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Nonpositive curvature foliations on
3-manifolds with bounded total absolute

curvature of leaves
Dmitry V. Bolotov

Abstract. In this paper we introduce a new class of foliations on Riemann-
ian 3-manifolds, called B-foliations, generalizing the class of foliations of non-
negative curvature. The leaves of B-foliations have bounded total absolute
curvature in the induced Riemannian metric. We describe several topological
and geometric properties of B-foliations and the structure of closed oriented
3-dimensional manifolds admitting B-foliations with non-positive curvature
of leaves.

Анотація. В даній роботі вводиться новий клас шарувань на 3-вимірних
орієнтованих замкнутих ріманових многовидах, названих B-шарування-
ми, який узагальнюює шарування невід’ємної кривини. Це трансверсаль-
но орієнтовані шарування, шари яких мають обмежену абсолютну повну
кривину шарів відносно ріманової метрики індукованої деякою рімано-
вою метрикою заданою на всьому 3-многовиді. Зауважимо, що шаруван-
ня невід’ємної кривини мають обмежену абсолютну повну кривину, тобто
є B-шаруваннями, за відомою теоремою Кон-Фоссена. У роботі описа-
но топологічні та геометричні властивості B-шарувань та показано, що
їх структура дуже схожа на структуру шарувань невід’ємної кривини.
Зокрема доведено, що B-шарування, як і шарування невід’ємної криви-
ни, є шаруваннями майже без голономії. Також встановлено, що шар B-
шарування, який є граничним для деякого іншого шара, як і у випадку
шарувань невід’ємної кривини, повинен бути плоским. Звідси випливає,
що щільне B-шарування є плоским.
Особливу увагу в роботі приділено B-шаруванням недодатної криви-

ни. Такі шарування позначаються через B≤0-шарування. Як основний
результат в роботі доведено, що трансверсально орієнтоване B≤0-шару-
вання на орієнтованому замкнутому 3-вимірному рімановому многови-
ді є або розшаруванням над колом з шаром гомеоморфним замкнутій
поверхні M2 недодатної кривини; або є щільним плоским шаруванням
без голономії, а сам 3-многовид є торичним розшаруванням над колом;
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або існує скінченне число компактних шарів, гомеоморфних двовимірно-
му тору, які розбивають многовид на частини гомеоморфні тотальному
простору розшарування над колом з шаром, який є компактною поверх-
нею з межею недодатної ейлерової характеристики.
Також доводиться і зворотне твердження, яке говорить, що будь-яке

орієнтоване розшарування над колом з шаром M2, гомеоморфним орі-
єнтованій поверхні недодатної ейлерової характеристики, є B≤0-шару-
ванням, та якщо орієнтований замкнутий 3-многовид розбивається скін-
ченним числом торів на частини, гомеоморфні тотальному простору роз-
шарування над колом з шаром, який є компактною поверхнею з межею
недодатної ейлерової характеристики, то даний 3-многовид для деякої
ріманової метрики має B≤0-шарування, для якого дані тори будуть плос-
кими шарам.
Крім того, в роботі описано фундаментальну групу 3-многовиду, який

має B≤0-шарування та показано, що такі 3-многовиди повинні бути асфе-
ричними і, на відміну від цього, доведено, що будь-який орієнтований 3-
многовид має трансверсально орієнтоване B-шарування.

1. INTRODUCTION
A foliation on a Riemannian manifold whose leaves have nonnegative

(nonpositive) curvature in the induced metric will be called a foliation of
nonnegative (nonpositive) curvature. Early we have proved the following
theorem.

Theorem 1.1. [2] Let M3 be a closed oriented Riemannian 3-manifold
equipped with a codimension one transversely oriented C∞-foliation F of
nonnegative curvature. Then F is a foliation almost without holonomy and
M3 is homeomorphic to one of the following manifolds:

1) toric bundle over the circle;
2) toriс semibundle;
3) S2 × S1;
4) RP 3#RP 3;
5) lens space Lp/q;
6) prismatic space.

Each of the listed spaces admits a nonnegative curvature foliation with
respect to some Riemannian metric.
Remark 1.2. Recall that a toric semibundle is glued of two copies of ori-
ented twisted I-bundles over the Klein bottle by the some diffeomorphism
between their boundaries. Also a prismatic space is a spherical form which
has a structure of a Seifert bundle over the orbifold P (n), where P (n) is a
projective space with a single conical point of type D2/Zn.
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Let (L, g) be a complete noncompact surface endowed with a smooth
Riemannian metric. Then the total curvature of L is the improper integral∫
LKdµ of the Gaussian curvature K with respect to the volume element
dµ of (L, g). One sais that L admits a total curvature if for any compact
exhaustion Ωi of L, there exists finite or infinite limit

lim
i→+∞

∫
Ωi

Kdµ =

∫
L
Kdµ, (1.1)

In [3] Cohn-Vossen also proved that∫
L
Kdµ ≤ 2πχ(L), (1.2)

provided that the Euler characteristic χ(L) of L is finite.
In 1957 Huber established the following result.

Theorem 1.3. [9] Denote K− = max{−K, 0}. If∫
L
K−dµ <∞, (1.3)

then
∫
LKdµ exists and L is homeomorphic to a compact Riemannian sur-

face with finitely many punctures, so L has a finite topology.
From Huber’s theorem follows, that the Cohn-Vossen inequality (1.2)

holds for complete surfaces of nonnegative curvature, in particular for leaves
of nonnegative curvature foliations. Observe that in this case the orientable
leaves can be either spheres (if χ(L) = 2) or planes (if χ(L) = 1), or
cylinders or tori (if χ(L) = 0).
It also follows from Huber’s result that (1.3) is equivalent to the inequ-

ality
∫
L |K|dµ < ∞. The integral

∫
L |K|dµ is called the total absolute

curvature.
If 1964 Hartman proved the following Theorem.

Theorem 1.4. [7] Under assumption (1.3) the area growth of a geodesic
ball of radius r at a fixed point of L is at most quadratic in r.
Also Li [13] shown that if L has at most quadratic area growth, finite

topology, and the Gaussian curvature of L is either nonpositive or non-
negative near infinity of each end, then the total curvature of L must be
finite.
The purpose of this paper is to describe the structure of C∞-foliations

F on a closed 3-manifold M admiting a Riemannian metric in which the
leaves of F have bounded total absolute curvature. Such foliations will be
called B-foliations. We pay a special attention to nonpositive curvature
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B-foliations, which we call B≤0-foliations. In this regard, let us recall the
following result which is a foliated analogue of Cartan-Hadamard Theorem.

Theorem 1.5. [16] Let F be a codimension one C3-foliation of nonpositive
sectional curvature on a complete Riemannian n-manifold Mn. Then its
universal covering M̃ is diffeomorphic to Rn.
As a consequence of this theorem one gets the following statement:

Theorem 1.6. [16] Let F be a codimension one C3-foliation of nonpositive
sectional curvature on a complete n-manifold Mn. Then for any leaf L ∈ F
the homomorphism

i∗ : π1(L) → π1(M
n)

induced by the inclusion i : L ⊂ Mn is a monomorphism. Hence the
universal covering F̃ of the foliation F on the universal cover M̃ consists
of leaves diffeomorphic to Rn−1.
In the present paper we prove the following theorem similar to Theo-

rem 1.1 which describes the structure of B≤0-foliations.

First recall that a graph of groups over a graph Y is an assignment to each
vertex u of Y a group Gu and to each oriented edge e = (u, v) of Y a group
Ge together with two monomorphisms ϕe,u : Ge → Gu and ϕe,v : Ge → Gv

mapping Ge into the groups assigned to the vertices at its ends. If T is a
spanning tree for Y (i.e a subree contained all of the vertices of Y ), then
the fundamental group of that graph of groups is the group generated by
the vertex groups Gu and elements e for each edge of Y with the following
relations:

• ē = e−1 if ē is the edge e with the reverse orientation.
• eϕe,u(x)e

−1 = ϕe,v(x) for all x ∈ Ge.
• e = 1 if e ∈ T .

This definition is independent of a choice of T .
Main Theorem. (1) LetM be a closed orientable Riemannian 3-mani-
fold and F be a transversely orientable smooth foliation being B≤0 with
respect to the Riemannian metric on M . Then the following statements
hold true.
(a) M is a K(π, 1)-space (that is π1(M) = π and πi(M) = 0 for i ≥ 2).
(b) F is almost without holonomy.
(c) At least one of the following conditions is satisfied.
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(i) The leaves of F are fibers of some M2
g -bundle over the circle,

where M2
g is an oriented closed surface of genus g ≥ 1;

(ii) F is flat 1 and all its leaves are dense. In this case M is home-
omorphic to a total space of some torus bundle over the circle.
(iii) There exist finitely many compact leaves {Ki} each homeo-

morphic to the torus T 2 such that every connected component Aj

of M \ ∪iKi is fibered over the circle with a fiber homeomorphic to
some surface Sj of nonpositive Euler characteristic with boundary.
In this case every inclusion Ki ⊂ Aj the induced homomorphism
ϕi,j : π1Ki → π1Aj is a monomorphism. Moreover, the fundamen-
tal group π1(M) is isomorphic to the fundamental group of the graph
of groups G whose vertices correspond to groups π1(Aj), the edges
correspond to groups π1(Ki), and the “end” monomorphisms are ϕi,j.

(2) Let M be an oriented closed 3-manifold having one of the following
properties:
(a) M can be divided by a finite set of embedded tori into pieces {Aj}

each of which is fibered over the circle with a fiber homeomorphic to a
compact surface Sj with boundary and χ(Sj) ≤ 0;

(b) M is a total space of an oriented M2
g -bundle over the circle, where M2

g

is an oriented closed surface of genus g ≥ 1.
Then M admits a B≤0-foliation with respect to some Riemannian metric.

2. FOLIATIONS
2.1. Definition of foliation. LetM be an n-dimensional manifold. Then
a partition F = {Fα} of M into path-connected subsets (leaves) is called
a foliation of dimension p (or codimension q, where p + q = n) on M if F
admits an atlas U = {(Uλ, φλ)}λ∈Λ consisting of foliated charts.
The latter means that each connected component of a leaf in a chart

(Uλ, φλ) with coordinates (x1, . . . , xp, y1, . . . , yq) is given by
y1 = const, . . . , yq = const,

and the transition maps
gij = φi ◦ φ−1

j : φj(Ui ∩ Uj) → φi(Ui ∩ Uj)

have the form
gij(x, y) = (ĝij(x, y), ḡij(y)), (2.1)

where x ∈ Rp, y ∈ Rq, so the second coordinate function ḡij : Rp+q → Rq

does not depend on y.
1 A “flatness” means that all leaves have zero Gaussian curvature in the induced Rie-

mannian metric
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The atlas U = {(Uλ, φλ)}λ∈Λ is supposed to be at least C2-smooth and
good in the sense that

1) U is locally finite;
2) Uλ is relatively compact in M, and φλ(Uλ) = (−1, 1)n ⊂ Rn;
3) Ui ∪ Uj ⊂ Wij , where (Wij , ψij) is a foliated chart not necessarily
belonging to U .

Let π : (−1, 1)n → (−1, 1)q be the natural projection to the last q coordi-
nates. Then the preimage Pλ := φ−1

λ (π−1(x)) is called a local leaf . Denote
by Qλ the space of local leaves. Clearly, Qλ

∼= (−1, 1)q, and

Uλ =
∪

x∈(−1,1)q

φ−1
λ (π−1(x)).

A foliation F is said to be oriented if the tangent bundle of p-dimensional
distribution TFM ⊂ TM is oriented, and transversely oriented whenever
some transversal to F distribution of dimension q = n − p is oriented.
If the manifold M is Riemannian, then the transverse orientability of F is
equivalent to the transverse orientability of orthogonal distribution TF⊥

M .

2.2. Holonomy. We recall the notion of holonomy. Let l : [0, 1] → L be a
closed path in a leaf L ∈ F . Choose a chain of foliated charts

C = {U0, . . . , Un−1, Un = U0}

with the property that there exists a division of the segment
[0, 1] : 0 = t0 < t1 < · · · < tn = 1

such that l([ti, ti+1]) ⊂ Ui. Then the composition ḡ(n−1)n ◦ . . . ḡ23 ◦ ḡ12 of
gluing maps on the space of local leaves, see (2.1) above, is correctly defined
in a neighborhood V0 ⊂ (−1, 1)q of zero and its germ does not depends on
the homotopy class of [l] ∈ π1(L), [17]. Denote it by Γl : V0 → (−1, 1)q.
Then the correspondence l 7→ Γl is a homomorphism

Ψ : π1(L, x) → Gq

of the fundamental group π1(L, x) at x to the group of germs Gq of diffeo-
morphism at the origin 0 ∈ Rq. The homomorphism Φ is called a holonomy
of L and its image, denoted by H(L), is the holonomy group of L.
Evidently, they depend on the choice of a point x ∈ L and a foliated

chart U0 at x. If we choose another point y ∈ L and another foliated local
chart V0 at y, then H(L) is changed to a subgroup g ◦H(L) ◦ g−1 of Gq for
some g ∈ Gq. In particular, the isomorphism type of H(L) depends only
on the foliation F .
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Notice that if a codimension one foliation is transversely oriented, then
the one-sided holonomy

Ψ+ : π1(L) → G+
1

of the leaf L is also well defined, where G+
1 denotes the group of germs of

one-sided diffeomorphisms at 0 with a domain on the half-intervals [0, ε).
Nishimori proved the follows theorem describing behavior of a codimen-

sion one foliation in a neighborhood of a compact leaf with Abelian holo-
nomy.

Theorem 2.3. [14] Let F be a transversely oriented Cr-foliation of codi-
mension one on an oriented n-dimensional manifoldM and F0 be a compact
leaf of F . Suppose that 2 ≤ r ≤ ∞. Let also T be a tubular neighborhood
of F0 and U+ be a union of F0 and a connected component T\F0. Suppose
that H(F0) is an Abelian group. Then only one of the three cases holds.
1) For any neighborhood V of F0 the restricted foliation F|V ∩

U+
has a

compact leaf distinct from F0.
2) There exists a neighborhood V of F0 such that all leaves F|V ∩

U+

except for F0 are dense in V
∩
U+. In this case, H(F0) is a free Abelian

group of rank ≥ 2.
3) There exist a neighborhood V of F0 and a connected oriented subman-

ifold N of codimension one in F0 with the following properties. Denote by
F∗ a compact manifold with boundary obtained by attaching two copies N1

and N2 of N to F0\N satisfying ∂F∗ = N1
∪
N2. Let

f : [0, ε) → [0, δ)

be a contracting Cr-diffeomorphism such that f(0) = 0. Denote by Xf

a manifold obtained from F∗ × [0, ε) by identifying (x, t) ∈ N1 × [0, ε) and
(x, f(t)) ∈ N2×[0, δ). After factorization, we obtain the foliation Ff on Xf .
Then for some f as above, there is a Cr-diffeomorphism h : V

∩
U+ → Xf

which maps each leaf of F|V ∩
U+

onto some leaf of Ff . The foliation
F|V ∩

U+
uniquely defines the homology class [N ] ∈ Hn−2(F0,Z), and the

germ at zero of the map f is unique up to conjugation. In this case, H(F0)
is an infinite cyclic group.
A foliation is said to be a foliation without holonomy if the holonomy of

each leaf is trivial, and it is said to be a foliation almost without holonomy
if the holonomy of noncompact leaves is trivial. For example, the Reeb
foliation FR is a foliation almost without holonomy on S3 since all leaves
of FR except for a single compact leaf being a torus are homeomorphic to
R2 and thus have a trivial fundamental group.
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By a block we will means a compact saturated n-dimensional submanifold
B of a codimension one foliated n-dimensional manifold. Recall that a
subset of M is saturated with respect to a foliation F if which is a union of
leaves of F . Clearly ∂B is a finite union of compact leaves.
The following statement is a reformulation of results by Novikov [20] and

Imanishi [10] obtained for foliations without holonomy and for foliations
almost without holonomy, respectively.

Theorem 2.4. Let L be a noncompact leaf of a codimension one foliation
F almost without holonomy on a closed n-dimensional manifold M . Then
one of the following holds:
a) F is a foliation without holonomy whose all leaves are diffeomorphic to
the typical leaf L and dense in M . We have the group extension

1 → π1(L) → π1(M) → Zk → 0,

where k > 0 and k = 1 iff the foliation F is a locally trivial fibration
over the circle. Moreover, the universal covering M̃ has the form

M̃ ∼= L̃× R.
b) The leaf L belongs to some block B all of whose leaves which contained
in the interior B̊ are diffeomorphic to the typical leaf L and are either
dense in B̊ (B is called a dense block in this case) or proper in B̊ (B
is called a proper block in this case). In both cases we have the group
extension

1 → π1(L) → π1(B) → Zk → 0, (2.2)
where k > 0. In this case k = 1 iff B is proper and the foliation in B̊
is a locally trivial fibration over the circle. Also, the universal covering
of each block B̊ has the following form˜̊

B ∼= L̃× R.

2.5. Growth of leaves. A minimal set of the foliation F is a closed satu-
rated set which has no other closed saturated sets.
The following theorem is a reformulation of [15, Corollary 1.3].

Theorem 2.6. Let F be a transversely oriented C∞-foliation of a codi-
mension one on a compact manifold M . Suppose that every leaf of F has
less than exponential (e.g., polynomial) growth. Then F does not have any
exceptional minimal set. In particular, each minimal set of the foliation F
is either the whole manifold M or a compact leaf.
Here the growth means the volume growth of balls Bx(R) ⊂ Lx ∈ F as

a function of radius R.
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A leaf L of a transversely oriented codimension one foliation F is called
resilient if there is a transversal arc [x, y), x ∈ L, and a loop σ such that
Γσ : [x, y) → [x, y) is the contraction to x, and L ∩ (x, y) ̸= ∅.

Theorem 2.7. [8, Proposition 2.1.8] Let M be a compact manifold and F
be a C2-foliation of codimension one on M . Then a resilient leaf of F must
have exponential growth.

3. BASIC RESULTS
Theorem 3.1. Let M be a closed orientable Riemannian 3-manifold M
and F be a codimension one transversely orientable B-foliation with respect
to the Riemannian metric on M . Then

(1) F is a foliation almost without holonomy;
(2) if a leaf L′ ⊂ L for some leaf L ∈ F then L′ is flat;
(3) if a leaf L ∈ F is non-flat then L is embedded in M .

Proof. Let L ∈ F be a noncompact leaf. Suppose that there exists another
leaf L′ ∈ L and a point x ∈ L′ such that Gauss curvature KL′(x) ̸= 0.
Notice that the induced Riemannian metric smoothly depends on leaves
and the leaf curvature function KLy(y), y ∈ M is continuous on M . Then
KLy(y) is bounded, since M is compact. Suppose that |KLy(y)| < C at
any point y ∈M .
There exists a foliated compact normal neighborhood V (x) of x and a

homeomorphism f : I ×D2(r) → V (x), where I = [0, 1], D2(r) is the stan-
dard Euclidean disk of radius r, and f(I × 0) is a regular parametrization
of an arbitrary small path γ passing through x = f(1/2, 0) and orthogonal
to F .
Denote D2

t (r) = t×D2(r) and let Lt be the leaf of F containing f(t, 0),
t ∈ I. The normality of the neighborhood V (x) means that the disks
f(D2

t (r)) ⊂ Lt ∈ F are normal neighborhoods of points f(t, 0) in the
leaves Lt, t ∈ I, which are defined by the tangent to F exponential map
expF |γ : TF → M as follows: expF maps a tangent to F vector v ∈ TxF
with the origin at x ∈ M to αv(1), where αv is a geodesic on the leaf Lx

defined by the initial conditions αv(0) = x and α′
v(0) = v. Choosing γ and

r we can make V (x) so small that KLy(y) ̸= 0 for each y ∈ V (x).
Now we can take r small enough so that AreaLt(D

2
t (r)), t ∈ I, are not

less than the area of an embedded disc of radius r in a simply connected
manifold of constant curvature C. It follows from the well known formula
for the area of a small ball of radius r at a point p of a Riemannian surface
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M with a function of curvature K(x), x ∈M , that

AreaM (D2(r)) = AreaE2

(
D2(r)

)(
1− K(p)

12 r2 + o(r2)
)
.

Thus there is a constant const1 such that AreaLt(D
2
t (r)) > const1 > 0,

t ∈ I. Since L′ ∈ L we can find a countable number of disks D2
ti(r) ⊂ L,

ti ∈ I, i = 1, . . . ,+∞. It means that the total absolute curvature∫
L
|K|dµ > min

x∈Vx

|K|Lx(x)

∞∑
i=1

AreaL(D2
ti(r)) = ∞.

But it contradicts to the assumption and we conclude that L′ is flat. In
particular, this implies that limit compact leaves are flat tori. According
with Theorem 2.3 the leaf L is either locally dense or embedded. Since a
locally dense leaf contained in the boundary of another leaf it has to be flat,
which proves (2). It also follows that a not flat leaf has to be embedded
into M , and this proves (3).
To prove (1) suppose that L has nontrivial holonomy. Since F is trans-

versely oriented and a nontrivial periodic diffeomorphism of an interval
should be an involution relative to the origin, the holonomy must be in-
finite. Let γ be a closed path in L representing a nontrivial holonomy
element.
Case 1. Suppose that the one-sided holonomy Ψ+([γ]) is nontrivial and

the holonomy map Γγ : [0, ε) → [0, ε′) does not have any fixed points in
[0, ε) for some ε.
In this case, Ψ+(±[γ]) is represented by a contracting map. If L is locally

dense, then L must be a resilient leaf, which is impossible by Theorem 2.7.
Recall that by Theorem 1.4 the leaves of F have polynomial grows. Other-
wise, another noncompact leaf P would wind around L and by Theorem 2.6
one could find a compact leaf K ⊂ L̄

∩
P̄ . It simply follows from part 3)

of Theorem 2.3 that the leaf P must have infinitely many ends, which is
impossible as leaves of F have a finite topology (see §1).
Case 2. The half-interval [0, ε) contains a sequence of fixed points {Fi}

of the holonomy map Γγ : [0, ε) → [0, ε′) which converges to zero.
Since {Fi}

∩
[0, Fk] is closed in [0, ε), where Fk ∈ {Fi}

∩
[0, ε), it follows

that either the holonomy of L is trivial and this proves the claim or we have
to find a half-interval [a, δ) ⊂ [0, ε) on which Γγ′ is a contracting map. The
leaf L′ corresponding to the point a ∈ [0, ε) has a contracting holonomy
on γ′ ⊂ L′, where γ′ is a closed path corresponding to the fixed point a of
the map Γγ . Since the set of compact leaves is closed (see [17]) and M is
a normal topological space, we can choose ε small enough for the leaf L′

to be noncompact. Thus we are under assumptions of Case 1 which proves
Theorem 3.1. □
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3.2. Proof of Main Theorem. (1) Statement (a) follows from Theo-
rem 1.5 and (b) is a consequence of Theorem 3.1.
(c) Suppose that all leaves of the foliation F are compact. Then from

orientibility of both F and M we obtain that each leaf is orientable and
has trivial holonomy. Hence by Reeb stability Theorem F is a fiber bundle
over the circle. Since the leaves according to the condition of the Main
Theorem have nonpositive curvature, we obtain that each fiber must be
homeomorphic to a surface of genus g ≥ 1 due to Gauss-Bonnet Theorem.
This proves substatement (i).
Suppose that F does not contain compact leaves. By Theorem 3.1 F is

a foliation without holonomy. Hence it follows from Theorem 2.4 that all
leaves are dense. In this case by Theorem 3.1 each leaf of F is flat and M
must be a torus bundle over the circle (see [2, Paragraph 4]). This proves
substatement (ii).
To establish (iii) assume that F contains both compact and noncompact

leaves. It can be shown that proper blocks described in the Theorem 2.4
satisfy the condition described in (iii). Indeed, the boundary of a proper
block B is a family of limit compact leaves which must be a family of flat
tori by Theorem 3.1. The foliation F in a collar of the torus T 2 ⊂ ∂B is
described in the part 3) of Theorem 2.3. It allows us to construct a family
of tori transversal to F and dividing B into two parts:
• one of which is a disjoint union of finitely many copies of T 2 × I,
• and another one is homeomorphic to B and has an induced from B̊
structure of a fibre bundle over the circle with the fiber being a compact
surface with boundary.

Hence we get from Theorem 3.1 that a dense block (see Theorem 2.4 for def-
inition) consists of flat leaves and as proved in [2] it must be homeomorphic
to one of the following manifolds:

T 2 × I D2 × S1 K,

where K is a nontrivial I-bundle over Klein bottle. But the fundamental
group of a dense block B has a form of the extension (2.3) with k > 1,
whence we immediately conclude that the only possibility is B ∼= T 2 × I.
Recall also that the set of compact leaves is closed in M and therefore
we can divide M into finitely many blocks which either are such described
above or they are arbitrary thin blocks containing infinitely many compact
leaves. It is easy to see that each thin block is homeomorphic to the direct
product of a compact leaf with a closed interval K × I (see [2, Paragraph
4]).
The structure of fundamental group π1(M) immediately follows from

Theorem 1.6 and [6, Th.6.2.11]. This completes (iii).
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(2) To prove (a) we will construct a B≤0-foliation in each block Aj and
then connect those blocks preserving Riemannian metric on the leaves by
gluing of (T 2 × I)-blocks via the corresponding diffeomorphisms to get a
manifold diffeomorphic to M . Since each Aj is homeomorphic to some S-
bundle E over the circle, the idea is to construct the Riemannian metric
on E which is locally Euclidean on collars of boundary tori of E so that
the fibers of E will have nonpositive curvature and will be orthogonal to
the flat boundary tori in the collars. After that we will construct B≤0-
foliation on E, making the ends of the fibers endless euclidean cylinders
winding around boundary tori. Note that that we can choose two opposite
direction of the winding to define agreed orientation on the boundary tori
of adjacent blocks.
Firstly suppose that S is a compact surface with a boundary ∂S consis-

ting of n disjoin circles and χ(S) < 0. Let Diff+(S) be a group of orientation
preserving smooth diffeomorphisms of S with the C∞-topology of uniform
convergence on compact sets of all differentials. Assume that some block
Aj from Main Theorem is homeomorphic to a locally trivial S-bundle E
over the circle B. Then there exists f ∈ Diff+(S) such that

E = S × I/s× 0 ∼ f(s)× 1, B = I/{0, 1} ∼= S1.

The diffeomorphism f induces a permutation σ : A → A of the finite
collection A of connected components of ∂S. Each orbit of this permutation
corresponds to one boundary component of ∂E, which is diffeomorphic to
the 2-torus T 2 since f preserves orientation of S.
The following principal Diff0(S)-fibre bundle holds, [4]:

Diff0(S) → Met−1(S) → T (S),

where Diff0(S) ⊂ Diff+(S) is the path component of the identity map in
Diff+(S), Met−1(S) is the space of hyperbolic structures (with geodesic
boundaries) on S, and T (S) is the Teichmüller space of smooth conformal
structures on S. Recall that a space of smooth conformal structures on S co-
incides withMet−1(S) if χ(S) < 0, see [18]. It follows from the uniformiza-
tion Theorem for compact Riemann surfaces with boundary claiming that
every such surface (except for the disk and annulus) admits a unique con-
formal hyperbolic metric with geodesic boundary. In this case Diff0(S) and
T (S) are contractible and so is the Frechet manifold Met−1(S), see [4].
Moreover, T (S) is homeomorphic to R6g−6+3n with the Fenchel-Nilsen co-
ordinates, see [18] and [12], where the last n coordinates correspond to the
lengths of the boundary circles of ∂S. Suppose that the lengths of boundary
circles are fixed and equal the same constant l. Obviously, in this case the
corresponding Teichmüller space Tl(S) is homeomorphic to R6g−6+2n and
the restriction Metl−1(S) of Met−1(S) to Tl(S) is contractible also. In



Nonpositive curvature foliations on 3-manifolds 13

particular we can join the points g0 and g1 = f∗g0 in Metl−1(S) by some
smooth path gt in Metl−1(S) to obtain a Riemannian metric on E having
the following form in the corresponding local coordinate system:

ds2 = dt2 + gt. (3.1)
Notice that the metric of this kind depends on a choose of a horizontal

(i.e. orthogonal to the fibers of p : E → B) one-dimensional distribution,
[1]. For any such metric the projection p : E → B becomes a Riemannian
submersion with hyperbolic fibers (St, gt) having geodesic boundaries of
length l.
Consider the boundary torus T ⊂ ∂E, and let

V ∼= [0, δ)× C1 × C2

be a collar of T , where Ci, i = 1, 2, are circles such that [0, δ) × C1 × s
belongs to the fiber for each s ∈ C2. Then

V ∩ St ∼=
k⊔

i=1

([0, δ)× C1 × si),

where k is the number of elements of the corresponding orbit of σ. We can
assume that fk is the identity diffeomorphism for the corresponding k in
the collar of each boundary component of ∂S.
Let us choose a half-geodesic coordinate system in some neighborhood

Us of the boundary of each level set [0, δ)×C1×s. We obtain the hyperbolic
metric on Us having the same form for arbitrary s ∈ C2, [21]:

ds2 = dr2 + ch2(r)dϕ2,
where r ∈ [0, R], ϕ ∈ [0, l]. Assume that the circle C = 0× 0× C2 consists
of origins of the coordinate systems in Us. Notice that the submersion
p : E → B restricted on C is a covering map and we can assume that the
parameter s is locally the same as the parameter t on base B. Moreover, if
t ∈ [0, 1] parameterizes the circle B, then s ∈ [0, k] parameterizes the circle
C2.
Consider the collar W =

∪
s Us of T and define the flow {Φt}, t ∈ R,

on W by the equality of half-geodesic coordinates. Here the parameter t
corresponds to the parameter on the universal covering R of B. It means
that if x ∈ Us has half-geodesic coordinates (r, ϕ), then Φt(x) ∈ U(s+t)mod k

and has the same half-geodesic coordinates. The flow {Φt} is smooth since
the Riemannian metric gt is changed smoothly with t. Evidently, trajec-
tories of {Φt} define a transversal distribution on W homotopic to the
horizontal distribution. We can extend that homotopy remaining identical
outside of V to obtain a smooth transversal distribution on the whole E.
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Let us change the Riemannian metric (3.1) so that the resulting distribu-
tion becomes horizontal (i.e. orthogonal to fibers). Clearly, the flow {Φt}
preserves the new Riemannian metric on W being the metric of a direct
product

ds2 = dr2 + ch2(r)dϕ2 + dt2

in the new coordinate system (r, ϕ, t). Let us change the metric ds2 re-
placing the function ch2(r) by a smooth convex function such that (see
Figure 3.1):

h(r) =


ch(c), 0 ≤ r ≤ r1

convex, r1 ≤ r ≤ r2

ch(r), r2 ≤ r ≤ R,

where r1 < c < r2.

FIGURE 3.1. Graph h(r)

Since h is convex, the curvature of the metric ds2 = dr2 + h2(r)dϕ2 is
nonpositive and it is flat for 0 ≤ r ≤ r1 as well as the curvature of the
metric ds2 = dr2 + h2(r)dϕ2 + dt2.
The leaves of the fiber bundle p : E → B are level hypersurfaces t = const

in W (r, ϕ, t) wiht respect to the new Riemannian metric. Let us do the
turbulisation of this fibration around of T to obtain a foliation on W with
a compact leaf T . For this define the foliation by the kernel of the 1-form

ω(r) = (1− f(r))dr ± f(r)dt,

where f : [0, 1] → [0, 1] is an arbitrary smooth function such that

f(r) =


0, 0 ≤ r ≤ r4

increasing, r4 ≤ r < r3

1, r3 ≤ r ≤ R,
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and r4 < r3 < r1.
The sign in the definition of ω is chosen depending on the direction of

the winding.
The kernel ker(ω) defines a trivial foliation {r× T} in the neighborhood

0 ≤ r ≤ r4 of the compact leaf T and the foliation by euclidean cylinders
in the domain r4 < r ≤ r1. One can see that leaves of ker(ω) are flat in the
domain 0 ≤ r ≤ r1. Repeating the arguments, we will obtain a foliation of
nonpositive curvature on E such that the boundary of E consists of compact
leaves. Notice that curvature of each noncompact leaf has compact support.
This proves the case (2)(a) when χ(S) < 0.
Notice that the case when S is a 2-disk (i.e. χ(S) > 0) is not pos-

sible. Indeed, then the block should be homeomorphic to a Reeb compo-
nent (see [20]) and the homomorphism i∗ : π1(T

2) → π1(B) induced by the
inclusion i : T 2 → B must have a nontrivial kernel which contradicts to
Theorem 1.6.
Also if S is annulus (i.e. χ(S) = 0), then B is homeomorphic to T 2 × I

or K (see above), which admit a flat proper foliation as was shown in [2].
It remains to glue two blocks (or single block) by a family of flat tori

T 2 × I. Recall that the space of flat Riemannian metrics Met0(T
2) is

homeomorphic to
R+ ×Met10(T

2),

where Met10(T
2) is the space of all flat metrics on T 2 with unit area. At

the same time there is a fiber bundle
Diff0(T 2)/T 2 → Met10(T

2) → T (T 2),

where T (T 2) is the Teichmüller space of T (T 2) which is homeomorphic to
Lobachevski plane H2, and the factor-group Diff0(T 2)/T 2 is contractible,
[5]. Here we identify T 2 with the subgroup of torus motions in Diff0(T 2).
We conclude that the space Met0(T

2) is contractible. Therefore we can
join any two flat metrics g0 and g1 on T 2 by a smooth path gt inMet0(T

2)
which gives a family of tori I × T 2 with the metric dt2 + gt. Pasting the
cylinders I × T 2 with corresponding Riemannian metrics between blocks
we obtain the proof of (2)(a).
In particular, we also obtain a flat foliation on any torus bundle which

partially proves (2)(b).
The same arguments applied to the spaces Met−1(M

2
g ), where M2

g is
a closed orientable surface of genus g > 1, give us a foliation by fibers of
constant curvature −1 on a mapping torus

Mf = I ×M2
g

/
(0,x)∼(1,f(x))

.
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Recall thatMet−1(M
2
g ) is contractible, [5]. The Riemannian metric dt2+gt

on Mf is defined by the family metrics gt, t ∈ [0, 1] of constant curvature
on t × S connecting the metrics g0 and g1 = f∗g0. It finishes the proof
of (2)(b) and Main Theorem. □

Corollary 3.3. Not all hyperbolic forms admit B-foliation.
Proof. Indeed, it is well known that the fundamental group of a hyperbolic
form does not contain Z⊕ Z (see [18]). Thus the realizable case is (1)(c)(i)
only. □
Remark 3.4. Noice that such hyperbolic forms exist, [11], but there are
many hyperbolic forms with a finite first homology group, [19], and which
therefore cannot be fibered over the circle. Note also that not all spherical
forms admit nonnegative curvature foliations, see [2].
Remark 3.5. All closed oriented 3-manifolds M admit B-foliation. This
immediately follows from open book decomposition theorem, which allows
us to decompose M into fibered pieces including solid tori with Reeb folia-
tions, which admit nonnegative curvature, see [2].
The author is grateful to Misha Kapovich for consultations on Teich-

müller spaces and to Sergiy Maksymenko for useful remarks.
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