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A generalized Palais-Smale condition in
the Fréchet space setting

Kaveh Eftekharinasab

Abstract. The Palais-Smale condition was introduced by Palais and Smale
in the mid-sixties and applied to an extension of Morse theory to infinite di-
mensional Hilbert spaces. Later this condition was extended by Palais for the
more general case of real functions over Banach-Finsler manifolds in order to
obtain Lusternik-Schnirelman theory in this setting. Despite the importance
of Fréchet spaces, critical point theories have not been developed yet in these
spaces.
Our aim in this paper is to extend the Palais-Smale condition to the cases

of C1-functionals on Fréchet spaces and Fréchet-Finsler manifolds of class
C1. The difficulty in the Fréchet setting is the lack of a general solvability
theory for differential equations. This restricts us to adapt the deformation
results (which are essential tools to locate critical points) as they appear as
solutions of Cauchy problems. However, Ekeland proved the result, today is
known as Ekleand’s variational principle, concerning the existence of almost-
minimums for a wide class of real functions on complete metric spaces. This
principle can be used to obtain minimizing Palais-Smale sequences. We use
this principle along with the introduced conditions to obtain some customary
results concerning the existence of minima in the Fréchet setting.
Recently it has been developed the projective limit techniques to overcome

problems (such as solvability theory for differential equations) with Fréchet
spaces. The idea of this approach is to represent a Fréchet space as the
projective limit of Banach spaces. This approach provides solutions for a wide
class of differential equations in every Fréchet space and therefore can be used
to obtain deformation results. This method would be the proper framework
for further development of critical point theory in the Fréchet setting.
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Анотація. Умова Паліса-Смейла була введена Р. Палісом та С. Смей-
лом в середині 60-х та застосована для перенесення теорії Морса на
нескінченовимірні гільбертові простори. Пізніше, Р. Паліс узагальнив
її для дійснозначних функцій на многовидах Банаха-Фінслера для
того, щоб розширити теорію Люстерніка-Шнірельмана на цей випадок.
Незважаючи на важливість просторів Фреше, на даний момент теорія
критичних точок для цих просторів розвинена дуже слабо.
Мета даної роботи розширити умову Паліса-Смейла на випадок C1-

функцій на просторах Фреше та на многовидах Фреше-Фінслера класу
C1. Складість роботи з просторами Фреше полягає у відсутності для
них загальної теорії розв’язності диференціальних рівнянь. Це суттєво
обмежує можливості адаптувати для них деформаційні результати (які є
суттєвим інструментом для знаходження критичних точок), через те, що
вони отримуються як розв’язки проблем Коші.
І. Екеланд довів так званий «варіаційний принцип Екленда», який

гарантує існування майже мінімумів для широкого класу дійснозначних
функцій на повних метричних просторах. Цей принцип може бути
використаний для отримання мінімізуючих послідовностей Паліса-
Смейла. В даній роботі ми використовуємо цей принцип разом з
додатковою умовою для того, щоб отримати деякі результати про
існування мінімумів функцій на просторах Фреше.
Розвинена в останні роки техніка проективних границь дозволяє обійти

проблеми роз’язності диференціальних рівнянь в просторах Фреше. Ідея
полягає в тому, щоб представити простір Фреше як проективну границю
банахових просторів. Такий підхід дозволяє розв’язати широкий клас
диференціальних рівнянь в кожному просторі Фреше, а отже, може
використовуватись для отримання деформаційних результатів. Описаний
метод має потенціальні застосування для розвитку теорії критичних
точок в просторах Фреше.

1. INTRODUCTION
The Palais-Smale condition is an essential tool for critical point the-

ory in infinite dimensional spaces. Since it was established by Palais and
Smale [8], a number of its generalizations for various categories of maps
have been introduced (cf. [6] for a survey). The Palais-Smale type condi-
tions have been applied to numerous problems in critical points theory and
its applications to various problems in differential equations, geometry and
physics (see [6]).
In this paper we generalize the Palais-Smale condition to the cases of

C1-functionals on Fréchet spaces and Fréchet-Finsler manifolds of class C1.
It is instantly noticed that due to the weak structural constraints of Fréchet
spaces, applications of the conditions are too restrictive. It is well known
that some of the basic tools for locating critical points of C1-functionals
are the deformation lemmas. The deformations that appear in the defor-
mation lemmas are obtained as solutions of Cauchy problems. However,
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on Fréchet spaces, an ordinary differential equation may admit no, one or
multiple solutions for the same initial condition. Thus, we can not get de-
formation results for Fréchet spaces in general. However, we can still use
the introduced conditions along with Ekeland’s variational principle to lo-
cate critical points. We then apply them and the works of Ekeland [2] and
Qui [9] to state some standard results dealing with the existence of minima.

2. PREREQUISITES
We use the following notion of Ck-maps in Michal-Bastiani sense. We

shall work in the category of manifolds of class at least C1.
Definition 2.1. Let E and F be Fréchet spaces, U ⊆ E be an open subset
and f : U → F be a continuous map. The derivative of f at x ∈ U in the
direction of h ∈ E is defined as

df(x)(h) := lim
t→0

1

t
(f(x+ ht)− f(x)),

whenever the limit exits. The map f is called differentiable at x if df(x)(h)
exists for all h ∈ E. It is called a C1-map if it is differentiable at all points
of U and

df : U × E → F, (x, h) 7→ df(x)(h),
is a continuous map. The map f is called a Ck-map, k ≥ 2, if it is contin-
uous, the higher directional derivatives

dkf(x)(h1, . . . , hk) := lim
t→0

dk−1f(x+hkt)(h1,...,hk−1)−dk−1f(x)(h1,...,hk−1)
t

exist for all integers j ≦ k, x ∈ U and h1, . . . , hj ∈ E, and all maps
djf : U × Ej → F, (x, h1, . . . , hj) 7→ djf(x)(h1, . . . , hj),

are continuous. We say that f is smooth or C∞ if it is Ck for all k ∈ N.
Within this framework most of the notions of the theory of infinite di-

mensional manifolds are sufficiently well behaved for our purposes. In
particular, Fréchet manifolds, Fréchet tangent bundles and Ck-maps be-
tween Fréchet manifolds are defined in obvious way (cf. [3]). However, for
a Fréchet manifold M modelled on a Fréchet space F we can define the
set-theoretic cotangent bundle

T ′M :=
∪

m∈M
(TmM)′,

where (TmM)′ is the dual of a tangent space TmM . As a set, it carries a
natural structure of a vector bundle overM , but in general there is no vector
topology on F ′, the dual of F , that can lead to the identification T ′M ∼=
F × F ′. Therefore there is no natural smooth vector bundle structure on
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T ′M if F is not normable, see [7, Remark I.3.9]. Thus instead, we use the
notion of a B-cotangent bundle [10]. In this definition to put a manifold
structure on T ′M , the dual of F is equipped by a B-topology, where B is a
bornology on F . To be precise, we recall that a family B of subsets of F is
called a bornology on F if the followings conditions are satisfied

(1)
∪

B∈B = F ,
(2) for every A,B ∈ B there exists C ∈ B such that A ∪B ⊂ C,
(3) for all B ∈ B and r ∈ R there exists C ∈ B such that r ·B ⊂ C.

Let E be a Fréchet space, B be a bornology on E and LB(E,F ) be the space
of all linear continuous maps from E to F . The B-topology on LB(E,F ) is
a Hausdorff locally convex topology defined by all seminorms obtained as
follows:

Pn
B(L) := sup{pn(L(e)) | e ∈ B}, (2.1)

where B ∈ B and {pn}n∈N is a family of seminorms defining the topology
of F . One similarly may define Lk

B(E,F ) and
∧k LB(E,R), the space of k-

linear jointly continuous maps of Ek to F and the space of anti-symmetric
k-linear jointly continuous maps of Ek to R, respectively. If B contains
all compact sets, then the B-topology on the space LB(E,R) = E′

B of all
continuous linear functional on E, the dual of E, is the topology of compact
convergence. For this and further details on bornologies we refer to [4].
If B contains all compact sets of E, then Lk

B(E,L
l
B(E,F )) is canonically

isomorphic to Ll+k
B (E,F ) as a topological vector space, see [5, Theorem

0.1.3]. In particular, L2
B(E,R) = L2

B(E) ∼= LB(E,E
′
B). Under the above

condition on B, we define the differentiability of class Ck
B as follows.

Let U ⊂ E be an open set. Then a map f : U → F is called C1
B if

its partial derivatives exist and the induced map df : U → LB(E,F ) is
continuous. Similarly we can define maps of class Ck

B, k ∈ N∪ {∞}, see [5,
Definition 2.5.0]. A map f : U → F is Ck

B , k ≧ 1, if and only if f is Ck in
the sense of Definition (2.1), see [5, Theorem 2.7.0 and Corollary 1.0.4 (2)].
In particular, f is C∞

B if and only in f is C∞. Thus, if f at x ∈ E is C1

and hence C1
B, the derivative f at x, df(x), is an element of E′

B, and we
shall denote df(x) evaluated at h ∈ E via df(x)(h).
Assume that B is a bornology on F containing all compact sets and

M is a Fréchet manifold modelled on F . Let f be a functional defined
over M . The derivative of f at x ∈ M can be written in terms of the
iterated tangent bundles of M and we can consider df : TM → R given
by df(x, h) = df(x)(h) upon locally identifying TM with U × F , where U
is an open set in F . Therefore, if at x ∈ M a map f : M → R is C1 and
hence C1

B, then df(x) belongs to LB(TxM,R) = (TxM)′B.
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Definition 2.2. LetM be a Fréchet manifold modelled on a Fréchet space
F and B a bornology on F . The B-cotangent bundle of M is defined as
TM ′

B :=
∪

x∈M (TxM)′B and the k-exterior product of the B-cotangent bun-
dle as

∧k TM ′
B :=

∪
x∈M

∧k(TxM)′B.
If B is chosen such that T (B) ⊂ B for all continuous linear endomor-

phisms T of F , then
∧k TM ′

B is a vector bundle in the category of locally
convex spaces with the local model F ×

∧k F ′
B. In particular, TM ′

B is a
vector bundle in the category of locally convex spaces with the local model
F × F ′

B, see [10, Remark (1), p. 60].

3. THE PALAIS-SMALE CONDITION
A Finsler structure for a Fréchet manifold M in the sense of Palais was

defined in [1]. We now define a Finsler structure on its B-cotangent bundle.
Henceforth, we always assume that a bornology B on a Fréchet space

F contains all compact sets and we always chose B such that T (B) ⊂ B
for all continuous linear endomorphisms T of F whenever we define the
B-cotangent bundle of a manifold M modelled on F .
Definition 3.1. Let M be a Ck Fréchet manifold modelled on a Fréchet
space F , where k ∈ N ∪ {∞}. A Finsler structure for M is a collection of
functions ∥ · ∥nM : TM → R+, n ∈ N, on its tangent bundle TM such that
(1) for each x ∈M and n ∈ N, the function

∥ · ∥nx := ∥ · ∥nM |TxM
: TxM → R+

is a seminorm on the tangent space TxM such that for every chart
φ : U → F with x ∈ U , the collection of seminorms

v ∈ F 7→ ∥dφ−1(φ(x))(v)∥x
generates the topology of F ;

(2) given K > 1, x0 ∈M and a chart φ : U → F with x0 ∈ U , there exists
an open neighborhood U of x0 in U such that

1

K
∥dφ−1(φ(x0))(v)∥nx0

≦ ∥dφ−1(φ(x))(v)∥nx ≦ K∥dφ−1(φ(x0))(v)∥nx0

for all x ∈ U , n ∈ N, v ∈ F .
If {∥·∥n}n∈N is a Finsler structure on TM , then eventually we can obtain

a graded Finsler structure, denoted by (∥ · ∥n)n∈N, on TM . A Fréchet
manifold M is called Fréchet-Finsler if its tangent bundle TM admits a
Finsler structure. If a Fréchet manifold M is paracompact and its model
space F is such that all seminorms defining the topology of F are smooth
maps on F \ {0}, then TM admits a Finsler structure ([1, Proposition
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4]). As an example of a Ck-Finsler manifold we can consider any Ck-
submanifold M of a Fréchet space F , with TmM carrying the collection of
seminorms induced by the inclusion TmM ⊂ TmF ∼= F .
Let M be a connected Fréchet-Finsler manifold endowed with a graded

Finsler structure (∥ · ∥n)n∈N. For each n ∈ N define dn(x, y) = infγ Ln(γ),
where the infimum is taken over all C1-curves γ : [a, b] → M such that
γ(a) = x, γ(b) = y and

Ln(γ) =

∫ b

a
∥(γ′(t))∥nγ(t) dt.

Therefore, we obtain an increasing sequence of pseudometric (dn(x, y))n∈N.
Define

ρ(x, y) =
n=∞∑
n=1

1

2n
dn(x, y)

1 + dn(x, y)
. (3.1)

This is a metric, called the Finsler metric, consistent with the original
topology of M ([1]). In the sequel, we say that M is complete if M is
complete with respect to this metric. We say that ρ is locally compatible if
for each p ∈ M there exist a chart (p ∈ U,φ) and constants α, β such that
for all n ∈ N and x, y ∈ U

αρ(x, y) ≦ pn(φ(x)− φ(y)) ≦ βρ(x, y),

where {pn}n∈N is a family of seminorms defining the topology of F .
The B-cotangent bundle TM ′

B of M carries a natural Finsler structure,
denoted again by {∥ · ∥n}n∈N, characterized by letting

∥w∥nx = sup {|⟨w, v⟩|; v ∈ TxM, ∥v∥nx = 1} ,
where x ∈M , w ∈ (TxM)′B and ⟨·, ·⟩ is the duality pairing between TxM and
(TxM)′B which is separately continuous. Consequently, for a C1-functional
f : M → R the mappings ∥df∥nx : M → R given by x 7→ ∥df(x)∥nx are
well defined and continuous for all n ∈ N. We shall omit the index x in
∥df(x)∥nx and denote it just by ∥df(x)∥n.
Definition 3.2. Let F be a Fréchet space, B a bornology on F and F ′

B the
dual of F equipped with the B-topology. Let f : F → R be a C1-functional.
(i) We say that f satisfies the Palais-Smale condition, (PS) in short, if
each sequence (xi) ⊂ F such that f(xi) is bounded and

df(xi) → 0 in F ′
B,

has a convergent subsequence.
(ii) We say that f satisfies the Palais-Smale condition at level c ∈ R,

(PS)c in short, if each sequence (xi) ⊂ F such that
f(xi) → c and df(xi) → 0 in F ′

B,
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has a convergent subsequence.
The above definition of Palais-Smale condition can easily be extended

to the more general setting of C1-functionals on manifolds with Finsler
structures. Thus we may apply the Palais approach [8] to the critical point
theory for the general case of Fréchet manifolds.
Definition 3.3. Let M be a connected Fréchet-Finsler manifold endowed
with a Finsler structure {∥ · ∥n}n∈N and the corresponding Finsler metric
ρ. Let f :M → R be a C1-functional.
(i) We say that f satisfies the Palais-Smale condition, (PS) in short, if
for all n ∈ N each sequence (xi) ⊂M such that f(xi) is bounded and
∥df(xi)∥n → 0, has a convergent subsequence.

(ii) We say that f satisfies the Palais-Smale condition at level c ∈ R,
(PS)c in short, if for all n ∈ N each sequence (xi) ⊂ M such that
f(xi) → c and ∥df(xi)∥n → 0, has a convergent subsequence.

Let f be a C1-functional on a Fréchet space (or a Fréchet-Finsler mani-
fold). As usual, a point p in the domain of f is said to be a critical point
of f if df(p) = 0, the corresponding value c = f(p) will be called a critical
value. We will use the following standard notation:

Kc := {p ∈M | f(p) = c, df(p) = 0}.

4. EXISTENCE OF MINIMA
Consider the following particular version of Ekeland’s variational princi-

ple (cf. [2]).

Theorem 4.1. Let (X,σ) be a complete metric space. Let a functional
f : X → (−∞,∞] be semi-continuous, bounded from below and not identical
to +∞. Let a > 1, b > 0 and x ∈ X be given such that f(x) ≦ infX f + a.
Then there exists xa ∈M such that

(1) f(xa) ≦ f(x),

(2) σ(xa, x) ≦
1

b
,

(3) f(xa) < f(x) + abσ(x, xa), ∀x ̸= xa ∈M .
When X is a complete Fréchet-Finsler manifold and f is of class C1, we

have the following:

Theorem 4.2. Let M be a connected complete Fréchet-Finsler manifold of
class C1 endowed with a Finsler structure {∥·∥n}n∈N and the corresponding
Finsler metric ρ which is locally compatible. Let a C1-functional f :M → R
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be bounded from below. Then, for each θ > 1 and each m ∈ M such that
f(m) ≦ infM f + θ2, there exist mθ ∈M and a constant εθ such that

(1) f(mθ) ≦ f(m),
(2) ρ(mθ,m) ≦ θ,
(3) ∥df(mθ)∥n ≦ εθ, ∀n ∈ N.

Proof. Given θ > 1, apply Theorem 4.1 with b = 1

θ
to find mθ ∈ M such

that (1) and (2) hold and
f(x) > f(mθ)− θρ(mθ, x), ∀x ̸= mθ ∈M. (4.1)

Since ρ is locally compatible, there exist a chart φ : U → F with mθ ∈ U
(F is the local model of M) and constants α, β such that for all n ∈ N and
x, y ∈ U

αρ(x, y) ≦ pn(φ(x)− φ(y)) ≦ βρ(x, y), (4.2)
where {pn}n∈N is a family of seminorms defining the topology of F . Let
h ∈ φ(U) and t > 0 be such that φ−1(φ(ma) + th) ∈ U Then by (4.1)

f(φ−1(φ(mθ)))− f(φ−1(φ(mθ) + th)) < θρ(mθ, φ
−1(φ(mθ) + th)).

Hence, for all n ∈ N

f(φ−1(φ(mθ)))− f(φ−1(φ(mθ) + th)) <

<
θ

α
pn(φ(mθ)− (φ(mθ) + th)) =

θ

α
pn(h)t <

<
θ

α
βρ(mθ, φ

−1(φ(mθ) + th))t <
θ2

α
βt. (4.3)

Define a C1-curve γ : [0, t0] → M by γ(t) = φ−1(φ(mθ) + th) such that

γ([0, t0]) ⊂ U and let εθ =
θ2

α
β. By dividing both sides in (4.3) by t and

letting t→ 0, we obtain

df(mθ)(h) =
d
dt(f ◦ γ) |t=0 ≥ −εθ.

Changing h with −h gives df(mθ)(h) ≦ εθ, thereby for all n ∈ N

∥df(mθ)∥n ≦ sup
pi(h)=1, i∈N

df(mθ)(h) ≦ εθ.

Theorem is proved. □

Corollary 4.3. Let M and f be as in Theorem 4.2. If (PS)c holds with
c = infM f , then f attains its minimum at a point in Kc.
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Proof. According to Theorem 4.2, if for each i ∈ N we let θ2 =
1

i
, then

there exists xi ∈M such that

f(xi) ≦ c+
1

i
, ∥df(xi)∥n ≦ β

iα
, n ∈ N.

Therefore, f(xi) → c and ∥df(xi)∥n → 0 for all n ∈ N. Since f satisfies
(PS)c it follows that there exists a convergent subsequence xij → x0. Hence,
f(x0) = c = infM f and df(x0) = 0. □

The similar results but with weaker assumptions can be obtained for
Fréchet spaces by means of the following Ekeland’s variational principle.

Theorem 4.4 ([9], Corollary 2.1). Let F be a Fréchet space with topology
generated by an increasing sequence p1(·) ≦ p2(·) ≦ · · · of seminorms. Let
a functional f : F → (−∞,∞] be semi-continuous, bounded from below
and not identical to +∞. Let η > 0 and x0 ∈ F be given such that
f(x0) ≦ infF f + η, and let (λn)n∈N be a sequence of positive real numbers.
Then for any i ∈ N, there exists z ∈ F such that

(1) λjpj(z − x0) ≦ f(x0)− f(z) for j = 1, . . . , i;

(2) pj(z − x0) <
η

λj
for j = 1, . . . , i;

(3) for any x ∈ F, x ̸= z, there exists m ∈ N such that
λmpm(x− z) + f(x) > f(z),

or equivalently, supn λnpn(x−z)+f(x) > f(z) for any x ∈ F, x ̸= z.

Theorem 4.5. Let F be a Fréchet space with topology generated by an
increasing sequence p1(·) ≦ p2(·) ≦ · · · of seminorms. Let B a bornology
on F and {Pn

B}n∈N the family of seminorms (defined as in (2.1)) that
generates the topology of F ′

B. Let a C1-functional f : F → R be bounded
from below. Then, for each ε > 0, i ∈ N, x ∈ F such that f(x) ≦ infF f+ε,
there exists z ∈ F such that

(1) pj(z − x0) ≦
f(x0)− f(z)√

ε
for j = 1, · · · , i;

(2) pj(z − x0) <
√
ε for j = 1, · · · , i;

(3) Pn
B(df(z)) ≦

√
ε, ∀n ∈ N, B ∈ B.

Proof. Given ε > 0 and i ∈ N, apply Theorem 4.4 with λj =
√
ε for all

j ∈ N and η = ε to find m ∈ N and z ∈ F such that (1) and (2) hold and
f(x) > f(z)−

√
εpm(x− z), ∀x ̸= z ∈ F. (4.4)
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By applying (4.4) to x = z + th with t > 0 and h ∈ F , we obtain

f(z + th)− f(z) > −
√
εpm(h)t.

Dividing both sides by t and letting t→ 0 yields df(z)(h) > −
√
εpm(h) for

all h ∈ F . Changing h with −h gives df(mθ)(h) ≦
√
εpm(h) for all h ∈ F ,

which means for all n ∈ N and B ∈ B we have Pn
B(df(z)) ≦

√
ε. □

Remark 4.6. To prove the preceding theorem as in the case of Finsler-
Fréchet manifolds we could use Theorem 4.1. However, that imposes re-
striction on a metric that defines the Fréchet topology. In Theorem 4.4 we
use collections of seminorms rather than metrics. For technical reasons it
is more convenient to deal with seminorms.

Corollary 4.7. Let F and f be as in Theorem 4.5. If (PS)c holds with
c = infF f , then f attains its minimum at a point in Kc.

Proof. According to Theorem 4.5, if for each i ∈ N we let ε =
1

i
. Then

there exists xi ∈ F such that

f(xi) ≦ c+
1

i
, Pn

B(df(xi)) ≦
1√
i
, ∀n ∈ N, B ∈ N.

Therefore, f(xi) → c and df(xi) → 0 in F ′
B. Since f satisfies (PS)c it

follows that there exists a convergent subsequence xij → x0.
Hence, f(x0) = c = infM f and df(x0) = 0. □
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