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An extension of Möbius-Lie geometry
with conformal ensembles of cycles and
its implementation in a GiNaC library

Vladimir V. Kisil

Abstract. We propose to consider ensembles of cycles (quadrics), which are
interconnected through conformal-invariant geometric relations (e.g. “to be
orthogonal”, “to be tangent”, etc.), as new objects in an extended Möbius-Lie
geometry. It was recently demonstrated in several related papers, that such
ensembles of cycles naturally parameterize many other conformally-invariant
families of objects, e.g. loxodromes or continued fractions.

The paper describes a method, which reduces a collection of conformally
invariant geometric relations to a system of linear equations, which may be
accompanied by one fixed quadratic relation. To show its usefulness, the
method is implemented as a C++ library. It operates with numeric and sym-
bolic data of cycles in spaces of arbitrary dimensionality and metrics with
any signatures. Numeric calculations can be done in exact or approximate
arithmetic. In the two- and three-dimensional cases illustrations and ani-
mations can be produced. An interactive Python wrapper of the library is
provided as well.

Анотація. В статті розглядається розширення геометрії сфер введене
Софусом Лі. Нас цікавлять властивості інваріантні відносно дробово-лі-
нійних (мебіусових) перетворень. Об’єктами розширеної геометрії Мебіу-
са-Лі є ансамблі сфер взаємопов’язані наборами відношень інваріантних
відносно мебіусових перетворень простору, наприклад ортогональність,
дотичніть та ін. В недавніх публікаціях було показано, що такі ансамблі
дозволяють природним чином параметризувати різні об’єкти пов’язані
з дробово-лінійними перетвореннями, наприклад локсодроми або непе-
рервні дроби.

Деякі з використаних геометричних відношень (наприклад, ортого-
нальность) задаються лінійними умовами на коефіцієнти рівнянь сфер,
інші (наприклад, дотик) є квадратичними. В роботі описується метод,
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який дозволяє звести будь-яке число розглянутих відношень до систе-
ми лінійних рівностей та не більше ніж однієї додаткової квадратичної
умови.

Ефективність даного методу дозволила реалізувати математичну кон-
цепцію розширеної геометрії Мебіуса-Лі в програмній бібліотеці написа-
ній на C++. Бібліотека працює в просторах будь-якої розмірності з до-
вільною метрикою, включаючи вироджені випадки. Вона дозволяє про-
водити маніпуляції з символьними обчисленнями, точною арифметикою,
або наближено. В просторах розмірності два та три бібліотека може бу-
дувати графічні образи та анімації в кількох популярних форматах. Бі-
бліотека супроводжуються оболонкою для інтерактивного доступу на
мові Python. Також активно розвивається графічний інтерфейс кори-
стувача (GUI), який дозволяє використовувати бібліотеку за допомогою
клацань миші. Програмна реалізація дає можливість проводити подаль-
ше вивчення розширеної геометрії Мебіуса-Лі і може бути використана
у викладанні.

1. INTRODUCTION
Lie sphere geometry [11], [8, Chapter 3], in the simplest planar setup

unifies circles, lines and points – all together called cycles in this setup.
Symmetries of Lie spheres geometry include (but are not limited to) frac-
tional linear transformations (FLT) of the form:(

a b
c d

)
: x 7→ ax+ b

cx+ d
, where det

(
a b
c d

)
̸= 0. (1.1)

Following other sources, e.g. [58, § 9.2], we call (1.1) by FLT and reserve
the name “Möbius maps” for the subgroup of FLT which fixes a particular
cycle. For example, on the complex plane FLT are generated by elements of
SL2(C) and Möbius maps fixing the real line are produced by SL2(R) [41,
Chapter 1].

There is a natural set of FLT-invariant geometric relations between cycles
(to be orthogonal, to be tangent, etc.) and the restriction of Lie sphere
geometry to invariants of FLT is called Möbius-Lie geometry. Thus, an
ensemble of cycles, structured by a set of such relations, will be mapped by
FLT to another ensemble with the same structure.

It was shown recently that ensembles of cycles with certain FLT-invariant
relations provide helpful parametrizations of new objects, e.g. points of the
Poincaré extended space [46], loxodromes [48] or continued fractions [7],
[45], see Example 3.4 below for further details. Thus, we propose to extend
Möbius-Lie geometry and consider ensembles of cycles as its new objects, cf.
formal Definition 3.6. Naturally, “old” objects – cycles – are represented by
simplest one-element ensembles without any relation. This paper provides

https://en.wikipedia.org/wiki/Lie_sphere_geometry
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conceptual foundations of such extension and demonstrates its practical
implementation as a C++ library figure1. Interestingly, the development of
this library shaped the general approach, which leads to specific realizations
in [46], [45], [48].

More specifically, the library figure manipulates ensembles of cycles
(quadrics) interrelated by certain FLT-invariant geometric conditions. The
code is build on top of the previous library cycle, [37], [41], [36], which ma-
nipulates individual cycles within the GiNaC[5] computer algebra system.
Thinking an ensemble as a graph, one can say that the library cycle deals
with individual vertices (cycles), while figure considers edges (relations be-
tween pairs of cycles) and the whole graph. Intuitively, an interaction with
the library figure reminds compass-and-straightedge constructions, where
new lines or circles are added to a drawing one-by-one through relations
to already presented objects (the line through two points, the intersection
point or the circle with given centre and a point). See Example 3.7 of
such interactive construction from the Python wrapper, which provides an
analytic proof of a simple geometric statement.

It is important that both libraries are capable to work in spaces of
any dimensionality and metrics with an arbitrary signatures: Euclidean,
Minkowski and even degenerate. Parameters of objects can be symbolic
or numeric, the latter admit calculations with exact or approximate arith-
metic. Drawing routines work with any (elliptic, parabolic or hyperbolic)
metric in two dimensions and the euclidean metric in three dimensions.

The mathematical formalism employed in the library cycle is based on
Clifford algebras, which are intimately connected to fundamental geomet-
rical and physical objects [30], [29]. Thus, it is not surprising that Clifford
algebras have been already used in various geometric algorithms for a long
time, for example see [31], [60], [18] and further references there. Our
package deals with cycles through Fillmore–Springer–Cnops construction
(FSCc) which also has a long history, see [57, § 1.1], [13, § 4.1], [20], [34,
§ 4.2], [35], [41, § 4.2], and section 2.1 below. Compared to a plain analyt-
ical treatment [54, Chapter 2], [8, Chapter 3], FSCc is much more efficient
and conceptually coherent in dealing with FLT-invariant properties of cy-
cles. Correspondingly, the computer code based on FSCc is easy to write
and maintain.

The paper outline is as follows. In Section 2 we sketch the mathematical
theory (Möbius-Lie geometry) covered by the package of the previous li-
brary cycle [37] and the present library figure. We expose the subject with
some references to its history since this can facilitate further development.

1All described software is licensed under GNU GPLv3 [22].
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Section 3.1 describes the principal mathematical tool used by the library
figure. It allows to reduce a collection of various linear and quadratic equa-
tions (expressing geometrical relations like orthogonality and tangency) to
a set of linear equations and at most one quadratic relation (3.1). Notably,
the quadratic relation is the same in all cases, which greatly simplifies
its handling. This approach is the cornerstone of the library effectiveness
both in symbolic and numerical computations. In Section 3.3 we present
several examples of ensembles, which were already used in mathematical
theories [46], [45], [48], then we describe how ensembles are encoded in the
present library figure through the functional programming framework.

Section 4 outlines several typical usages of the package. An example of
a new statement discovered and demonstrated by the package is given in
Theorem 4.1. In Section 5 we list of some further tasks, which will extend
capacities and usability of the package.

All coding-related material is enclosed as appendices in the full docu-
mentation on the project page [37]. They contain:

(i) Numerous examples of the library usage starting from the very simple
ones.

(ii) A systematic list of callable methods.
(iii) Actual code of the library.

Section 2, Example 3.7 below or the above-mentioned first two appendices
of the full documentation can serve as an entry point for a reader with
respective preferences and background.

2. MÖBIUS-LIE GEOMETRY AND THE cycle LIBRARY
We briefly outline mathematical formalism of the extend Möbius-Lie ge-

ometry, which is implemented in the present package. We do not aim to
present the complete theory here, instead we provide a minimal description
with a sufficient amount of references to further sources. The hierarchical
structure of the theory naturally splits the package into two components:
the routines handling individual cycles (the library cycle briefly reviewed
in this section), which were already introduced elsewhere [37], and the new
component implemented in this work, which handles families of interrelated
cycles (the library figure introduced in the next section).

2.1. Möbius-Lie geometry and FSC construction. Möbius-Lie geom-
etry in Rn starts from an observation that points can be treated as spheres
of zero radius and planes are the limiting case of spheres with radii di-
verging to infinity. Oriented spheres, planes and points are called together
cycles. Then, the second crucial step is to treat cycles not as subsets of
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Rn but rather as points of some projective space of higher dimensionality,
see [9, Chapter 3], [11], [54], [57].

To distinguish two spaces we will call Rn as the point space and the higher
dimension space, where cycles are represented by points – the cycle space.
Next important observation is that geometrical relations between cycles as
subsets of the point space can be expressed in term of some indefinite metric
on the cycle space. Therefore, if an indefinite metric shall be considered
anyway, there is no reason to be limited to spheres in Euclidean space Rn

only. The same approach shall be adopted for quadrics in spaces Rpqr of an
arbitrary signature p + q + r = n, including r nilpotent elements, cf. (2.1)
below.

A useful addition to Möbius-Lie geometry is provided by the Fillmore-
Springer-Cnops construction (FSCc), [57, § 1.1], [13, § 4.1], [55, § 18], [20],
[34, § 4.2], [35], [41, § 4.2]. It is a correspondence between the cycles (as
points of the cycle space) and certain 2× 2-matrices defined in (2.3)below.
The main advantages of FSCc are:

(i) The correspondence between cycles and matrices respects the pro-
jective structure of the cycle space.

(ii) The correspondence is FLT covariant.
(iii) The indefinite metric on the cycle space can be expressed through

natural operations on the respective matrices.
The last observation is that for restricted groups of Möbius transformations
the metric of the cycle space may not be completely determined by the
metric of the point space, see [36], [35], [41, § 4.2], for an example in two-
dimensional space.

FSCc is useful in consideration of the Poincaré extension of Möbius
maps [46], loxodromes [48] and continued fractions [45]. In theoretical
physics FSCc nicely describes conformal compactifications of various space-
time models [28], [38], [41, § 8.1]. Regretfully, FSCc have not yet propa-
gated back to the most fundamental case of complex numbers, cf. [58, § 9.2]
or somewhat cumbersome techniques used in [8, Chapter 3]. Interestingly,
even the founding fathers were not always strict followers of their own tech-
niques, see [21].

We turn now to the explicit definitions.

2.2. Clifford algebras, FLT transformations, and Cycles. We de-
scribe here the mathematics behind the the first library called cycle, which
implements fundamental geometrical relations between quadrics in the space
Rpqr with the dimensionality n = p+ q + r and metric

x21 + . . .+ x2p − x2p+1 − . . .− x2p+q.
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A version simplified for complex numbers only can be found in [46], [48],
[45].

The Clifford algebra Cℓ(p, q, r,) is the associative unital algebra over R
generated by the elements e1,…,en satisfying the following relation:

eiej = −ejei , and e2i =

 −1, if 1 ≤ i ≤ p;
1, if p+ 1 ≤ i ≤ p+ q;
0, if p+ q + 1 ≤ i ≤ p+ q + r.

(2.1)

It is common [15], [13], [55], [30], [29] to consider mainly Clifford algebras
Cℓ(n,=)Cℓ(n, 0, 0,) of the Euclidean space or the algebra Cℓ(p, q,=)Cℓ(p, q, 0,)
of the pseudo-Euclidean (Minkowski) spaces. However, Clifford algebras
Cℓ(p, q, r,), r > 0 with nilpotent generators e2i = 0 correspond to interesting
geometry [41], [35], [61], [52] and physics [25], [23], [24], [42], [43], [47] as
well. Yet, the geometry with idempotent units in spaces with dimensionality
n > 2 is still not sufficiently elaborated.

An element of Cℓ(p, q, r,) having the form x = x1e1 + . . . + xnen can be
associated with the vector (x1, . . . , xn) ∈ Rpqr. The reversion a 7→ a∗ in
Cℓ(p, q, r,) [13, (1.19(ii))] is defined on vectors by x∗ = x and extended to
other elements by the relation (ab)∗ = b∗a∗. Similarly the conjugation is
defined on vectors by x̄ = −x and the relation ab = b̄ā. We also use the
notation |a|2 = aā for any product a of vectors. An important observation
is that any non-zero x ∈ Rn00 has a multiplicative inverse: x−1 = x̄

|x|2 . For

a 2× 2-matrix M =

(
a b
c d

)
with Clifford entries we define, cf. [13, (4.7)],

M̄ =

(
d∗ −b∗
−c∗ a∗

)
and M∗ =

(
d̄ b̄
c̄ ā

)
. (2.2)

Then MM̄ = δI for the pseudodeterminant δ := ad∗ − bc∗.
Quadrics in Rpq – which we continue to call cycles – can be associated to

2× 2 matrices through the FSC construction [20], [13, (4.12)], [41, § 4.4]:

kx̄x− lx̄− xl̄ +m = 0 ↔ C =

(
l m
k l̄

)
, (2.3)

where k,m ∈ R and l ∈ Rpq. For brevity we also encode a cycle by its
coefficients (k, l,m). A justification of (2.3) is provided by the identity:(

1 x̄
)( l m

k l̄

)(
x
1

)
= kxx̄− lx̄− xl̄ +m, since x̄ = −x for x ∈ Rpq.

The identification is also FLT-covariant in the sense that the transforma-
tion (1.1) associated with the matrix M =

(
a b
c d

)
sends a cycle C to the
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cycle MCM∗ [13, (4.16)]. We define the FLT-invariant inner product of
cycles C1 and C2 by the identity

⟨C1, C2⟩ = ℜ tr(C1C2) , (2.4)

where ℜ denotes the scalar part of a Clifford number. This definition
in term of matrices immediately implies that the inner product is FLT-
invariant.

The explicit expression in terms of components of cycles C1 = (k1, l1,m1)
and C2 = (k2, l2,m2) is also useful sometimes:

⟨C1, C2⟩ = l1l2 + l̄1 l̄2 +m1k2 +m2k1 . (2.5)

As usual, the relation ⟨C1, C2⟩ = 0 is called the orthogonality of cycles
C1 and C2. In most cases it corresponds to orthogonality of quadrics in
the point space. More generally, most of FLT-invariant relations between
quadrics may be expressed in terms FLT-invariant inner product (2.4). For
the full description of methods on individual cycles, which are implemented
in the library cycle, see the respective documentation [37].
Remark 2.3. Since cycles are elements of the projective space, the follow-
ing normalised cycle product:

[C1, C2] :=
⟨C1, C2⟩√

⟨C1, C1⟩ ⟨C2, C2⟩
(2.6)

is more meaningful than the cycle product (2.4) itself. Note that, [C1, C2]
is defined only if neither C1 nor C2 is a zero-radius cycle (i.e. a point).
Also, the normalised cycle product is GL2(C)-invariant in comparison to
SL2(C)-invariance of (2.4).

We finish this brief review of the library cycle by pointing to its light
version written in Asymptote language [27] and distributed together with
the paper [48]. Although the light version mostly inherited API of the
library cycle, there are some significant limitations caused by the absence
of GiNaC suppost:

(i) there is no symbolic computations of any sort;
(ii) the light version works in two dimensions only;
(iii) only elliptic metrics in the point and cycle spaces are supported.

On the other hand, being integrated with Asymptote the light version sim-
plifies production of illustrations, which are its main target.
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3. ENSEMBLES OF INTERRELATED CYCLES AND THE figure LIBRARY
The library figure has an ability to store and resolve the system of geo-

metric relations between cycles. We explain below some mathematical foun-
dations, which greatly simplify this task.

3.1. Connecting quadrics and cycles. We need a vocabulary, which
translates geometric properties of quadrics on the point space to corre-
sponding relations in the cycle space. The key ingredient is the cycle prod-
uct (2.4)-(2.5), which is linear in each cycles’ parameters. However, certain
conditions, e.g. tangency of cycles, involve polynomials of cycle products
and thus are non-linear. For a successful algorithmic implementation, the
following observation is important: all non-linear conditions below can be
linearised if the additional quadratic condition of normalisation type is im-
posed:

⟨C,C ⟩ = ±1. (3.1)

This observation in the context of the Apollonius problem was already made
in [21]. Conceptually the present work has a lot in common with the above
mentioned paper of Fillmore and Springer, however a reader need to be
warned that our implementation is totally different (and, interestingly, is
more closer to another paper [20] of Fillmore and Springer).
Remark 3.2. Interestingly, the method of order reduction for algebraic
equations is conceptually similar to the method of order reduction of dif-
ferential equations used to build a geometric dynamics of quantum states
in [2].

Here is the list of relations between cycles implemented in the current
version of the library figure.

(i) A quadric is flat (i.e. is a hyperplane), that is, its equation is linear.
Then, either of two equivalent conditions can be used:

(a) k component of the cycle vector is zero;
(b) the cycle is orthogonal ⟨C1, C∞⟩ = 0 to the “zero-radius cycle at

infinity” C∞ = (0, 0, 1).
(ii) A quadric on the plane represents a line in a Lobachevsky-type ge-

ometry if it is orthogonal ⟨C1, CR⟩ = 0 to the real line cycle CR . A similar
condition is meaningful in higher dimensions as well.

(iii) A quadric C represents a point, that is, it has zero radius at given
metric of the point space. Then, the determinant of the corresponding
FSC matrix is zero or, equivalently, the cycle is self-orthogonal (isotropic):
⟨C,C ⟩ = 0. Naturally, such a cycle cannot be normalised to the form (3.1).



Extension of Lie geometry: ensembles and their implementation 53

(iv) Two quadrics are orthogonal in the point space Rpq. Then, the
matrices representing cycles are orthogonal in the sense of the inner prod-
uct (2.4).

(v) Two cycles C and C̃ are tangent. Then we have the following qua-
dratic condition:⟨

C, C̃
⟩2

= ⟨C,C ⟩
⟨
C̃ , C̃

⟩ (
or
[
C, C̃

]
= ±1

)
. (3.2)

With the assumption, that the cycle C is normalised by the condition (3.1),
we may re-state this condition in the relation, which is linear to components
of the cycle C : ⟨

C, C̃
⟩
= ±

√⟨
C̃ , C̃

⟩
. (3.3)

Different signs here represent internal and outer touch.
(vi) Inversive distance θ of two (non-isotropic) cycles is defined by the

formula: ⟨
C, C̃

⟩
= θ
√
⟨C,C ⟩

√⟨
C̃ , C̃

⟩
(3.4)

In particular, the above discussed orthogonality corresponds to θ = 0 and
the tangency to θ = ±1. For intersecting spheres θ provides the cosine of
the intersecting angle. For other metrics, the geometric interpretation of
inversive distance shall be modified accordingly.

If we are looking for a cycle C with a given inversive distance θ to a given
cycle C̃ , then the normalisation (3.1) again turns the defining relation (3.4)
into a linear with respect to parameters of the unknown cycle C .

(vii) A generalization of Steiner power d of two cycles is defined as,
cf. [21, §1.1]:

d =
⟨
C, C̃

⟩
+
√
⟨C,C ⟩

√⟨
C̃ , C̃

⟩
, (3.5)

where both cycles C and C̃ are k-normalized, that is the coefficient in front
the quadratic term in (2.3) is 1. Geometrically, the generalized Steiner
power for spheres provides the square of tangential distance. However, this
relation is again non-linear for the cycle C .

If we replace C by the cycle C1 = 1√
⟨C,C ⟩

C satisfying (3.1), the iden-
tity (3.5) becomes:

d · k =
⟨
C1, C̃

⟩
+

√⟨
C̃ , C̃

⟩
, (3.6)

where k = 1√
⟨C,C ⟩

is the coefficient in front of the quadratic term of C1.
The last identity is linear in terms of the coefficients of C1.
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Summing up: if an unknown cycle is connected to already given cycles by
any combination of the above relations, then all conditions can be expressed
as a system of linear equations for coefficients of the unknown cycle and at
most one quadratic equation (3.1).

3.3. Figures as families of cycles – functional approach. We start
from some examples of ensembles of cycles, which conveniently describe
FLT-invariant families of objects.
Example 3.4. (i) The Poincaré extension of Möbius transformations
from the real line to the upper half-plane of complex numbers is described
by a triple of cycles {C1, C2, C3} such that:

(a) C1 and C2 are orthogonal to the real line;
(b) ⟨C1, C2⟩

2 ≤ ⟨C1, C1⟩ ⟨C2, C2⟩;
(c) C3 is orthogonal to any cycle in the triple including itself.

A modification [45] with ensembles of four cycles describes an exten-
sion from the real line to the upper half-plane of complex, dual or double
numbers. The construction can be generalized to arbitrary dimensions [6].

(ii) A parametrization of loxodromes is provided by a triple of cycles
{C1, C2, C3} such that, cf. [48] and Figure 3.1:

(a) C1 is orthogonal to C2 and C3;
(b) ⟨C2, C3⟩

2 ≥ ⟨C2, C2⟩ ⟨C3, C3⟩.
Then, main invariant properties of Möbius-Lie geometry, e.g. tangency

of loxodromes, can be expressed in terms of this parametrization [48].
(iii) A continued fraction is described by an infinite ensemble of cycles

(Ck) such that [7]:
(a) All Ck are touching the real line (i.e. are horocycles);
(b) (C1) is a horizontal line passing through (0, 1);
(c) Ck+1 is tangent to Ck for all k > 1.

This setup was extended in [45] to several similar ensembles. The key
analytic properties of continued fractions – their convergence– can be linked
to asymptotic behaviour of such an infinite ensemble [7].

(iv) A remarkable relation exists between discrete integrable systems
and Möbius geometry of finite configurations of cycles [10], [49], [50], [51],
[56]. It comes from “reciprocal force diagrams” used in 19th-century statics,
starting with J.C. Maxwell. It is demonstrated in that the geometric com-
patibility of reciprocal figures corresponds to the algebraic compatibility of
linear systems defining these configurations. On the other hand, the alge-
braic compatibility of linear systems lies in the basis of integrable systems.
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In particular [49], [50], important integrability conditions encapsulate noth-
ing but a fundamental theorem of ancient Greek geometry.

(v) An important example of an infinite ensemble is provided by the
representation of an arbitrary wave as the envelope of a continuous family of
spherical waves. A finite subset of spheres can be used as an approximation
to the infinite family. Then, discrete snapshots of time evolution of sphere
wave packets represent a FLT-covariant ensemble of cycles [4]. Further
physical applications of FLT-invariant ensembles may be looked at [33].

One can easily note that the above parametrizations of some objects
by ensembles of cycles are not necessary unique. Naturally, two ensem-
bles parametrizing the same object are again connected by FLT-invariant
conditions. We presented only one example here, cf. [48].

FIGURE 3.1. Two equivalent parametrisations of the same
loxodrome by different triples of cycles. The green cycle is
C1, two red circles are C2 and C3.

Example 3.5. Two non-degenerate triples {C1, C2, C3} and {C̃1, C̃2, C̃3}
parameterize the same loxodrome as in Example 3.4(ii) if and only if all
the following conditions are satisfied:
(i) Pairs {C2, C3} and {C̃2, C̃3} span the same hyperbolic pencil. That is

cycles C̃2 and C̃3 are linear combinations of C2 and C3 and vise versa.
(ii) Pairs {C2, C3} and {C̃2, C̃3} have the same normalised cycle prod-

uct (2.6):

[C2, C3] =
[
C̃2, C̃3

]
. (3.7)
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(iii) The elliptic-hyperbolic identity holds:

arccosh
[
Cj , C̃j

]
arccosh [C2, C3]

≡ 1

2π
arccos

[
C1, C̃1

]
(mod 1) , (3.8)

where j is either 2 or 3.
Equivalent triples of cycles parametrizing the same loxodrome are shown
on Fig. 3.1 (an animation is available with the electronic version of this
paper).

The respective equivalence relation for parametrization of Poincaré ex-
tension from Example 3.4(i) is provided in [46, Prop. 12]. These examples
suggest that one can expand the subject and applicability of Möbius-Lie
geometry through the following formal definition.
Definition 3.6. Let X be a set, R ⊂ X ×X be an oriented graph on X
and f be a function on R with values in FLT-invariant relations from § 3.1.
Then (R, f)-ensemble is a collection of cycles {Cj}j∈X such that

Ci and Cj are in the relation f(i, j) for all (i, j) ∈ R.

For a fixed FLT-invariant equivalence relations ∼ on the set E of all (R, f)-
ensembles, the extended Möbius-Lie geometry studies properties of cosets
E/ ∼.

This definition can be suitably modified for
(i) ensembles with relations of more then two cycles; and/or
(ii) ensembles parametrized by continuous sets X, cf. wave envelopes

in Example 3.4(v).
The above extension was developed along with the realization the library

figure within the functional programming framework – in contrast to pro-
cedural approach used in popular software packages like GeoGebra [32],
CaRMetal [26], Kig [17], Dr. Geo [19] etc. The later provides a fixed set of
geometric construction procedures, e.g. “find the midpoint of an interval”,
“drop the perpendicular from a point to a line”, etc. In contrast, all new
cycles in class figure are added through a list of defining relations, which
links the new cycle to already existing ones2. So other geometric packages
are designed in the same paradigm as FORTRAN programming language
while class figure is similar to Lisp.

It is well-known that both procedural and functional approaches to pro-
gramming languages realizes Turing computability paradigm. Similarly,
the above mentioned interactive geometry packages and the present figure

2In fact, it is possible (and useful!) to include relations of a new cycle to itself as well.
For example, points are defined by the condition to be self-orthogonal.
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library may be treated as an extension of the classical geometric compass-
and-straightedge constructions, where new lines or circles are drawn through
already existing elements. If requested, an explicit evaluation of cycles’ pa-
rameters from this data may be attempted.

To avoid “chicken or the egg” dilemma all cycles are stored in a hierar-
chical structure of generations, numbered by integers. The basic principles
are:
(i) Any explicitly defined cycle (i.e., a cycle which is not related to any

previously known cycle) is placed into generation-0;
(ii) Any new cycle defined by relations to previous cycles from generations

k1, k2, …, kn is placed to the generation k calculated as:
k = max(k1, k2, . . . , kn) + 1. (3.9)

This rule does not forbid a cycle to have a relation to itself, e.g. isotropy
(self-orthogonality) condition ⟨C,C ⟩ = 0, which specifies point-like cy-
cles, cf. relation (iii) in § 3.1. In fact, this is the only allowed type
of relations to cycles in the same (not even speaking about younger)
generations.

There are the following alterations of the above rules:
(i) From the beginning, every figure has two pre-defined cycles: the real

line (hyperplane) CR , and the zero radius cycle at infinity C∞ = (0, 0, 1).
These cycles are required for relations (i) and (ii) from the previous
subsection. As predefined cycles, CR and C∞ are placed in negative-
numbered generations defined by the macros REAL_LINE_GEN and
INFINITY_GEN.

(ii) If a point is added to generation-0 of a figure, then it is represented
by a zero-radius cycle with its centre at the given point. Particular
parameter of such cycle dependent on the used metric, thus this cycle
is not considered as explicitly defined. Thereafter, the cycle shall have
some parents at a negative-numbered generation defined by the macro
GHOST_GEN.

A figure can be in two different modes: freeze or unfreeze, the second
is default. In the unfreeze mode an addition of a new cycle by its relation
prompts an evaluation of its parameters. If the evaluation was successful
then the obtained parameters are stored and will be used in further calcu-
lations for all children of the cycle. Since many relations (see the previous
Subsection) are connected to quadratic equation (3.1), the solutions may
come in pairs. Furthermore, if the number or nature of conditions is not
sufficient to define the cycle uniquely (up to natural quadratic multiplicity),
then the cycle will depend on a number of free (symbolic) variable.
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There is a macro-like tool, which is called subfigure. Such a subfigure is a
figure itself, such that its inner hierarchy of generations and relations is not
visible from the current figure. Instead, some cycles (of any generations) of
the current figure are used as predefined cycles of generation-0 of subfigure.
Then only one dependent cycle of subfigure, which is known as result,
is returned back to the current figure. The generation of the result is
calculated from generations of input cycles by the same formula (3.9).

There is a possibility to test certain conditions (“are two cycles orthog-
onal?”) or measure certain quantities (“what is their intersection angle?”)
for already defined cycles. In particular, such methods can be used to
prove geometrical statements according to the Cartesian programme, that
is replacing the synthetic geometry by purely algebraic manipulations.
Example 3.7. As an elementary demonstration, let us prove that if a cycle
r is orthogonal to a circle a at the point C of its contact with a tangent line
l, then r is also orthogonal to the line l. To simplify setup we assume that
a is the unit circle. Here is the Python code:

1 F=figure()
2 a=F.add_cycle(cycle2D(1,[0,0],-1),"a")
3 l=symbol("l")
4 C=symbol("C")
5 F.add_cycle_rel([is_tangent_i(a),
6 is_orthogonal(F.get_infinity()),
7 only_reals(l)],l)
8 F.add_cycle_rel([is_orthogonal(C),
9 is_orthogonal(a),

10 is_orthogonal(l),
11 only_reals(C)],C)
12 r=F.add_cycle_rel([is_orthogonal(C),
13 is_orthogonal(a)],"r")
14 Res=F.check_rel(l,r,"orthogonal")
15 for i in range(len(Res)):
16 print "Tangent and radius are orthogonal: %s" %\
17 bool(Res[i].subs(
18 pow(cos(wild(0)),2) == 1-pow(sin(wild(0)),2)
19 ).normal())

The first line creates an empty figure F with the default euclidean metric.
The next line explicitly uses parameters (1, 0, 0,−1) of a to add it to F.
Lines 3–4 define symbols l and C, which are needed because cycles with
these labels are defined in lines 5–6 through some relations to themselves
and the cycle a. In both cases we want to have cycles with real coefficients
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only and C is additionally self-orthogonal (i.e. is a zero-radius). Also, l is
orthogonal to infinity (i.e. is a line) and C is orthogonal to a and l (i.e. is
their common point). The tangency condition for l and self-orthogonality of
C are both quadratic relations. The former has two solutions each depend-
ing on one real parameter, thus line l has two instances. Correspondingly,
the point of contact C and the orthogonal cycle r through C (defined in
line 7) each have two instances as well. Finally, lines 8–11 verify that every
instance of l is orthogonal to the respective instance of r, this is assisted by
the trigonometric substitution cos2(∗) = 1− sin2(∗) used for parameters of
l in line 11. The output predictably is:

Tangent and circle r are orthogonal: True
Tangent and circle r are orthogonal: True

An original statement proved by the library figure for the first time will
be considered in the next section.

4. MATHEMATICAL USAGE OF THE LIBRARY
The developed library figure has several different uses:

• It is easy to produce high-quality illustrations, which are fully-accurate
in mathematical sense. The user is not responsible for evaluation of
cycles’ parameters, all computations are done by the library as soon
as the figure is defined in terms of few geometrical relations. This is
especially helpful for complicated images which may contain thousands
of interrelated cycles. See Escher-like Figure 4.1 which shows images of
two circles under the modular group action [59, § 14.4].

FIGURE 4.1. Action of the modular group on the upper half-plane.

• The package can be used for computer experiments in Möbius-Lie geom-
etry. There is a possibility to create an arrangement of cycles depending
on one or several parameters. Then, for particular values of those param-
eters certain conditions, e.g. concurrency of cycles, may be numerically
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FIGURE 4.2. An example of Apollonius problem in three dimensions.

tested or graphically visualized. It is possible to create animations with
gradual change of the parameters, which are especially convenient for il-
lustrations, see Figure 4.4 in the electronic version of this paper and [44].

• Since the library is based on the GiNaC system, which provides a sym-
bolic computation engine, there is a possibility to make fully automatic
proofs of various statements in Möbius-Lie geometry. Usage of computer-
supported proofs in geometry is already an established practice [41], [53]
and it is naturally to expect its further rapid growth.

• Last but not least, the combination of classical beauty of Lie sphere
geometry and modern computer technologies is a useful pedagogical tool
to widen interest in mathematics through visual and hands-on experience.
Computer experiments are especially valuable for Lie geometry of in-

definite or nilpotent metrics since our intuition is not elaborated there in
contrast to the Euclidean space [39], [36], [35]. Some advances in the two-
dimensional space were achieved recently [52], [41], however further devel-
opments in higher dimensions are still awaiting their researchers.

As a non-trivial example of automated proof accomplished by the figure
library for the first time, we present a FLT-invariant version of the classical
nine-point theorem, [54, § I.1], [14, § 1.8], cf. Figure 4.3(a):

Theorem 4.1 (Nine-point cycle). Let ABC be an arbitrary triangle with
the orthocenter (the points of intersection of three altitudes) H, then the
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following nine points belongs to the same cycle, which may be a circle or a
hyperbola:

(i) Foots of three altitudes, that is points of pair-wise intersections AB
and CH, AC and BH, BC and AH.

(ii) Midpoints of sides AB, BC and CA.
(iii) Midpoints of intervals AH, BH and CH.
There are many further interesting properties, e.g. nine-point circle is

externally tangent to that triangle three excircles and internally tangent to
its incircle as it seen from Figure 4.3(a).

To adopt the statement for cycles geometry we need to find a FLT-
invariant meaning of the midpoint Am of an interval BC, because the
equality of distances BAm and AmC is not FLT-invariant. The definition in
cycles geometry can be done by either of the following equivalent relations:
• The midpoint Am of an interval BC is defined by the cross-ratio

BAm

CAm
:
BI

CI
= 1,

where I is the point at infinity.
• We construct the midpoint Am of an interval BC as the intersection of

the interval and the line orthogonal to BC and to the cycle, which uses
BC as its diameter. The latter condition means that the cycle passes
both points B and C and is orthogonal to the line BC.

Both procedures are meaningful if we replace the point at infinity I by an
arbitrary fixed point N of the plane. In the second case all lines will be
replaced by cycles passing through N , for example the line through B and
C shall be replaced by a cycle through B, C and N . If we similarly replace
“lines” by “cycles passing through N ” in Theorem 4.1 it turns into a valid
FLT-invariant version, cf. Figure 4.3(b). Some additional properties, e.g.
the tangency of the nine-points circle to the ex-/in-circles, are preserved
in the new version as well. Furthermore, we can illustrate the connection
between two versions of the theorem by an animation, where the infinity
is transformed to a finite point N by a continuous one-parameter group of
FLT. Fig. 4.4 in the electronic version of this paper shows such an anima-
tion; the printed version of this figure presents two intermediate steps in
the transition from Fig. 4.3(a) to 4.3(b). Further examples of animations
can be found at [44].

It is natural to test the nine-point theorem in the hyperbolic and the
parabolic spaces. Fortunately, it is very easy under the given implementa-
tion: we only need to change the defining metric of the point space, cf. [1],
this can be done for an already defined figure. The corresponding figures
Figure 4.3(c) and (d) suggest that the hyperbolic version of the theorem
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is still true in the plain and even FLT-invariant forms. We shall clarify
that the hyperbolic version of the Theorem 4.1 specializes the nine-point
conic of a complete quadrilateral [12], [16]: in addition to the existence of
this conic, our theorem specifies its type for this particular arrangement as
equilateral hyperbola with the vertical axis of symmetry.

(a) (b)

(c) (d)

FIGURE 4.3. The illustration of the conformal nine-points
theorem. The left column is the statement for a triangle with
straight sides (the point N is at infinity), the right column is
its conformal version (the point N is at the finite part). The
first row show the elliptic point space, the second row shows
the hyperbolic point space. Thus, the top-left picture shows
the traditional theorem, three other pictures illustrate its
different modifications.

The computational power of the package is sufficient not only to hint
that the new theorem is true but also to make a complete proof. To this
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FIGURE 4.4. Two intermediate steps in the transition be-
tween the classical (Figure 4.3(a)) and conformal (Fig-
ure 4.3(b)) versions of the nine-point theorem. Animated
transition is available at the electronic version of this paper.

end we define an ensemble of cycles with exactly same interrelations, but
populate the generation-0 with points A, B and C with symbolic coordi-
nates, that is, objects of the GiNaC class realsymbol. Thus, the entire
figure defined from them will be completely general. Then, we may define
the hyperbola passing through three bases of altitudes and check by the
symbolic computations that this hyperbola passes another six “midpoints”
as well.

In the parabolic space the nine-point Theorem 4.1 is not preserved in
this manner. It is already observed [41], [35], [46], [39], [43], [40], [52], [3],
that the degeneracy of parabolic metric in the point space requires certain
revision of traditional definitions. The parabolic variation of nine-point
theorem may prompt some further considerations as well. An expanded
discussion of various aspects of the nine-point construction shall be the
subject of a separate paper.

5. TO DO LIST
The library is still under active development. Along with continuous bug

fixing there is an intention to extend both functionality and usability. Here
are several nearest tasks planned so far:
• Expand class subfigure in a way suitable for encoding loxodromes and

other objects of an extended Möbius-Lie geometry [48], [46].
• Add non-point transformations, extending the package to Lie sphere ge-

ometry.



64 V. V. Kisil

• Add a method which will apply a FLT to the entire figure.
• Provide an effective parametrization of solutions of a single quadratics

condition.
• Expand drawing facilities in three dimensions to hyperboloids and para-

boloids.
• Maintain and improve the Graphical User Interface which makes the

library accessible to users without programming skills.
• Investigate cloud computing options which can free a user from the bur-

den of software installation.
Being an open-source project the library is open for contributions and sug-
gestions of other developers and users.
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