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A calculation of periodic data of surface
diffeomorphisms with one saddle orbit

Elena Nozdrinova, Olga Pochinka

Abstract. We prove that every orientable surface admits an orientation-
preserving diffeomorphism with one saddle orbit. It distinguishes in principle
the considered class of systems from source-sink diffeomorphisms existing
only on the sphere. It is shown that diffeomorphisms with one saddle orbit
of a positive type on any surface have exactly three node orbits. We also
describe all possible types of periodic data for such diffeomorphisms, and
found formulas expressing periods of sources via periods of the sink and the
saddle.
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6araTo pobiT IPHUCBAYEHNX BUBYECHHIO MIEPIOJNTHIX JIAHUX Bi0OpaskeHb I0-
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Mae€ JIoJIaTHUI Tl opieHTaril. B crarTi moBeseHo, 1110 Ha KOXKHIN Opi€eHTOB-
Hiil oBepxHi icHye mudeomopdism, sxuil 36epirae opieHTAIO I Mae €IUHY
cimgoBy opbiTy. lle mpUHITMTIOBO BiApi3HSIE POSTISHY THI KJIAC CHCTEM BiJ -
deomopdismis “mkepenio-cTik”, gKi icayroTh Jjmire Ha cdepi. [lokazano, 1o
nudeoMopdi3zmu 3 OAHIEIO CIIIOBOIO 0pbHiTOIO0 Ha OyIb-SIKiil TOBEpXHI MalOTh
piBHO TpH By3a0BuUX opbiTH. KpiM TOro, BCTaHOBIEHO BCI MOXKJINBI TUIHN TIe-
pioMYHUX JAaHUX JJId Takux nudeomMopdisMis, a came: 3HaiIeHO HOPMYIIH,
IO SIBHO BUPAKAIOTh IEPIOH JIZKepeJI depe3 Iepioin CTOKY Ta Ciija.

1. INTRODUCTION AND A FORMULATION OF RESULTS

In the study of discrete dynamical systems, i.e. study of orbits of self-
maps f defined on a given compact manifold, the periodic behavior plays
an important role. During the last forty years there were a growing number
of results showing that certain simple assumptions on f force qualitative
and quantitative properties (like the set of periods) of a system. One of
the best known result in this direction is the paper entitled “Period three
implies chaos for the interval continuous self-maps” (see, for example, [8]).
The effect described in [8] was discovered by A. Sharkovsky in [12]. The
most useful tools for proving existence of fixed points, or more generally of
periodic points for a continuous self-map f of a compact manifold, is the
Lefschetz Fixed Point Theorem and its generalizations (see, for instance
[11], [3]). The Lefschetz zeta function simplifies the study of periodic points
of f. This is a generating function for all the Lefschetz numbers of all
iterates of f.

Periodic data of diffeomorphisms with regular dynamics on surfaces is
studied in already classical works by P. Blanchard, J. Franks, R. Bowen,
S. Batterson, J. Smillie, W. Jaco, P. Shalen, C. Narasimhan and other.
Description of periodic data of gradient-like diffeomorphisms of surfaces
was given by A. Bezdenezhnykh and V. Grines [1], using J. Nielsen’s clas-
sification of periodic surface transformations. In the paper by V. Grines,
O. Pochinka, S. Van Strien [6] it was shown that the study of periodic data
of arbitrary Morse-Smale diffeomorphisms on surfaces is reduced by filtra-
tion to the problem of computing periodic data of diffeomorphisms with a
unique saddle periodic orbit. The present paper is devoted to a solution of
this problem.

As first we will recall some basic definitions and notations.

Let Sy be a closed orientable surface of genus g > 0 with a metric d and
f 8 — S4 be an orientation preserving diffeomorphism. A point z € S,
is called wandering for f, if there exists an open neighborhood U, of x
such that f*(U,) NU, = & for all n € N. Otherwise, x is non-wandering.
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The set of all non-wandering points of f is denoted by {1y and called the
non-wandering set of f.

When €1 is finite then every point p € €1y is periodic, and its period
will be denoted by m,, € N. Moreover, p is called hyperbolic if the Jacobian
matrix (%) | has eigenvalues whose absolute values are distinct from 1.
If the absolute values of all eigenvalues are less (resp. greater) than 1, then
p is called a sink (resp. source). Sink and source points are also called
nodes, while hyperbolic periodic points being not nodes are called saddles.

Hyperbolicity of a periodic point p leads to the existence of the stable,
Wy, and unstable, W', manifolds, which are defined as follows:

Wi=te €Sy Jim dfT@)p) =0}
W= {we Sy m d(fTT0(),p) = 0},

The stable and unstable manifolds are called invariant manifolds. A
connected component of the set W' \ p (resp. W\ p) is called unstable
(resp. stable) separatriz.

A diffeomorphism f : Sy, — Sy is Morse-Smale if the set of its wandering
points consists of finitely many periodic points and there is no separatrixes
connecting saddles.

To the orbit O, of a periodic point p of a Morse-Smale diffeomorphism
f one can associate the following numbers (m,, ¢,, 1) called the periodic
data of p, where

e my, is the period of p,

e g, = dim Wy, and

e v, is the orientation type of p which equals +1 (resp. —1) whenever
f™wy preserves (resp. reverses) orientation.

Denote by G(Sy) the set of Morse-Smale diffeomorphisms f : S, — Sy
having a unique saddle periodic orbit O, and satisfying v, = +1. The case
vy = —1 was investigated in [9)].

Let f € G(Sy). It is well known that the Euler characteristic for an
orientable surface of genus g is expressed by the formula: x(Sg) =2 — 2g,
(see, for example, [5], [2]). On the other hand, by [13], a Morse-Smale
diffeomorphism induces a cellular decomposition of S; whose open cells are
unstable submanifolds of periodic points:

Sy=|J wp.
pEQf
Then
cg—c1+cyg=2—2g, (1.1)
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where c3 is be the number of the sources of f corresponding to 2-cells, ¢ is
the number saddles corresponding to 1-cells, and ¢y is the number of sinks
(0-cells).

The following theorem describes the numbers of the periodic orbits of

feG(S).

Theorem 1.1. The non-wandering set of every diffeomorphism f € G(S,)
consists of a unique saddle orbit and three node orbits: either one sink orbit
and two source orbits or one source orbit and two sink orbits.

In what follows we assume that a diffeomorphism f € G(S,) has a unique
sink orbit O, and two source orbits Og,, O, (otherwise, we could just
replace f with its inverse f~1).

By assumption f has one saddle periodic orbit preserving the orientation,
hence v, = +1 and ¢, = 1. The orbits of O,,, 04, consist of sources, so
Goy = Gap, = dim WS, = 2. Moreover, since f preserves the orientation of
open connected invariant subsets, we get that v,, = +1. The orbit of O,
consists of sinks, whence ¢, = dim W' = 0 and v, = +1. Thus, a part
of the periodic data is already known and our task is to find the periods
My My May , Ma,. Notice that from (1.1) we have

May + May — My + My, = 2 — 2g. (1.2)

Below (a,b) means the greatest common divisor of the natural numbers
a, b, also we assume (0,b) = b.

Theorem 1.2. Every diffeomorphism f € G(Sy) has the following periodic

data:
mey = m, me = km,

Ma, = (k,j+1) <(,Hk+1)m> ’ (1.3)

, k
mOé2 :(k7]) <(kj j)vm>a
for somemeN, keN, je€{0,...,k—1}.

Furthermore, for every collection of the natural numbers k € N, m € N,
Jj €{0,...,k— 1} there exists a diffeomorphism f € G(S,) with a periodic
data of the form (1.3) on a surface of genus

g=1+1 ((k:— Dm — (k,j +1) <(,wk+1)m> - (&) ((lf'j)m» |

Corollary 1.3. Due to theorem above every orientable surface of genus g
admits a diffeomorphism from the class G(Sy), with the following periodic
data: me =29+ 1, my, = My, = Mg, = 1, see Figure 1.1.
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FiGURE 1.1. Diffeomorphisms from G(S1) with m, = 3,
My = Mg, = My = 1
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2. STRUCTURE OF THE NON-WANDERING SET

In this section we prove Theorem 1.1. Detailed proofs of auxiliary state-
ments given in this section can be found in [5].

Proof. Let us show that the non-wandering set of every diffeomorphism
f € G(Sy) consists of a unique saddle orbit and three node orbits (either
one sink and two source, or one source and two sink orbits).

For the saddle separatrix ¢ we denote by my its period, that is, the
smallest natural number p such that f#(¢) = ¢. Also denote by Oy the
orbit of the separatrix ¢. By [5, Proposition 2.3, p. 31], the closure of
each unstable saddle separatrix contains a unique sink, while the closure
of each stable saddle separatrix contains a unique source. Assume that the
unstable separatrix £* of a saddle point ¢ contains a sink w in its closure.
Let m be the period of w. According to [10, Theorem 5.5], f™ is locally
conjugate at the point w with the linear diffeomorphism of R? given by the

formula
Ty
L(x, :<—,7).
(@,9) =155



6 E. Nozdrinova, O. Pochinka

Let O, be the orbit of the point w, V,, = Wg \ Ou, vV, = Vo/f be
the orbit space of the action of the group F = {f¥,k € Z} on V,,, and
p,: V,— V,, the natural projection.

Notice that V,, is diffeomorphic to a disjoint union of m open cylinders
S1 xR that are cyclically interchanged by f. Moreover, due to [5, Proposi-
tion 2.5, p. 35], the space v, is diffeomorphic to a two-dimensional torus.
Let =z € V,, be any point and & = p,(z). Then the natural projection

W Vi, — Vw is a covering map and we have the following exact sequence

O—>771(Vw,a;) —)7T1<Vw,i') 77—w)71'0Z—>7['0VW—>1, (2.1)

where 7, is the boundary homomorphism. Since the connected component
of z in V,, consists of points { f¥™« (z)}xecz, it follows that the image of n,,
is a subgroup mZ C 7 = wyZ.

In other words, we get an epimorphism 7, : m(Vw) — my,Z onto the
subgroup of Z consisting of multiples of m,,. For the convenience of the
reader let us recall the definition of n,,. Let [¢] € 7T1(Vw, %) be a loop in V.,
and c: [0,1] — V,, be its lift starting at ¢(0) = x € V,,. Then the end point
c(1) = f*(x), for some n € my,Z, and n,([¢]) = n.

Denote by a : R? — R? the diffeomorphism given by the formula

a(z,y) = (g,2y) .

Evidently, it has a unique fixed saddle point at the origin O with the sta-
ble manifold W5 = Ox and the unstable manifold W5 = Oy. Then the
diffeomorphism f™° in some neighborhood of the point ¢ is topologically
connected to the diffeomorphism a in a neighborhood of the point O (see,
for example, [10, Theorem 5.5]).

Let 0 = pu(£*) and j, : /" — V, be the inclusion map. It follows
from [5, Proposition 2.5, p.35| that the set {* is a circle smoothly embedded
in V,, and such that N (Jpuy (T1 (E ))) = meuZ. Notice that p,(Op) = (¥,

Figure 2.1 depicts the torus V,, with the projection 7" of the separatrix
£ such that 7 = 3.

Let N = {(x,y) € R? : |zy| < 1}. Notice that the set A is invariant
with respect to the diffeomorphism a. A neighborhood of N, of the point
o is called linearizing if there exists a homeomorphism p, : N, — N
conjugating the restriction f™< |y, with the diffeomorphism als.

In this case the neighborhood

me—1

= U fj(Ncr>
=0
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FIGURE 2.1. The projection of the saddle separatrix in the
orbit space of the sink basin homeomorphic to the torus

me—1

of the orbit O, = |J f’(0) equipped with the map po, : No, — N,
§=0
defined by
pO iy = oo 7 FI(Ng) 2 N, j =0, ,mg — 1,

is called the linearizing neighborhood of the orbit O,.

Due to [5, Theorem 2.2, p. 29], the saddle point (orbit) of the diffeomor-
phism f has a linearizing neighborhood.

Let N = N\ Oz and N'* = N""/a be the orbit space of the action of the
group {a”,n € Z} on N". Then the natural projection pg., : N'* — N
is a covering map. Moreover, the fundamental domain of the action of the
group {a",n € Z} on N'* consists of two disjoint curvilinear trapezoids,
each of which has equivalent points belonging to the horizontal segments
of the boundary. In Figure 2.2 these trapezoids are shaded and it is shown
how we can obtain the manifold N by identifying their boundaries via
the diffeomorphism a. Thus the space N is homeomorphic to a pair of
two-dimensional annuli K7, K.

FIGURE 2.2. The orbit space N*
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Let
NY = N, \ W, NS = N, \ Wy

Denote by Ny the connected component of the set N¥ containing an un-
stable separatrix £*. Let also Ny = p_(Ng) and j Ny @ Ngu — V., be the
inclusion map. Tlr}e set Npu is a smoothly embedded annulus in V., such
that 7y (j,, . (T1(New))) = meZ.

Denote by A the union of all sink points of the diffeomorphism f. Let
also Vi = W3\ A, Vy = Va/f, and ps : V4 — V4 be the natural projec-
tion. Similarly to the above arguments, the orbit space in the sink basin is
homeomorphic to the torus, which implies that each connected component
of the set V4 is homeomorphic to a two-dimensional torus, and the number
of connected components coincides with the number of sink orbits.

Let N¢, = No, \ W5 _, N, = No, \ W§_, N(%J = N /f. It follows
from [5, Theorem 2.4, p. 42] that the set N(%U is a pair of annuli smoothly
embedded in V4. Also due to [5, Corollary 2.1, p. 46] the set V4 is not
empty and, by [5, Corollary 2. 2, p. 62], each torus in V4 has to contain at
least one annulus from the set NO Thus VA contains one or two connected
components.

Similar statements can be formulated for the source point v and for the
stable separatrix ¢° of the saddle point o such that ¢ C W}.

Denote by R the union of the source points of the diffeomorphism f. Let
also Vg = WE\ R, Vi = Vr/f and p, : VR — Vi be the natural projection.
Similarly to the above arguments, the orbit space in the source basin is
homeomorphic to the torus, which implies that each connected component
of the set Vg is homeomorphic to a two-dimensional torus, and the number
of connected components coincides with the number of source orbits. On
the other hand, it follows from the equality Vp = (Va \ N§_ ) U N§_ (see,
for instance, [5, Theorem 2.1, p. 28|) that

Va= (VR \ N§,)UN},_ .
Thus, to get the space Vi we have to delete N(% from the torus V4 and
glue the set NO to the boundary of the resulting set.
Each of the sets NO , NO consists of two annuli. Moreover, the an-
nuli NOU are homotopically non-trivially embedded in the torus Va. If we

assume that V) consists of a unique connected component then Va \ ]\Af(%d

consists of two annuli and a gluing N(%U to their boundaries gives two two-
dimensional tori (see Figure 2.3, where the transition from the sink basins
to the sources basins is illustrated by the example of a diffeomorphism
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FIGURE 2.3. Regluing along annuli

of the 2-sphere. For convenience, in the above-mentioned basins, funda-
mental regions are selected, after the identifying of their boundary circles
the corresponding tori in the quotient spaces are obtained). This means
that there are exactly two source orbits for the diffeomorphism f, that is,
R = 04, UQO,, for some periodic sources ay, aa.

If we assume that V4 consists of two connected components then the
similar cut and gluing operation implies the existence of the unique source
orbit in this case. O

3. PERIODIC DATA

This section is devoted to the proof of Theorem 1.2. Firstly let us show
that every diffeomorphism f € G(Sy) has following periodic data, see (1.3):

my, = m, me = km,
. k

Ma, = (k,j +1) mvm ;
. k

mCYQ = (ka.j) ((k ]),m> 9

where m € Nk € N, j € {0,...,k — 1} are natural numbers.

Let us introduce an abstract model of dynamics in the basin of a periodic
sink of period m. Let m > 1 be an integer and V;,, = S! x Rt x Z,,. Thus
Vi 18 a model for the basin of a periodic sink of period m. Let k € N,
T7€{0,...,k—1} and

k—1
v = U em(%_%) x R, vy = U ei”(%_%}jl) x RT,
7=0
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k—1 k—1
n=J % Zm, v2=|J" X Zm,
=0 7=0

Here 1 U v2 models the saddle unstable separatrices, see Figure 3.1.
Let n > 0 be any integer satisfying the following conditions:

e if k=1, then n =0;
e otherwise, n € {1,...,k — 1} is such that mn and k are co-prime.

Here mn models the period of periodic unstable separatrices in V,, and “*
represents their “rotation number”, i.e. how the diffeomorphism permutes
these separatrices. As a local model for the diffeomorphism on the basin
we take the contraction ¢, k., : Vi — Vi, given by the formula:

_ 2mmn

Gmjen(z,m,w) = (ze” "k ', g, w+1 modm).

Then
Gm (Vi X {w}) = ’y;'”'m x {w + 1 modm} (3.1)

foralli=1,2,7=0,...,k—1,w=0,...,m— 1.

Notice that Vme = Vin/bmkn is a torus. Let pp, k.t Vi — mGn the
natural projection. Then 4; = py, .0 (7i), 7 = 1,2 is a knot in mGn

Let f € G(Sy). For the sink orbit O, put V, = W§_\ O,. Denote by
V., = V.,/ f the orbit space of the action of the group F' = {f%i € Z} on V,,
and by p_ : V,, — V., the natural projection. The unstable separatrices ¢,
¢y of the saddle point ¢ have period m, and lie in the basin V,,. Since the
group F' acts transitively on the connected components of V, (the number
of such components is m) and on the orbit of each unstable separatrix (the
number of the connected components of this orbit is m,), it follows that
in each connected component of the set V,, there exists the same number
of separatrices from that orbit. Hence the period m, is a multiple of the
period m.

Thus each connected component of V,, contains k := == separatrices
from the orbit of the separatrix £%. Let /% = p_(¢%) and €% = p_(£%). Then
there is a number n and a diffeomorphism fzw : Vw — mGn transforming
the knots @1‘, l%‘ to the knots 41, 42. Thus, there is a lift h,, : V, = V},, of
h., which sends the separatrices W, \ Op to the frame of rays 1 U~z and
conjugates diffeomorphism f|y,, with the diffeomorphism ¢y, 1, e.g. [5,
Statement 10.35, p. 243]. In this case, we may identify the conjugated
objects everywhere below.

Notice that 79 x {0} corresponds to one of unstable separatrices, say
0%, of the saddle point. Let 3 x {p} be another separatrix ¢4, where
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j€{0,....,k—1} and p € {0,...,m — 1}. Then
(p,m) =1

due to connectivity of the ambient surface S;. Moreover, as h,, conjugates
[ with ¢y, ., it follows from (3.1) that for every 7 € {0,...,k — 1}

71 x {w} and ’yéTﬂ) modk {w+ p modm}
are stable and unstable manifolds of the same saddle point, so the param-
eters j and p determine the are responsible for division of separatrices into
stable-unstable submanifolds of the same saddle.
Notice that the choice of j and p depends on the order which A, maps
79 x {0} and 43 x {p} to separatrices of the saddle point. It exchange those

separatrices, so 79 x {0} will correspond to ¢4, and 7; x {p'} to ¢}, then
the pairs (4, p) and (5, p) are related by the formulas:

j+i+1=k, p+p +1=m.
This leads to the formulas

(k7j/ + 1) = (kvj)v (mnol + 1) = (map)a

guaranteeing that in (1.3) the periods mq, , M4, do not depend on the order
of separatrices.

By Theorem 1.1, the non-wandering set of f contains exactly two source
orbits Oq,,04, such that cl(£}) = ¢} U aq, and cl(¢4) = 5§ U ay. Thus

Wo, = Sg \ cl(W5,).

If we remove from our surface S, the closures of m, stable manifolds, then
we get m disks (the basins of the sinks). Since each stable manifold locally
separates two such discs on the supporting surface, it follows that every
stable manifold will included twice to the boundaries of the disks after
cutting. Thus, the boundary of each disk consists of 2% = 2k stable
manifolds so that disk can be regarded as 2k-gon (see Figures 3.1 and 3.2
on the left).

The stable separatrices are called si- and sa-curves, the unstable sepa-
ratrices (they are located on the rays of the frames 7 and ~2) are called
u-curves frames, and the segments connecting the vertices of the polygon
with its center are called ¢-curves. Thus, this (colored) curves divide ev-
ery polygon into the triangles with s;-, t-, u-sides. Let us enumerate these
triangles as it shown on Figures 3.1 and 3.2 on the left.

As u-sides belonging to the rays

’Y§T+j) mod k % {(

71 x {w}, and w + p) mod m}
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FI1GURE 3.1. The octagon II that is the closure of the sink
basin of the diffecomorphism f € G (on the left) and the
four-color graph T constructed on it (on the right). Here
m=1,k=4,n=1,j=1,p=0

are separatrices of the same saddle point of f, it follows that in order to
get the surface S, from the polygons Iy, ..., 1L, _1 we have to identify the
pairs of those sides of polygons which are transversal to this pair of the
separatrices.

To compute periods of source points we associate a four-color graph with
the diffeomorphism f in the following way (see for details, for example, [7]
and [4]):

1) the vertices of the graph T’y one-to-one correspond to the triangular
regions;

2) two vertices of the graph are incident to the edge of color sy, sg, ¢
or u if the triangular areas corresponding to these vertices have a
common $1, S, t or u side (see Figure 3.1 and 3.2 on the right).

Denote by By the set of vertices of the graph Ty and by Ay the set
of triangles in the partition of the polygon. Let also 7y : Ay — By be
a one-to-one correspondence between the set of triangular domains of the
diffeomorphism f and the set of vertices of the graph 7. Then f induces
an automorphism Py = myo fo 77;1 of the set of vertices and edges of the
graph T'y. Moreover,

e the set of sink points of the diffeomorphism f is in a one-to-one
correspondence with the set of tu-cycles of the graph T;

e the set of saddle points of the diffeomorphism f is in a one-to-one
correspondence with the set of su -cycles of the graph T';



A calculation of periodic data of surface diffeomorphisms 13

e the set of source points of the diffeomorphism f is in a one-to-one
correspondence with the set of ts -cycles of the graph T7.

Thus, to determine the period m,, of the point «;, i = 1,2, we have to
calculate the number of s;t-cycles. As every such cycle is an image of an
other such cycle by f, we see that all cycles must have the same period.
Hence, the length of each such cycle is some even number (as edges s; and
t follow one after other), which we denote by 2);. Notice that the number
of s;- and t-edges in all s;t-cycles equals 2km then m,, is calculated by the
formula

M, = . (3.2)

FIGURE 3.2. Hexagons II and f(IT) which are the closures
of the sinks basins of the diffeomorphism f € G (left) and
the four-color graph T’ (right) constructed from them. Here
m=2,k=3,n=1,j=2,and p=1
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Now we will calculate the length of sit-cycle starting from the s;-edge
(01, j2). We get the following sequence of the vertices

01 — jo = ((j+1) modk); — ((2j+1) modk), —
— (2( +1) modk); — -+ — (M(j +1) modk)y,

where (7); correspond to the separatrice 77, i = 1,2. Since that sequence
constitute a cycle, we obtain that

A(j+1) modk =0, A1p modm = 0,
whence
MG +1) =1k, Ap =r1m

for some [, r.

Let A= (k,j+1). Then k = pA,j+ 1= qA, where (p,q) = 1. Hence,
_p_rmm

qg p
As A is a natural, (p,q) = 1, and (p,m) = 1, it follows that [ = pug and
r = vp. Hence A\ = up = vm and (u,v) = 1, since A; is the minimal
number with the property A\; = fip = Um for some natural fi, .

Let B = (p,m) then p = B, m = yB, where (z,y) = 1. Therefore
px =vy, p =y,v ==z, and A\; = yp. Thus

A1

km  km  pAm
mal = = —_-———= —

— =AB = (k,j+1 <
A1 yp yp ( )

A similar construction for as gives mq, = (k, j) ((k—%,m). By (1.2),

m+ (b j+1) <(k]k+1)m> (ks ) <(;}>m> _km=2—2g.

In an addition, every collection of natural numbers m € N, k € N|
j €{0,...,k—1} can be realized by an admissible four-color graph, which
in turn, due to [7], allows to construct a diffeomorphism f € G(Sy) with a
periodic data of the form (1.3) on a surface of genus

g= 1+%<(k—1)mf (k,j+1) (ﬁ,m) — (k,7) ((k]fj),m>).
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