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A calculation of periodic data of surface
diffeomorphisms with one saddle orbit

Elena Nozdrinova, Olga Pochinka

Abstract. We prove that every orientable surface admits an orientation-
preserving diffeomorphism with one saddle orbit. It distinguishes in principle
the considered class of systems from source-sink diffeomorphisms existing
only on the sphere. It is shown that diffeomorphisms with one saddle orbit
of a positive type on any surface have exactly three node orbits. We also
describe all possible types of periodic data for such diffeomorphisms, and
found formulas expressing periods of sources via periods of the sink and the
saddle.

Анотація. При вивченні дискретних динамічних систем важливу роль
відіграють періодичні орбіти. Класичним прикладом є теорема Шар-
ковського про відображення відрізку в себе, яка стверджує, що з існу-
вання орбіт періоду три “породжує хаос”. В останні 40 років з’явилось
багато робіт присвячених вивченню періодичних даних відображень по-
верхонь. Найбільш корисними інструментами для доведення існування
нерухомих точок та, в більш загальному випадку, періодичних точок не-
перервного відображення компактного многовиду, є теорема Лефшеця
про нерухому точку та її узагальнення. Дзета-функція Лефшеця спро-
щує вивчення періодичних точок дифеоморфізмів поверхонь з регуляр-
ною динамікою. Результати досліджень в даному напрямку можна зна-
йти в роботах таких авторів як: П. Бланшар, С. Баттерсон, У. Жако,
Дж. Френкс, С. Нарасімхан і ін. Опис періодичних даних градієнтно-
подібних дифеоморфізмів поверхонь був отриманий А. Безденежних та
В. Грінесом і спирався на класифікацію гомеоморфізмів поверхонь, отри-
ману Дж. Нільсеном.

У роботі “A complete topological classification of Morse-Smale diffeomor-
phisms on surfaces: a kind of kneading theory in dimension two” В. Грінес,
О. Починка, С. Ван Стрієн показали, що вивчення періодичних даних
довільних дифеоморфізмів Морса-Смейла на поверхнях зводиться шля-
хом фільтрації до задачі обчислення періодичних даних дифеоморфізмів
з єдиною седловою періодичною орбітою. Представлена робота присвя-
чена вирішенню останньої задачі у випадку, коли орбіта сідлової точки
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має додатний тип орієнтації. В статті доведено, що на кожній орієнтов-
ній поверхні існує дифеоморфізм, який зберігає орієнтацію і має єдину
сідлову орбіту. Це принципово відрізняє розглянутий клас систем від ди-
феоморфізмів “джерело-стік”, які існують лише на сфері. Показано, що
дифеоморфізми з однією сідловою орбітою на будь-якій поверхні мають
рівно три вузлових орбіти. Крім того, встановлено всі можливі типи пе-
ріодичних даних для таких дифеоморфізмів, а саме: знайдено формули,
що явно виражають періоди джерел через періоди стоку та сідла.

1. INTRODUCTION AND A FORMULATION OF RESULTS
In the study of discrete dynamical systems, i.e. study of orbits of self-

maps f defined on a given compact manifold, the periodic behavior plays
an important role. During the last forty years there were a growing number
of results showing that certain simple assumptions on f force qualitative
and quantitative properties (like the set of periods) of a system. One of
the best known result in this direction is the paper entitled “Period three
implies chaos for the interval continuous self-maps” (see, for example, [8]).
The effect described in [8] was discovered by A. Sharkovsky in [12]. The
most useful tools for proving existence of fixed points, or more generally of
periodic points for a continuous self-map f of a compact manifold, is the
Lefschetz Fixed Point Theorem and its generalizations (see, for instance
[11], [3]). The Lefschetz zeta function simplifies the study of periodic points
of f . This is a generating function for all the Lefschetz numbers of all
iterates of f .

Periodic data of diffeomorphisms with regular dynamics on surfaces is
studied in already classical works by P. Blanchard, J. Franks, R. Bowen,
S. Batterson, J. Smillie, W. Jaco, P. Shalen, C. Narasimhan and other.
Description of periodic data of gradient-like diffeomorphisms of surfaces
was given by A. Bezdenezhnykh and V. Grines [1], using J. Nielsen’s clas-
sification of periodic surface transformations. In the paper by V. Grines,
O. Pochinka, S. Van Strien [6] it was shown that the study of periodic data
of arbitrary Morse-Smale diffeomorphisms on surfaces is reduced by filtra-
tion to the problem of computing periodic data of diffeomorphisms with a
unique saddle periodic orbit. The present paper is devoted to a solution of
this problem.

As first we will recall some basic definitions and notations.
Let Sg be a closed orientable surface of genus g ≥ 0 with a metric d and

f : Sg → Sg be an orientation preserving diffeomorphism. A point x ∈ Sg
is called wandering for f , if there exists an open neighborhood Ux of x
such that fn(Ux) ∩ Ux = ∅ for all n ∈ N. Otherwise, x is non-wandering.
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The set of all non-wandering points of f is denoted by Ωf and called the
non-wandering set of f .

When Ωf is finite then every point p ∈ Ωf is periodic, and its period
will be denoted by mp ∈ N. Moreover, p is called hyperbolic if the Jacobian
matrix

(∂fmp

∂x

)
|p has eigenvalues whose absolute values are distinct from 1.

If the absolute values of all eigenvalues are less (resp. greater) than 1, then
p is called a sink (resp. source). Sink and source points are also called
nodes, while hyperbolic periodic points being not nodes are called saddles.

Hyperbolicity of a periodic point p leads to the existence of the stable,
W s
p , and unstable, W u

p , manifolds, which are defined as follows:

W s
p = {x ∈ Sg : lim

k→+∞
d(fk·per(p)(x), p) = 0},

W u
p = {x ∈ Sg : lim

k→+∞
d(f−k·per(p)(x), p) = 0}.

The stable and unstable manifolds are called invariant manifolds. A
connected component of the set W u

p \ p (resp. W s
p \ p) is called unstable

(resp. stable) separatrix.
A diffeomorphism f : Sg → Sg is Morse-Smale if the set of its wandering

points consists of finitely many periodic points and there is no separatrixes
connecting saddles.

To the orbit Op of a periodic point p of a Morse-Smale diffeomorphism
f one can associate the following numbers (mp, qp, νp) called the periodic
data of p, where

• mp is the period of p,
• qp = dimW u

p , and
• νp is the orientation type of p which equals +1 (resp. −1) whenever
fmp |Wu

p
preserves (resp. reverses) orientation.

Denote by G(Sg) the set of Morse-Smale diffeomorphisms f : Sg → Sg
having a unique saddle periodic orbit Oσ and satisfying νσ = +1. The case
νσ = −1 was investigated in [9].

Let f ∈ G(Sg). It is well known that the Euler characteristic for an
orientable surface of genus g is expressed by the formula: χ(Sg) = 2 − 2g,
(see, for example, [5], [2]). On the other hand, by [13], a Morse-Smale
diffeomorphism induces a cellular decomposition of Sg whose open cells are
unstable submanifolds of periodic points:

Sg =
∪
p∈Ωf

W u
p .

Then
c2 − c1 + c0 = 2− 2g, (1.1)
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where c2 is be the number of the sources of f corresponding to 2-cells, c1 is
the number saddles corresponding to 1-cells, and c0 is the number of sinks
(0-cells).

The following theorem describes the numbers of the periodic orbits of
f ∈ G(Sg).

Theorem 1.1. The non-wandering set of every diffeomorphism f ∈ G(Sg)
consists of a unique saddle orbit and three node orbits: either one sink orbit
and two source orbits or one source orbit and two sink orbits.

In what follows we assume that a diffeomorphism f ∈ G(Sg) has a unique
sink orbit Oω and two source orbits Oα1 ,Oα2 (otherwise, we could just
replace f with its inverse f−1).

By assumption f has one saddle periodic orbit preserving the orientation,
hence νσ = +1 and qσ = 1. The orbits of Oα1 ,Oα2 consist of sources, so
qα1 = qα2 = dimW u

αi
= 2. Moreover, since f preserves the orientation of

open connected invariant subsets, we get that ναi = +1. The orbit of Oω

consists of sinks, whence qω = dim W u
ω = 0 and νω = +1. Thus, a part

of the periodic data is already known and our task is to find the periods
mω,mσ,mα1 ,mα2 . Notice that from (1.1) we have

mα1 +mα2 −mσ +mω = 2− 2g. (1.2)
Below (a, b) means the greatest common divisor of the natural numbers
a, b, also we assume (0, b) = b.

Theorem 1.2. Every diffeomorphism f ∈ G(Sg) has the following periodic
data:

mω = m, mσ = km,

mα1 = (k, j + 1)

(
k

(k, j + 1)
,m

)
,

mα2 = (k, j)

(
k

(k, j)
,m

)
,

(1.3)

for some m ∈ N, k ∈ N, j ∈ {0, . . . , k − 1}.
Furthermore, for every collection of the natural numbers k ∈ N, m ∈ N,

j ∈ {0, . . . , k − 1} there exists a diffeomorphism f ∈ G(Sg) with a periodic
data of the form (1.3) on a surface of genus

g = 1 +
1

2

(
(k − 1)m− (k, j + 1)

(
k

(k, j + 1)
,m

)
− (k, j)

(
k

(k, j)
,m

))
.

Corollary 1.3. Due to theorem above every orientable surface of genus g
admits a diffeomorphism from the class G(Sg), with the following periodic
data: mσ = 2g + 1, mω = mα1 = mα2 = 1, see Figure 1.1.
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FIGURE 1.1. Diffeomorphisms from G(S1) with mσ = 3,
mω = mα1 = mα2 = 1
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2. STRUCTURE OF THE NON-WANDERING SET
In this section we prove Theorem 1.1. Detailed proofs of auxiliary state-

ments given in this section can be found in [5].

Proof. Let us show that the non-wandering set of every diffeomorphism
f ∈ G(Sg) consists of a unique saddle orbit and three node orbits (either
one sink and two source, or one source and two sink orbits).

For the saddle separatrix ℓ we denote by mℓ its period, that is, the
smallest natural number µ such that fµ(ℓ) = ℓ. Also denote by Oℓ the
orbit of the separatrix ℓ. By [5, Proposition 2.3, p. 31], the closure of
each unstable saddle separatrix contains a unique sink, while the closure
of each stable saddle separatrix contains a unique source. Assume that the
unstable separatrix ℓu of a saddle point σ contains a sink ω in its closure.
Let m be the period of ω. According to [10, Theorem 5.5], fm is locally
conjugate at the point ω with the linear diffeomorphism of R2 given by the
formula

L(x, y) =
(x
2
,
y

2

)
.
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Let Oω be the orbit of the point ω, Vω = W s
Oω

\ Oω, V̂ω = Vω/f be
the orbit space of the action of the group F = {fk, k ∈ Z} on Vω, and
pω : Vω → V̂ω the natural projection.

Notice that Vω is diffeomorphic to a disjoint union of m open cylinders
S1×R that are cyclically interchanged by f . Moreover, due to [5, Proposi-
tion 2.5, p. 35], the space V̂ω is diffeomorphic to a two-dimensional torus.
Let x ∈ Vω be any point and x̂ = pω(x). Then the natural projection
pω : Vω → V̂ω is a covering map and we have the following exact sequence

0 → π1(Vω, x) → π1(V̂ω, x̂)
ηω−−−−→ π0Z → π0Vω → 1, (2.1)

where ηω is the boundary homomorphism. Since the connected component
of x in Vω consists of points {fkmω(x)}k∈Z, it follows that the image of ηω
is a subgroup mωZ ⊂ Z ∼= π0Z.

In other words, we get an epimorphism ηω : π1(V̂ω) → mωZ onto the
subgroup of Z consisting of multiples of mω. For the convenience of the
reader let us recall the definition of ηω. Let [ĉ] ∈ π1(V̂ω, x̂) be a loop in V̂ω
and c : [0, 1] → Vω be its lift starting at c(0) = x ∈ Vω. Then the end point
c(1) = fn(x), for some n ∈ mωZ, and ηω([ĉ]) = n.

Denote by a : R2 → R2 the diffeomorphism given by the formula

a(x, y) =
(x
2
, 2y

)
.

Evidently, it has a unique fixed saddle point at the origin O with the sta-
ble manifold W s

O = Ox and the unstable manifold W u
O = Oy. Then the

diffeomorphism fmσ in some neighborhood of the point σ is topologically
connected to the diffeomorphism a in a neighborhood of the point O (see,
for example, [10, Theorem 5.5]).

Let ℓ̂u = pω(ℓ
u) and jℓ̂u : ℓ̂u → V̂ω be the inclusion map. It follows

from [5, Proposition 2.5, p.35] that the set ℓ̂u is a circle smoothly embedded
in V̂ω and such that ηω(jℓ̂u∗(π1(ℓ̂u))) = mℓuZ. Notice that pω(Oℓu) = ℓ̂u.

Figure 2.1 depicts the torus V̂ω with the projection ℓ̂u of the separatrix
ℓu such that mℓu

mω
= 3.

Let N = {(x, y) ∈ R2 : |xy| ≤ 1}. Notice that the set N is invariant
with respect to the diffeomorphism a. A neighborhood of Nσ of the point
σ is called linearizing if there exists a homeomorphism µσ : Nσ → N
conjugating the restriction fmσ |Nσ with the diffeomorphism a|N .

In this case the neighborhood

NOσ =

mσ−1∪
j=0

f j(Nσ)
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FIGURE 2.1. The projection of the saddle separatrix in the
orbit space of the sink basin homeomorphic to the torus

of the orbit Oσ =
mσ−1∪
j=0

f j(σ) equipped with the map µOσ : NOσ → N ,

defined by
µOσ |fj(Nσ) = µσ ◦ f−j : f j(Nσ) → N , j = 0, . . . ,mσ − 1,

is called the linearizing neighborhood of the orbit Oσ.
Due to [5, Theorem 2.2, p. 29], the saddle point (orbit) of the diffeomor-

phism f has a linearizing neighborhood.
Let N u = N \Ox and N̂ u = N u/a be the orbit space of the action of the

group {an, n ∈ Z} on N u. Then the natural projection pN̂u : N u → N̂ u

is a covering map. Moreover, the fundamental domain of the action of the
group {an, n ∈ Z} on N u consists of two disjoint curvilinear trapezoids,
each of which has equivalent points belonging to the horizontal segments
of the boundary. In Figure 2.2 these trapezoids are shaded and it is shown
how we can obtain the manifold N̂ u by identifying their boundaries via
the diffeomorphism a. Thus the space N̂ u is homeomorphic to a pair of
two-dimensional annuli K1,K2.

FIGURE 2.2. The orbit space N̂ u
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Let

Nu
σ = Nσ \W s

σ , N s
σ = Nσ \W u

σ .

Denote by Nℓu the connected component of the set Nu
σ containing an un-

stable separatrix ℓu. Let also N̂ℓu = pω(Nℓu) and jNℓ̂u
: Nℓ̂u → V̂ω be the

inclusion map. The set N̂ℓu is a smoothly embedded annulus in V̂ω such
that ηω(jN̂ℓu∗(π1(N̂ℓu))) = mℓuZ.

Denote by A the union of all sink points of the diffeomorphism f . Let
also VA = W s

A \ A, V̂A = VA/f , and pA : VA → V̂A be the natural projec-
tion. Similarly to the above arguments, the orbit space in the sink basin is
homeomorphic to the torus, which implies that each connected component
of the set V̂A is homeomorphic to a two-dimensional torus, and the number
of connected components coincides with the number of sink orbits.

Let Nu
Oσ

= NOσ \W s
Oσ
, N s

Oσ
= NOσ \W u

Oσ
, N̂u

Oσ
= Nu

Oσ
/f . It follows

from [5, Theorem 2.4, p. 42] that the set N̂u
Oσ

is a pair of annuli smoothly
embedded in V̂A. Also due to [5, Corollary 2.1, p. 46] the set V̂A is not
empty and, by [5, Corollary 2.2, p. 62], each torus in V̂A has to contain at
least one annulus from the set N̂u

Oσ
. Thus V̂A contains one or two connected

components.
Similar statements can be formulated for the source point α and for the

stable separatrix ℓs of the saddle point σ such that ℓs ⊂W u
α .

Denote by R the union of the source points of the diffeomorphism f . Let
also VR =W u

R \R, V̂R = VR/f and pR : VR → V̂R be the natural projection.
Similarly to the above arguments, the orbit space in the source basin is
homeomorphic to the torus, which implies that each connected component
of the set V̂R is homeomorphic to a two-dimensional torus, and the number
of connected components coincides with the number of source orbits. On
the other hand, it follows from the equality VR = (VA \ Nu

Oσ
) ∪ N s

Oσ
(see,

for instance, [5, Theorem 2.1, p. 28]) that

V̂A = (V̂R \ N̂u
Oσ

) ∪ N̂ s
Oσ
.

Thus, to get the space V̂R we have to delete N̂u
Oσ

from the torus V̂A and
glue the set N̂ s

Oσ
to the boundary of the resulting set.

Each of the sets N̂u
Oσ

, N̂ s
Oσ

consists of two annuli. Moreover, the an-
nuli N̂u

Oσ
are homotopically non-trivially embedded in the torus V̂A. If we

assume that V̂A consists of a unique connected component then V̂A \ N̂u
Oσ

consists of two annuli and a gluing N̂ s
Oσ

to their boundaries gives two two-
dimensional tori (see Figure 2.3, where the transition from the sink basins
to the sources basins is illustrated by the example of a diffeomorphism
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FIGURE 2.3. Regluing along annuli

of the 2-sphere. For convenience, in the above-mentioned basins, funda-
mental regions are selected, after the identifying of their boundary circles
the corresponding tori in the quotient spaces are obtained). This means
that there are exactly two source orbits for the diffeomorphism f , that is,
R = Oα1 ∪ Oα2 for some periodic sources α1, α2.

If we assume that V̂A consists of two connected components then the
similar cut and gluing operation implies the existence of the unique source
orbit in this case. □

3. PERIODIC DATA
This section is devoted to the proof of Theorem 1.2. Firstly let us show

that every diffeomorphism f ∈ G(Sg) has following periodic data, see (1.3):
mω = m, mσ = km,

mα1 = (k, j + 1)

(
k

(k, j + 1)
,m

)
,

mα2 = (k, j)

(
k

(k, j)
,m

)
,

where m ∈ N, k ∈ N, j ∈ {0, . . . , k − 1} are natural numbers.
Let us introduce an abstract model of dynamics in the basin of a periodic

sink of period m. Let m ≥ 1 be an integer and Vm = S1 × R+ × Zm. Thus
Vm is a model for the basin of a periodic sink of period m. Let k ∈ N,
τ ∈ {0, . . . , k − 1} and

γτ1 =
k−1∪
τ=0

eiπ(
1
2
− 2τ

k ) × R+, γτ2 =
k−1∪
τ=0

eiπ(
1
2
− 2τ+1

k ) × R+,
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γ1 =

k−1∪
τ=0

γτ1 × Zm, γ2 =

k−1∪
τ=0

γτ2 × Zm,

Here γ1 ∪ γ2 models the saddle unstable separatrices, see Figure 3.1.
Let n ≥ 0 be any integer satisfying the following conditions:

• if k = 1, then n = 0;
• otherwise, n ∈ {1, . . . , k − 1} is such that mn and k are co-prime.

Here mn models the period of periodic unstable separatrices in Vm and mn
k

represents their “rotation number”, i.e. how the diffeomorphism permutes
these separatrices. As a local model for the diffeomorphism on the basin
we take the contraction ϕm,k,n : Vm → Vm given by the formula:

ϕm,k,n(z, r, w) =
(
ze−

2πmn
k

i, r
2m , w + 1 modm

)
.

Then
ϕm,k,n(γ

τ
i × {w}) = γτ+mni × {w + 1 modm} (3.1)

for all i = 1, 2, τ = 0, . . . , k − 1, w = 0, . . . ,m− 1.
Notice that V̂m,k,n = Vm/ϕm,k,n is a torus. Let pm,k,n : Vm → V̂m,k,n the

natural projection. Then γ̂i = pm,k,n(γi), i = 1, 2 is a knot in V̂m,k,n.
Let f ∈ G(Sg). For the sink orbit Oω put Vω = W s

Oω
\ Oω. Denote by

V̂ω = Vω/f the orbit space of the action of the group F = {f i, i ∈ Z} on Vω
and by pω : Vω → V̂ω the natural projection. The unstable separatrices ℓu1 ,
ℓu2 of the saddle point σ have period mσ and lie in the basin Vω. Since the
group F acts transitively on the connected components of Vω (the number
of such components is m) and on the orbit of each unstable separatrix (the
number of the connected components of this orbit is mσ), it follows that
in each connected component of the set Vω there exists the same number
of separatrices from that orbit. Hence the period mσ is a multiple of the
period m.

Thus each connected component of Vω contains k := mσ
m separatrices

from the orbit of the separatrix ℓui . Let ℓ̂u1 = pω(ℓ
u
1) and ℓ̂u2 = pω(ℓ

u
2). Then

there is a number n and a diffeomorphism ĥω : V̂ω → V̂m,k,n transforming
the knots ℓ̂u1 , ℓ̂u2 to the knots γ̂1, γ̂2. Thus, there is a lift hω : Vω → Vm of
ĥω which sends the separatrices W u

Oσ
\Oσ to the frame of rays γ1 ∪ γ2 and

conjugates diffeomorphism f |Vω with the diffeomorphism ϕm,k,n, e.g. [5,
Statement 10.35, p. 243]. In this case, we may identify the conjugated
objects everywhere below.

Notice that γ01 × {0} corresponds to one of unstable separatrices, say
ℓu1 , of the saddle point. Let γj2 × {ρ} be another separatrix ℓu2 , where
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j ∈ {0, . . . , k − 1} and ρ ∈ {0, . . . ,m− 1}. Then
(ρ,m) = 1

due to connectivity of the ambient surface Sg. Moreover, as hω conjugates
f with ϕm,k,n, it follows from (3.1) that for every τ ∈ {0, . . . , k − 1}

γτ1 × {w} and γ
(τ+j) mod k
2 × {w + ρ modm}

are stable and unstable manifolds of the same saddle point, so the param-
eters j and ρ determine the are responsible for division of separatrices into
stable-unstable submanifolds of the same saddle.

Notice that the choice of j and ρ depends on the order which hω maps
γ01 ×{0} and γj2×{ρ} to separatrices of the saddle point. It exchange those
separatrices, so γ01 × {0} will correspond to ℓu2 , and γ

j′

2 × {ρ′} to ℓu1 , then
the pairs (j, ρ) and (j′, ρ′) are related by the formulas:

j + j′ + 1 = k, ρ+ ρ′ + 1 = m.

This leads to the formulas
(k, j′ + 1) = (k, j), (m, ρ′ + 1) = (m, ρ),

guaranteeing that in (1.3) the periods mα1 ,mα2 do not depend on the order
of separatrices.

By Theorem 1.1, the non-wandering set of f contains exactly two source
orbits Oα1 ,Oα2 such that cl(ℓu1) = ℓu1 ∪ α1, and cl(ℓu2) = ℓu2 ∪ α2. Thus

W s
Oω

= Sg \ cl(W s
Oσ

).

If we remove from our surface Sg the closures of mσ stable manifolds, then
we get m disks (the basins of the sinks). Since each stable manifold locally
separates two such discs on the supporting surface, it follows that every
stable manifold will included twice to the boundaries of the disks after
cutting. Thus, the boundary of each disk consists of 2mσ

m = 2k stable
manifolds so that disk can be regarded as 2k-gon (see Figures 3.1 and 3.2
on the left).

The stable separatrices are called s1- and s2-curves, the unstable sepa-
ratrices (they are located on the rays of the frames γ1 and γ2) are called
u-curves frames, and the segments connecting the vertices of the polygon
with its center are called t-curves. Thus, this (colored) curves divide ev-
ery polygon into the triangles with si-, t-, u-sides. Let us enumerate these
triangles as it shown on Figures 3.1 and 3.2 on the left.

As u-sides belonging to the rays

γτ1 × {w}, and γ
(τ+j)mod k
2 × {(w + ρ)modm}
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FIGURE 3.1. The octagon Π that is the closure of the sink
basin of the diffeomorphism f ∈ G (on the left) and the
four-color graph Tf constructed on it (on the right). Here
m = 1, k = 4, n = 1, j = 1, ρ = 0

are separatrices of the same saddle point of f , it follows that in order to
get the surface Sg from the polygons Π0, . . . ,Πm−1 we have to identify the
pairs of those sides of polygons which are transversal to this pair of the
separatrices.

To compute periods of source points we associate a four-color graph with
the diffeomorphism f in the following way (see for details, for example, [7]
and [4]):

1) the vertices of the graph Tf one-to-one correspond to the triangular
regions;

2) two vertices of the graph are incident to the edge of color s1, s2, t
or u if the triangular areas corresponding to these vertices have a
common s1, s2, t or u side (see Figure 3.1 and 3.2 on the right).

Denote by Bf the set of vertices of the graph Tf and by ∆f the set
of triangles in the partition of the polygon. Let also πf : ∆f → Bf be
a one-to-one correspondence between the set of triangular domains of the
diffeomorphism f and the set of vertices of the graph Tf . Then f induces
an automorphism Pf = πf ◦ f ◦ π−1

f of the set of vertices and edges of the
graph Tf . Moreover,

• the set of sink points of the diffeomorphism f is in a one-to-one
correspondence with the set of tu-cycles of the graph Tf ;

• the set of saddle points of the diffeomorphism f is in a one-to-one
correspondence with the set of su -cycles of the graph Tf ;
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• the set of source points of the diffeomorphism f is in a one-to-one
correspondence with the set of ts -cycles of the graph Tf .

Thus, to determine the period mαi of the point αi, i = 1, 2, we have to
calculate the number of sit-cycles. As every such cycle is an image of an
other such cycle by f , we see that all cycles must have the same period.
Hence, the length of each such cycle is some even number (as edges si and
t follow one after other), which we denote by 2λi. Notice that the number
of si- and t-edges in all sit-cycles equals 2km then mαi is calculated by the
formula

mαi =
km

λi
. (3.2)

FIGURE 3.2. Hexagons Π and f(Π) which are the closures
of the sinks basins of the diffeomorphism f ∈ G (left) and
the four-color graph Tf (right) constructed from them. Here
m = 2, k = 3, n = 1, j = 2, and ρ = 1
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Now we will calculate the length of s1t-cycle starting from the s1-edge
(01, j2). We get the following sequence of the vertices

01 → j2 → ((j + 1) mod k)1 → ((2j + 1) mod k)2 →
→ (2(j + 1) mod k)1 → · · · → (λ1(j + 1) mod k)1,

where (τ)i correspond to the separatrice γτi , i = 1, 2. Since that sequence
constitute a cycle, we obtain that

λ1(j + 1) mod k = 0, λ1ρ modm = 0,

whence
λ1(j + 1) = lk, λ1ρ = rm

for some l, r.
Let A = (k, j + 1). Then k = pA, j + 1 = qA, where (p, q) = 1. Hence,

λ1 =
lp

q
=
rm

ρ
.

As λ1 is a natural, (p, q) = 1, and (ρ,m) = 1, it follows that l = µq and
r = νρ. Hence λ1 = µp = νm and (µ, ν) = 1, since λ1 is the minimal
number with the property λ1 = µ̃p = ν̃m for some natural µ̃, ν̃.

Let B = (p,m) then p = xB, m = yB, where (x, y) = 1. Therefore
µx = νy, µ = y, ν = x, and λ1 = yp. Thus

mα1 =
km

λ1
=
km

yp
=
pAm

yp
= AB = (k, j + 1)

(
k

(k, j + 1)
,m

)
.

A similar construction for α2 gives mα2 = (k, j)
(

k
(k,j) ,m

)
. By (1.2),

m+ (k, j + 1)

(
k

(k, j + 1)
,m

)
+ (k, j)

(
k

(k, j)
,m

)
− km = 2− 2g.

In an addition, every collection of natural numbers m ∈ N, k ∈ N,
j ∈ {0, . . . , k− 1} can be realized by an admissible four-color graph, which
in turn, due to [7], allows to construct a diffeomorphism f ∈ G(Sg) with a
periodic data of the form (1.3) on a surface of genus

g = 1 +
1

2

(
(k − 1)m− (k, j + 1)

(
k

(k,j+1) ,m
)
− (k, j)

(
k

(k,j) ,m
))

.
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