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Trajectory equivalence of optimal Morse
flows on closed surfaces

Zlata Kibalko, Alexandr Prishlyak, Roman Shchurko

Abstract. We consider optimal Morse flows on closed surfaces. Up to
topological trajectory equivalence such flows are determined by marked chord
diagrams. We present list all such diagrams for flows on nonorientable surfaces
of genus at most 4 and indicate pairs of diagrams corresponding to the flows
and their inverses.
Анотація. В роботі досліджуються оптимальні потоки Морса, тобто
потоки, що мають мінімальне число особливих точок серед усіх потоків
Морса. Під потоком Морса ми розуміємо потік Морса-Смейла без
замкнених траєкторій, тобто потік без замкнених траєкторій, зі скінченим
числом нерухомих точок, які є гіперболічними, і такий, що гранична
множина кожної траєкторії складається з нерухомих точок, а стійкі
та нестійкі многовиди нерухомих точок перетинаються трансверсально.
Оптимальні потоки Морса характеризуються тим, що мають єдиний стік
і єдине джерело і, отже, є полярними потоками. Кожному оптимальному
потоку ставиться у відповідність хордова діаграма. При цьому межа
регулярного околу джерела розглядається як коло, а стійкім многовидам
сідлових точок відповідають хорди. На неорієнтовних поверхнях хорди
мають додаткове маркування +1 або −1. Маркована хордова діаграма є
повним топологічним інваріантом оптимального потоку Морса. Описано
процес побудови оберненої хордової діаграми, що відповідає потоку,
у якого змінено напрямок руху за траєкторіями на протилежний.
Марковані хордові діаграми задають f -атоми за Болсіновим і Фоменком.
При цьому маркована діаграма і їй обернена задають один і той самий
атом.
Складено список всіх маркованих хордових діаграм і знайдені їх

обернені для оптимальних потоків на неорієнтованих поверхнях роду не
вище 4. Зокрема, на проективні площині існує єдиний, з точністю до
траєкторної еквівалентності, оптимальний потік Морса (одна діаграма).
На пляшці Клейна існує два таких не еквівалентних потоки. На
неорієнтованій поверхні роду 3 існує дві пари взаємно обернених діаграм
і 4 діаграми обернених самі собі, а на неорієнтовній поверхні роду 4 існує
12 пар взаємно обернених діаграм та 23 діаграми обернених самі собі.
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1. INTRODUCTION
The problem of topological classification of objects or structures is one

of the main problems in the topology and theory of dynamical systems.
Often the class of such objects consists of structurally stable dynamical
systems. They are interesting due to the fact that their topological struc-
ture does not change under small changes of the parameters by which they
are given. Morse-Smale flows on surfaces are examples of structurally stable
dynamical systems. There are many papers dealing with their topological
classification, for example [2], [3], [9]. An overview of different approaches
to the above problem can be found in [6].
To classify Morse functions on surfaces and integrable Hamiltonian sys-

tems Bolsinov and Fomenko introduced the concept of atoms and molecules.
They can also be used to classify Morse flows [1].
In fact, Morse flows are gradient flows of Morse functions. In this case

the atoms specify the associated handle decompositions. If the Morse flow
has one source, then the corresponding atom is a marked chord diagram.
The purpose of the present paper is to find all such chord diagrams corre-

sponding to flows with one sink and to determine which of them correspond
to reverse flows on nonorientable surfaces of small genus.

2. MORSE-SMALE FLOWS
We consider C1-smooth dynamical systems on a smooth manifoldM with

continuous time (flows). Since such a flow on a closed manifold is always
generated by a smooth vector field, all the concepts that are introduced for
dynamical systems will be applied to vector fields.
Let Xt the flow generated by a vector field X.

Definition 2.1. Fixed (singular) points and closed trajectories of a dy-
namical system are called critical elements.
Definition 2.2. A singular point p of a vector field X = {X1, . . . , Xn} is
called non-degenerate or hyperbolic, if in some local coordinates (x1, . . . , xn)
at p the Jacobi matrix (

∂Xi

∂xj

)n

i,j=1

(2.1)

does not contain eigenvalues with zero real part (that is eigenvalues on the
imaginary axis).
A closed orbit γ of X is called hyperbolic whenever the differential of the

Poincaré map has no eigenvalues of absolute value 1 at some point p ∈ γ.
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Definition 2.3. A stable manifold (denoted byW s(p) or S(p)) of a critical
element p is the following set

S(p) = {x ∈M : lim
t→∞

Xt(x) = p}.

Similarly, the set
U(p) = {x ∈M : lim

t→−∞
Xt(x) = p}.

is called the unstable manifold (W u(p) or U(p)) of p.
Definition 2.4. [7, p.118] A point p ∈M is wandering for X if there exists
a neighborhood V of p and a number n > 0 such that Xt(V ) ∩ V = ∅ for
|t| > n. Otherwise p is called nonwandering.
The sets of nonwandering points of a vector field X is denoted by Σ(X).

Definition 2.5. [7, p.119] A vector field X on compact manifold M is
Morse-Smale whenever:
1) X has a finite number of critical elements and all of them are hyperbolic;
2) the set of non-wandering points Σ(X) coincides with the union of all
critical elements of X;

3) stable manifolds of critical elements are transversal to unstable mani-
folds.

Definition 2.6. A fixed point y ∈M is called an ω-limit (resp. an α-limit)
point for x ∈ M if there exists a sequence {ti} such that ti → +∞ (resp.
ti → −∞) and Xti(x) → y. The set of all ω-limit points (resp. α-limit
points) of x is called ω-limit (α-limit) set.
Condition 2) of the definition of Morse-Smale dynamical system can be

replaced by the following condition
2)′ for each point x ∈ M its α-limit and ω-limit sets are contained in the

union of critical elements.
For vector fields on two-dimensional manifolds there are three types of

non-degenerated (hyperbolic) singular points: sinks, sources, and saddles.
Condition 3) in this case is equivalent to the statement that there is no
trajectories whose α-limit and ω-limit sets are saddle points.
Definition 2.7. Morse-Smale flow (vector field) is called Morse flow (vec-
tor field) if it does not contain closed trajectories.
A well known results by Smale [11] claims that every Morse vector field is

a gradient field of some Morse function with respect to a certain Riemannian
metric.
Properties of Morse-Smale dynamical systems described above, as well as

some other properties, can be found in the book by J. Palis and V. di Melo [7].
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3. TOPOLOGICAL EQUIVALENCE OF DYNAMICAL SYSTEMS
Definition 3.1. Let M be a Cr manifold, Xr(M) be the space of Cr

vector fields endowed with Cr topology. Two vector fields X,Y ∈ Xr(M)
are called topologically (Ck) equivalent if there exists a homeomorphism
(Ck diffemorphism) h : M → M that sends each trajectory of X onto a
trajectory of Y preserving their orientations.

Theorem 3.2. [7]. Let h be a topological equivalence between the fields
X,Y ∈ Xr(M). Then
1) p ∈M is a singular point of the field X if and only if h(p) is a singular
point of the field Y ;

2) the trajectory X(p) of the field X, which passes through the point p, is
closed if and only if trajectory Y (h(p)) is closed;

3) the image of the α-limit (ω -limit) set of the trajectory X(p) under h is
α-limit (ω-limit) set of trajectories Y (h(p)).

Definition 3.3. [10]. A vector field X ∈ Xr(M), r > 1, is called struc-
turally stable if there exists a neighborhood U of the field X in Xr(M) such
that every Y ∈ U is topologically equivalent to X.
It is known that Morse-Smale dynamical systems are structurally sta-

ble [8]. Moreover, every structurally stable vector field on a closed two-
dimensional manifold is Morse-Smale and these fields form an open every-
where dense set in set of all vector fields.
In higher dimensions, there are structurally stable dynamical systems

that are not Morse-Smale systems, and they do not constitute everywhere
dense subsets in the spaces of all dynamical systems.
Definition 3.4. A complete topological invariant of a dynamical system
from a certain class of dynamical systems is a set of quantities (or algebraic
objects) that are identical (isomorphic) for topologically equivalent dynam-
ical systems, and distinct (not isomorphic) for non-equivalents systems.
By the topological classification of a certain class of dynamical systems,

we (roughly) mean a construction of a complete topological invariant for
systems of this class and such that the equivalence (isomorphism) of invari-
ants can be easily verified, as well as the description of all possible values
that the invariant can accept.

4. OPTIMAL FLOWS ON SURFACES
Hyperbolicity condition on critical elements means that for vector fields

on two-dimensional manifolds there possible three types of non-degenerate
singular points: sinks, sources and saddles.
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A Morse flow on a surface is called optimal if it has the least number of
singularities among all Morse flows on this surface.

Theorem 4.1. A Morse flow on a surface is optimal if and only if it
contains only one sinks and one sources.
Proof. To prove the theorem, we should show the following statements:
1) a Morse flow on a surface contains at least one sink and one source;
2) there exists Morse flow on a given surface, which contains only one

sink and one source;
3) if the flow has more than one source or sink, than it is not optimal.
Firstly, It follows from the definition of Morse flow that every trajectory

starts at a singular point. As there are only finitely many saddle points,
and no more than 2 trajectories could be obtained from each of them,
we see that only a finite number of trajectories starts at saddle points.
Consequently, the remaining trajectories (it is infinite number) start at the
source. By similar arguments there must exist at least one sink.
Secondly. As is well known (see for example [5]), each closed surface

is diffeomorphic to a sphere with handles or a sphere with Mobius strips
pasted into it. Therefore, it is sufficient to construct a vector field with one
sink and one source on these surfaces. As an example of this field, one can
take the gradient field of an optimal Morse function (that is, a function with
one local minimum and maximum whose existence in is proved in Morse’s
theory [5]).
Thirdly. By Poincare-Hopf theorem, the Euler characteristic of the sur-

face M is equal to the number of sources plus the number of sinks minus
the number of saddle points. This formula shows that increasing the num-
ber of sources or sinks leads to increasing of the number of saddle points
on a given surface, and, consequently, implies an increasing of the total
number of singular points. Hence a flow with one source and one sink is
optimal. □

Recall that a flow with one source and one sink, also, is called polar. So,
optimal flows are precisely polar flows.

5. CHORD DIAGRAMS
Chord diagrams are widely used in modern low-dimension topology, es-

pecially in knot theory.
Definition 5.1. A configuration consisting of a circle, 2n distinct points
on it, and n chords, which specify a partition of these points into pairs, will
be called a chord diagram with n chords, or n-diagram.
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Thus, a chord diagram is a graph of valency 3 with a distinguished cycle
containing each vertex exactly once. In this case, that cycle is called a
circle, and the edges that do not belong to it are called chords.
Definition 5.2. Two chord diagrams are said to be equivalent if there is a
homeomorphism between them that maps the cycle into a cycle, and chords
into chords.
Let D be an arbitrary chord diagram with 2n points which we enumerate

with numbers from 1 to 2n in the clockwise direction starting from a certain
fixed point on the dual graph. We construct a substitution α obtained as a
result of the transposition multiplication (aj , bj), j = 1, . . . , n, where aj , bj
are the numbers of points connected by chord on the diagram D:

α = (a1, b1)(a2, b2)...(an, bn).

A change of a starting point can lead to different substitutions. For
example, the following substitutions

α1 = (1, 6)(2, 8)(3, 7)(4, 5) and α2 = (1, 7)(2, 6)(3, 4)(5, 8)

correspond to the same chord diagram.
Let Q be a regular polygon in a complex plane C with 2n vertices being

roots of unit of degree 2n.Then one can draw (with self intersections) each
2n-diagram D(α) in C by connecting the corresponding pairs of vertices
by straight segments and regarding Q as a circle of a diagram. Such a
representation of a 2n-diagram will be called good.
Obviously, in this approach, each diagram D(α) unequivocally deter-

mines the substitution of α and vice versa.
Definition 5.3. Good diagrams D1 and D2 are called isomorphic if there
is a rotation of a circle mapping one diagram into another.
Diagrams D1 i D2 are equivalent if they are either isomorphic, or D1 is

isomorphic to a mirror image of D2.
There are two non-isomorphic and non-equivalent chord diagrams with

two chords:
1) a diagram with intersecting chords; it corresponds to the substitu-
tion (1, 3)(2, 4);

2) a diagram with non-intersecting chords; it corresponds to the sub-
stitution (1, 2)(3, 4).

6. CHORD DIAGRAM OF AN OPTIMAL MORSE VECTOR FIELD
Let X be an optimal Morse vector field. Consider some small neighbor-

hood U for the source x0 such that its boundary ∂U(x0) is a smooth curve
and transversal to each flow trajectory.
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FIGURE 6.1. Chord diagram of a vector field

For each saddle point we consider its stable manifold consisting of two
trajectories converging to that saddle. It follows from conditions 2) and 3)
of the definition of Morse-Smale vector field that these trajectories start at
x0. Consequently, each of them intersects the boundary ∂U at one point.
Thus we get a couple of points on the boundary. The boundary ∂U is a
closed curve, and so it is homeomorphic to a circle S1 = {(x, y)|x2+y2 = 1}.
Via this homeomorphism the couple of points maps into a couple of

points at the circle S1. For another saddle point we will get another couple
of points on S1. Connecting the points of the same couple with the chord we
will obtain chords at the circle, which do not have common ends, since the
stable manifolds of the saddle points do not intersect with each other. Thus
we obtain a chord diagram. If the union of U with a regular neighborhood of
the stable manifold is an oriented surface (homeomorphic to S1×[0, 1]), then
we leave chord unmarked (or formally associate to the chord the number
0). Otherwise (in the nonoriented case of Möbius strip), and we mark the
chord by X (or formally associate to the chord the number 1). Thus, each
chord has a marking 0 or 1.
Definition 6.1. A marked chord diagram is a chord diagram with marking
of its chord.
A marked chord diagram constructed in such a way is a complete topo-

logical invariant of the vector field [4]. We call it a chord diagram of a
vector field.
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7. INVERSE CHORD DIAGRAM
Let’s describe a chord cycle on a chord diagram. Choose a point on a

certain arc that is not the end of a chord and the direction of circumvention
of a circle, for example, counterclockwise. We move from the chosen point
in this direction to the nearest end of the chord. At every such point the
movement on the circle changes on the chord movement. After passing the
chord we continue the circular motion in counterclockwise direction if the
chord is unmarked and change the direction along to clockwise if the chord
is marked. We move to the nearest point that is the end of the chord. In it
again change the movement on the movement of the chord. After marked
chords we change the direction and after unmarked one we preserve it.

FIGURE 7.1. Cycle on chord diagram and inverse diagram

In the example on Figure 7.1 (left), we start from point on 11 o’clock. We
then move along the higher horizontal chord 1 to its right endpoint. This
chord is marked, so from its endpoint we change circle direction and move
clockwise. We will continue this process until we return to the starting
point.
Definition 7.1. A chord cycle is a cycle in chord diagram that obtained
in a such way.
If chord cycle covers all chords (two times) and arcs we have a diagram

with one chord cycle (a one-cycle diagram).
Now we construct an inverse diagram for a one-cycle diagram. On each

chord we mark one point (which does not belong to other chords). When
moving along the cycle we count points consecutively. Hence each point will
receive two numbers, because each chord in the diagram is passed twice.
We obtain a substitution of 2n elements and associate to it a 2n-diagram in
which points are connected, if their numbers correspond to the same couple
in substitution, as above. By construction, each chord in the initial diagram
corresponds to a chord in the inverse diagram and corresponds to a single
saddle point. The chord cycle induces on each chord two directions. If these
directions are opposite, then the new chord is unmarked (of marking 0). If
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these directions are same, then it is marked (of marking 1). For example, in
Figure 7.1 the direction on high horizontal are same, thus, the chord 1− 3
is marked in inverse diagram.
Let us prove that the inverse chord diagram of a field X is the chord

diagram for the field −X, that is, the field has the same trajectories, but
the motion behind them is changed to the opposite. Indeed, consider a
regular neighborhood W of the union of sources and stable manifolds of
saddles. It follows from the definition of nondegenerate singular points that
we can choose this neighborhood so that X is transversal to the boundary
∂W and directed outside it. In this case, bypassing the cycle of the chord
diagram corresponds to bypassing ∂W . The intersections of the unstable
manifolds of saddle points with ∂W correspond to the chosen points on
the chords and the pairs of numbers that determine the substitution. In
addition,M \W contains one singular point, a sink. It is the source for −X
and ∂W is the circle of the chord diagram for −X. The unstable manifolds
of the saddles of X are stable manifolds of saddles of −X. It completes the
proof.
Consequently, the circle of the chord diagram is homeomorphic to the

boundary of a regular neighborhood of the source.
From the construction of the chord diagram and the considerations above

we get the following theorem.

Theorem 7.2. An optimal Morse flow on a closed surface and inverse to
another flow are topologically equivalent if and only if the chord diagram of
the first flow is equivalent to the inverse diagram of the other flow.

8. EXAMPLES
The pairs of inverse chord diagrams for polar flows on oriented surfaces of

genus 1, 2 and 3 was calculated by M. Loseva, S. Tsaruk and A. Prishlyak.
The number of chord in this case is even.
On torus (genus 1) there is unique one-cycle chord diagram with the

substitution (1,3) (2,4) (Figure 8.2.2 without marking).
On the surface of genus 2 there are 4 one-cycle diagrams with such sub-

stitution:
• (1,3) (2,4) (5,7) (6,8) (Figure 8.6.19 without marking);
• (1,3) (2,5) (4,7) (6,8) (Figure 8.6.13 without marking);
• (1,4) (2,5) (3,7) (6,8) (Figure 8.6.7 without marking);
• (1,5) (2,6) (3,7) (4,8) (Figure 8.5.1-left without marking).

The inverse diagrams are the same as originals.
On the surface of genus 3 there are 82 one-cycle diagrams.30 diagrams

is equivalent to their inverse. There are 26 pairs of inverse diagrams.
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We consider the case of nonorientable surfaces. The number of the chords
is equal to the genus of the surface.
On the surface of genus 1 (the projective plane) there is unique diagram.

It corresponds atom B̃ from Bolsinov and Fomenko [1].

FIGURE 8.1. Chord diagram on the projective plane

On the nonorientable surface of genus 2 (Klein bottle) there are two
diagrams, see Figure 8.2. One of them corresponds to the atom D̃2 and the
second one to the atom C̃2.

1) D̃2 2) C̃2

FIGURE 8.2. Chord diagrams on the Klein bottle

The inverse diagrams are the same as originals.
On the nonorientable surface N3 of genus 3 there are 7 one-cycle dia-

grams.
Two pairs of inverse diagrams are shown in Figure 8.3. Pair 1 correspond

to atom Ẽ1 and pair 2 to Ẽ2.

1) Ẽ1 2) Ẽ2

FIGURE 8.3. Two pairs of inverse diagrams on N3

Four self-inverse diagrams and the corresponding atoms are shown in the
Figure 8.4.
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1) C̃F 2 2) F̃1 3) G̃1 4) H̃1

FIGURE 8.4. 4 self-inverse diagrams on N3

Theorem 8.1. On the nonorientable surface of genus 4 there are 47 one-
cycle diagrams, 12 pairs of inverse diagrams are shown in the Figure 8.5,
and 23 self-inverse diagrams are shown in the Figure 8.6.
Proof. The proof consists of three parts. At first we find all chord diagrams
with 4 chords. Further, we set marks on them and determine which labeled
diagrams have one cycle. For every such diagram we will also find its
inverse.
To list the diagrams we use lengths of their chords. The length of the

chord is the minimum number of arcs of a circle necessary to pass from one
end of the chord to the other along the circumference. It is one more than
the number of ends of the chords being traversed in this case. For example,
the diameter has a length of 4, and the smallest chord length can be equal
to 1.
If all the chords have the maximum length, then all of them are diameters.

The corresponding diagram is shown in Fig. 8.5-1a (Case 1). If three chords
have a length of 4, then the fourth one will also be of length 4, and this is
the case 1.
Assume that two chords have length 4, and the lengths of other chords are

less than 4. Then there are two options: 1) chords of length 4 perpendicular,
or 2) neighboring. In the first variant the remaining two chords either have
length 4, as in the case 1, or they have length 2 (case 2) as in Figures 8.5.1b,
8.6.1-4. In the second variant, in addition to case 1, it is possible that the
remaining chords have length 3 (case 3, Figures 8.5.2a,3a and 8.6.5) or
length 1 (case 4, Figures 8.5.4a and 8.6.6).
Let one chord has length 4, and the lengths of other chords are less than

4. Then there are three options for number of chords of length 3:
1) 2 chords of length 3 (case 5, Figures 8.5.2b,5a,6a and 8.6.7,8);
2) 1 chord of length 3 (case 6, Figures 8.5.7a,7b,8a,9a,10a);
3) no chord of length 3 (case 7, Figures 8.5.5.4b and 8.6.9,10).

Further we assume that there are no chords of length 4 in the chord
diagram. Then the classification is continued with respect to the number
of chords of length 3.
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1) 2)

3) 4)

5) 6)

7) 8)

9) 10)

11) 12)

FIGURE 8.5. 12 pairs of inverse diagrams on N4

In the case of four chords of length 3, one diagram is possible (case 8,
Figures 8.5.11a and 8.6.11).
In the case of three chords of length 3, one diagram is also possible

(case 9, Figures 8.5.8b,12a).
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1) 2) 3) 4)

5) 6) 7) 8)

9) 10) 11)

12) 13) 14)

15) 16) 17)

18) 19) 20)

21) 22) 23)

FIGURE 8.6. 23 self-inverse diagrams on N4
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In the case of two chords of length 3, two variants are possible:
1) these chords do not intersect (case 10, Fig.8.6.12);
2) these chords intersect (case 11, Figures 8.5.3b,5b,6b,11b and 8.6.13,14).
In the case of one chord of length 3, three variants of the number of

intersections of all chords are possible:
1) two intersections (case 12, Figure 8.5.9b,10b,12b);
2) one intersection (case 13, Figure 8.6.15,16);
3) without intersections (case 14, Figure 8.6.17).
If there are no chords of lengths 3 and 4 in the diagram, then such

diagrams are classified according to the number of chords of length 2. Note
that in this case chords of length 2 form pairs of intersecting chords. There
are three options:
1) 4 chords of length 2 (case 15, Figure 8.6.18,19,20);
2) 2 chords of length 2 and two chords of length 1 (case 16, Figure 8.6.21,22);
3) all chords have length 1 (case 17, Figure 8.6.22).
Thus, there are 17 diagrams with four chords. On each diagram there are

15 chord markings (16th, when all chords are not marked give an oriented
surface). In some diagrams, where there are symmetries, the number of
markings will be smaller. Next, for each marked diagram, we find the
number of cycles and leave the diagrams with one cycle. We obtained 47
marked one-cycle chord diagrams on N4 (see Figures 8.5 and 8.6).
For them, as above, we find the inverse. As a result, we obtain 12 pairs

of mutually inverse diagrams (Figures 8.5) and 23 diagrams, which are
inverses to themselves (Figure 8.6). □

Corollary 8.2. There are 47 topologically nonequivalent optimal Morse
flows on N4 and 23 of them are topologically equivalent to reverse of them-
selves.
Definition 8.3. [1, p. 65] Two Morse functions f and g on surfacesM and
N are called fiberwise equivalent (fiberwise frame equivalent) if there exists
a diffeomorphism h :M → N , which transforms the connected components
of level lines of the function f into those of the functions g (and preserves
the direction of the growth of functions).

Corollary 8.4. There are 35 fiberwise nonequivalent and 47 fiberwise frame
nonequivalent Morse functions with three critical levels, one local minimum
and one local maximum on N4.
Proof. Up to fiberwise equivalence, such Morse functions are given by
atom, that is the restriction of functions on neighborhood of middle critical
level. In this case, all possible atoms are represented as marked chords
diagrams on Figures 8.5 and 8.6. □
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