xk)

∞
k=1, y = (yk)

∞
k=1 ∈ ℓp. Clearly, ∼ defines the equivalence

relation on ℓp. Consider a partition (σi : i ∈ I) of ℓp on the equivalence
classes σi.

It is not hard to verify that |I| = c. Then there are 2c many sets of the
form

∪
i∈J σi, where J ⊆ I.

On the other hand, since ℓp is separable, it is a second countable space.
Hence, the cardinality of the collection of all open subsets of ℓp is c. There-
fore, the cardinality of the collection of all Borel measurable sets in ℓp is
also equal to c. Consequently, there exists a set J ⊂ I such that the union

A =
∪
i∈J

σi

is not Borel measurable.
Let a = (ak)

∞
k=1 ∈ A and x = (xk)

∞
k=1 ∈ ℓp be a sequence which differs

from a in at most one coordinate. Since a ∈ σi for some i ∈ J , there exists
a point y = (yk)

∞
k=1ℓp such that σi = [y] and |{k ∈ N : ak ̸= yk}| < ℵ0.

Clearly, |{k ∈ N : xk ̸= yk}| < ℵ0. Therefore, x ∈ σi ⊆ A. Hence, the set A
is S-open.

Now let p = +∞. For every r ∈ R we write
Br = {x ∈ ℓ1 : ∥x∥1 ≤ r}

and show that Br is closed in ℓ∞. Suppose that ∥x∥1 =
∑∞

k=1 |xk| > r.
There exists a number m ∈ N such that

m∑
k=1

|xk| > r.

Since the map s : Rm → R, s(y1, . . . , ym) =
∑m

k=1 |yk| is continuous at
(x1, . . . , xm), there exists δ > 0 such that

|xk − yk| < δ for every k ∈ {1, . . . ,m} =⇒
m∑
k=1

|yk| > r.

Then
B∞(x, δ) ⊆ ℓ∞ \Br.

Therefore, ℓ∞ \Br is open in ℓ∞ and hence Br is closed.
Now let G be an open subset of ℓ1. Then there exists a sequence (δn)∞n=1

of reals and (xn)
∞
n=1 of points from ℓ1 such that G =

∪∞
n=1B1(xn, δn). It

follows that G is an Fσ-subset of ℓ∞. Consequently, every Borel measurable
subset of ℓ1 is Borel measurable in ℓ∞.
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Conversely, if U = B∞(0, 1) ∩ ℓ1 = {x ∈ ℓ1 : supk∈N |xk| < 1}, then for
x ∈ U we have that

B1(x, 1− ∥x∥∞) = {y ∈ ℓ1 :
∞∑
k=1

|yk − xk| < 1− ∥x∥∞} ⊆ U.

This implies that every open set in ℓ∞ is open in ℓ1. Hence, the collections
of all Borel measurable sets in ℓ1 and in ℓ∞ coincide.

According to the previous arguments, there is an S-open subset A of ℓ1
which is not Borel measurable. Then A is not Borel measurable in ℓ∞. □

Theorem 4.3. For every p ∈ [1,+∞] there exists a strongly separately
continuous function f : ℓp → R such that f ̸∈

∪
α<ω1

Bα(ℓp,R).
Proof. Fix p ∈ [1,+∞]. By Proposition 4.2 we can find an S-open subset
A ⊆ ℓp which is not Borel measurable. For all x ∈ ℓp we put

f(x) =

{
1, x ∈ A,

0, x ̸∈ A.

Notice that f ̸∈
∪
α<ω1

Bα(ℓp,R), since the set A = f−1(1) is not Borel
measurable.

Since f(x) = f(y) whenever y differs from x in at most finitely many
coordinates, f is strongly separately continuous on ℓp. □

5. DISCONTINUITIES OF SSC FUNCTIONS
By C(f) (D(f)) we denote the set of all points of continuity (disconti-

nuity) of a map f .
We start with two simple facts.

Lemma 5.1. Let X be a topological space, φ : X → R be a continuous
function, g : X → R be a bounded function and f : X → R be a function
such that f(x) = φ(x) · g(x) for all x ∈ X. Then φ−1(0) ⊆ C(f).
Proof. Fix x0 ∈ φ−1(0) and ε > 0. Let C > 0 be a real number such
that |g(x)| ≤ C for all x ∈ X. Since φ is continuous at x0, we can find a
neighborhood U of x0 such that |φ(x)| < ε

C for all x ∈ U . Then

|f(x)− f(x0)| = |φ(x) · g(x)| < ε

C
· C = ε

for all x ∈ U . □
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Lemma 5.2. For any p ∈ [1,+∞) the set

D =
{
x = (xk)

∞
k=1 ∈ ℓp :

∞∑
k=1

√
|xk| = +∞

}
is dense in ℓp.
Proof. Fix p ∈ [1,+∞), x ∈ ℓp and δ > 0. We find N ∈ N such that

∞∑
k=N+1

|xk|p <
(
δ

2

)p
and

∞∑
k=N+1

1

k2p
<

(
δ

2

)p
.

Let

y =
(
x1, . . . , xN ,

1
(N+1)2

, 1
(N+2)2

, . . .
)
.

Clearly, y ∈ D. Moreover,

∥x− y∥p ≤

( ∞∑
k=N+1

(
1

k2

)p) 1
p

+

( ∞∑
k=N+1

|xk|p
) 1

p

<
δ

2
+
δ

2
= δ.

Hence, D is dense in ℓp. □

Theorem 5.3. For any p ∈ [1,+∞) and for any open nonempty set G ⊆ ℓp
there exists a strongly separately continuous function f : ℓp → R such that
D(f) = G.
Proof. Fix p ∈ [1,+∞). Let ∅ ̸= G ⊆ ℓp be an open set and F = ℓp \G.

For every x = (xk)
∞
k=1 ∈ ℓp we put

φ(x) =

min{d∞(x, F ), 1}, F ̸= ∅,

1, F = ∅,

g(x) =

exp(−
∑∞

k=1

√
|xk|), x ∈ ℓ1/2,

1, otherwise,

and let

f(x) = φ(x) · g(x).

Then F ⊆ C(f) by Lemma 5.1.
Now we show that G ⊆ D(f). Assume that x0 ∈ G. Then f(x0) > 0.

We put ε = 1
2f(x

0) and take an arbitrary δ > 0.
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Since the set D =
{
x ∈ ℓp :

∑∞
k=1

√
|xk| = +∞

}
is dense in ℓp by

Lemma 5.2, there exists x = (xn)n∈N ∈ ℓp such that

∥x− x0∥p <
δ

2
and x ∈ D.

Take a number N such that
N∑
n=1

√
|xn| > ln

(
2

f(x0)

)
and

∞∑
n=N+1

|xn|p <
(
δ

2

)p
.

We put
y = (x1, . . . , xN , 0, 0, . . . ).

Then y ∈ ℓ 1
2
and

∥y − x0∥p ≤ ∥y − x∥p + ∥x− x0∥p =

=
( ∞∑
n=N+1

|xn|p
) 1

p
+ ∥x− x0∥p <

δ

2
+
δ

2
= δ.

But

f(x0)− f(y) = f(x0)− φ(y) · exp
(
−

N∑
n=1

√
|xn|

)
>

> f(x0)− exp
(
−

N∑
n=1

√
|xn|

)
> f(x0)− f(x0)

2
= ε,

which implies that f is discontinuous at x0. Therefore, D(f) = G.
Now we prove that g is strongly separately continuous. Fix x0 ∈ ℓp,

k ∈ N and ε ∈ (0, 1). Let δ = ln2(1 + ε). Take x = (xk)
∞
k=1 ∈ Bp(x

0, δ) and
y = (x1, . . . , xk−1, x

0
k, xk, . . . ) ∈ Bp(x

0, δ). If x ̸∈ ℓ1/2, then y ̸∈ ℓ1/2. In
this case |g(x)− g(y)| = 0 < ε. Assume that x ∈ ℓ1/2. Then y ∈ ℓ1/2 and

|g(x)− g(y)| =
∣∣∣∣exp(− ∞∑

n=1

√
|xn|

)
− exp

(
−

∞∑
n=1

√
|yn|
)∣∣∣∣ <

<

∣∣∣∣exp( ∞∑
n=1

(√
|yn| −

√
|xn|

))
− 1

∣∣∣∣ =
=

∣∣∣∣exp(√|x0k| −
√

|xk|
)
− 1

∣∣∣∣.
It follows that

|g(x)− g(y)| = exp
(∣∣√|xk| −

√
|x0k|

∣∣)− 1 < exp
(√
δ
)
− 1 = ε
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in the case
√

|x0k| −
√

|xk| ≥ 0, or

|g(x)− g(y)| < 1− exp
(
−
√
δ
)
< ε,

otherwise. Hence, g is strongly separately continuous at x0 with respect to
the k’th variable.

Finally, f is strongly separately continuous on ℓp as a product of two ssc
functions (see Theorem 3 from [2]). □

In connection with Example 2.3 and Theorem 5.3 the following question
is natural and open.

Question 5.4. Let G ⊆ ℓ∞ be an open nonempty set. Does there exist a
strongly separately continuous function f : ℓ∞ → R such that D(f) = G?
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