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Nonpositive curvature foliations on

3-manifolds with bounded total absolute
curvature of leaves

Dmitry V. Bolotov

Abstract. In this paper we introduce a new class of foliations on Riemann-
ian 3-manifolds, called B-foliations, generalizing the class of foliations of non-
negative curvature. The leaves of B-foliations have bounded total absolute
curvature in the induced Riemannian metric. We describe several topological
and geometric properties of B-foliations and the structure of closed oriented
3-dimensional manifolds admitting B-foliations with non-positive curvature
of leaves.

Amnorauiga. B ganiit po60oTi BBOAUTHCS HOBHIt KJTacC IMIAPYBAaHb HA 3-BUMIPHUX
OPI€HTOBAHMX 3aMKHYTUX PIMAHOBUX MHOTOBH/IaX, Ha3BaHUX B-mmapyBaHHsd-
MU, KUl y3araJabHIOIOE IapyBaHHs HeBi emuol kpusnnu. lle TparcBepcasb-
HO OPi€HTOBaHI MApyBaHHS, [MAPU AKX MAIOTh OOMEKEHY abCOIOTHY MMOBHY
KPUBHUHY IIapiB BiITHOCHO PIMAHOBOI METPHKM IHJyKOBAHOI JIESIKOIO PiIMaHO-
BOIO METPHUKOIO 33/]AHOI0 Ha BCHOMY 3-MHOTOBHUJIL. 3ayBakKNMO, III0 IIapyBaH-
HsI HEBi/1'€MHOI KDUBUHU MaIOTh OOMerKeHy abCOJIIOTHY TOBHY KPUBHHY, TOOTO
€ B-mapyBanaamu, 3a Bigomoro teopemoro Kon-®Poccena. ¥ poboTi omnumca-
HO TOTIOJIOTiYHI Ta T€OMETPHUYHI BJIACTUBOCTI B-IapyBaHb Ta ITOKA3aHO, IO
IX CTPYKTypa JIyKe CXOXKa Ha CTPYKTYpPY IIapyBaHb HEBiJ €MHOI KPUBUHU.
30Kkpema JI0BEJIEHO, 110 B-mmapyBaHHs, sIK i IIapyBaHHs HEBiI'€MHOI KPUBU-
HU, € IapyBaHHAMI Maiizke 6e3 rosoHomil. Takok BCTaHOBJIEHO, 110 map B-
IMAapyBaHHs, KA € TPAHUIHUM IS JeSKOrO iHIIOTO mapa, sK i y BUIAIKY
[IIapyBaHb HEBiJI'€MHOT KPDUBHUHU, IOBUHEH OYTH IJIOCKUM. 3BiJICH BUILUIMBAE,
10 IMiJIbHEe B-1apyBaHHS € IJIOCKHUM.

OcobuBy yBary B pobOTi IpU/IeHO B-mapyBaHHAM HEIOAATHO! KPUBH-
nu. Taki mapyBaHHe NO3HaYAIOThCA 4depe3 B<o-mapyBaHHdA. fIK OCHOBHMIA
pe3ybTar B pobOTi JOBEJIEHO, III0 TPAHCBEPCAJIBHO OpieHTOBaHE B<o-1mapy-
BaHHA Ha OPI€HTOBAHOMY 3aMKHYTOMY 3-BHMiIpDHOMY PiMaHOBOMY MHOI'OBU-
i € abo po3IIapyBaHHAM HaJ[ KOJIOM 3 IIApOM I'OMEOMOPMHUM 3aMKHYTIi
nosepxui M? HemomaTHO! KpUBHHI; a60 € IIBHAM ILIOCKHM IADYBAHHAM
6e3 rosoHoMil, a caM 3-MHOTOBHJI € TOPUIHAM PO3IIAPYBAHHAM HAJT KOJIOM;
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abo icHy€e CKiHYeHHe YUCJI0 KOMIAKTHUX IapiB, TOMEOMOP(MHUX JTBOBUMIPHO-
My TOPY, SIKi pO30MBAIOTH MHOTOBH/I HA YACTUHU TOMEOMOP(HI TOTAJIBHOMY
MPOCTOPY PO3IIAPYBAHHS HAJ KOJOM 3 MIAPOM, SIKAN € KOMITAKTHOIO TTOBEPX-
HEIO 3 MEKEIO HEeJIOJATHOI eiljiepoBOl XapaKTEPUCTUKH.

TakoxK JOBOJUTHCA 1 3BOPOTHE TBEP/ZKEHHS, sIKE TOBOPUTD, IO Oy/Ib-sIKe
opienTOBaHE PO3MAPYBANHS HAT KOJOM 3 mmapoM M2, romeomopdmmm opi-
€HTOBaHINl IOBEPXHI HEIONATHOI efllepoBOi XapaKTepUCTUKH, € B<o-mapy-
BAHHSIM, Ta SKIIO OPIEHTOBAHUIT 3aMKHYTHi1 3-MHOTOBHT, PO30OUBAETHCS CKiH-
YEeHHUM YHCJIOM TOPIB HA YaCTHHM, TOMEOMOP@HI TOTATLHOMY IIPOCTOPY PO3-
MIapyBaHHA HAJ[ KOJIOM 3 IIAPOM, KUl € KOMIIAKTHOIO [TOBEPXHEIO 3 MEXKeEI0
HEJIOJJATHOI eiyIepOBOI XapaKTEPUCTUKHU, TO JAHUN 3-MHOTOBHJ JJIsl IESIKOI
piMaHOBOI MeTpuKu Ma€ B<o-11apyBaHHs, JJId 4KOTO JIaHi Topu 6y1yTh II0C-
KHAMU IIapaM.

Kpiwm Toro, B pobori onucano GyHIaMeHTAIbHY IPYILY 3-MHOTOBULY, KU
Mae B<p-1mapyBaHHsA Ta IIOKa3aHO, 10 TaKi 3-MHOIOBUIM IOBUHHI OyTH acde-
PUYHUME i, HA BiIMIHY BiJI IIbOTO, JIOBEJIEHO, IO OY/Ib-AKHUil OpieHTOBaHM 3-
MHOTOBHJ], Ma€ TPAaHCBEPCAJIBHO OPi€HTOBaHe B-ImapyBaHHM.

1. INTRODUCTION

A foliation on a Riemannian manifold whose leaves have nonnegative
(nonpositive) curvature in the induced metric will be called a foliation of
nonnegative (nonpositive) curvature. Early we have proved the following
theorem.

Theorem 1.1. [2] Let M3 be a closed oriented Riemannian 3-manifold
equipped with a codimension one transversely oriented C*-foliation F of
nonnegative curvature. Then F is a foliation almost without holonomy and
M3 is homeomorphic to one of the following manifolds:

1) toric bundle over the circle;

2) toric semibundle;
) 5% x St;

4) RP3#RP3;
)
)

w

5) lens space Ly, q;
6) prismatic space.

Each of the listed spaces admits a nonnegative curvature foliation with
respect to some Riemannian metric.

Remark 1.2. Recall that a toric semibundle is glued of two copies of ori-
ented twisted I-bundles over the Klein bottle by the some diffeomorphism
between their boundaries. Also a prismatic space is a spherical form which
has a structure of a Seifert bundle over the orbifold P(n), where P(n) is a
projective space with a single conical point of type D?/Z,.
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Let (L,g) be a complete noncompact surface endowed with a smooth
Riemannian metric. Then the total curvature of L is the improper integral
I ;, K dp of the Gaussian curvature K with respect to the volume element
dp of (L,g). One sais that L admits a total curvature if for any compact
exhaustion €); of L, there exists finite or infinite limit

lim / Kd,u,:/Kdu, (1.1)
1——+00 Q; L

In [3] Cohn-Vossen also proved that

/ Kdu <2nx(L), (1.2)
L

provided that the Euler characteristic x(L) of L is finite.
In 1957 Huber established the following result.

Theorem 1.3. [9] Denote K_ = max{—K,0}. If

/ K_du < oo, (1.3)
L

then fL Kdu exists and L is homeomorphic to a compact Riemannian sur-
face with finitely many punctures, so L has a finite topology.

From Huber’s theorem follows, that the Cohn-Vossen inequality (1.2)
holds for complete surfaces of nonnegative curvature, in particular for leaves
of nonnegative curvature foliations. Observe that in this case the orientable
leaves can be either spheres (if x(L) = 2) or planes (if x(L) = 1), or
cylinders or tori (if x(L) = 0).

It also follows from Huber’s result that (1.3) is equivalent to the inequ-
ality [, |K|du < oco. The integral [, |K|du is called the total absolute
curvature.

If 1964 Hartman proved the following Theorem.

Theorem 1.4. [7] Under assumption (1.3) the area growth of a geodesic
ball of radius r at a fized point of L is at most quadratic in r.

Also Li [13] shown that if L has at most quadratic area growth, finite
topology, and the Gaussian curvature of L is either nonpositive or non-
negative near infinity of each end, then the total curvature of L must be
finite.

The purpose of this paper is to describe the structure of C'°*°-foliations
F on a closed 3-manifold M admiting a Riemannian metric in which the
leaves of F have bounded total absolute curvature. Such foliations will be
called B-foliations. We pay a special attention to nonpositive curvature
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B-foliations, which we call B<q-foliations. In this regard, let us recall the
following result which is a foliated analogue of Cartan-Hadamard Theorem.

Theorem 1.5. [16] Let F be a codimension one C3-foliation of nonpositive
sectional curvature on a complete Riemannian n-manifold M™. Then its
universal covering M is diffeomorphic to R™.

As a consequence of this theorem one gets the following statement:

Theorem 1.6. (16| Let F be a codimension one C3-foliation of nonpositive
sectional curvature on a complete n-manifold M™. Then for any leaf L € F
the homomorphism

iy m (L) — mp(M™)

induced by the inclusion i : L C M"™ is a monomorphism. Hence the
universal covering F of the foliation F on the universal cover M consists
of leaves diffeomorphic to R" 1.

In the present paper we prove the following theorem similar to Theo-
rem 1.1 which describes the structure of B<-foliations.

First recall that a graph of groups over a graphY is an assignment to each
vertex u of Y a group G, and to each oriented edge e = (u,v) of Y a group
G together with two monomorphisms ¢y : Ge — Gy and ¢e 1 Ge — Gy
mapping G. into the groups assigned to the vertices at its ends. If T is a
spanning tree for Y (i.e a subree contained all of the vertices of V'), then
the fundamental group of that graph of groups is the group generated by
the vertex groups G, and elements e for each edge of Y with the following
relations:

e ¢ = ¢ ! if € is the edge e with the reverse orientation.
o cheu(z)e™! = ¢ey(z) for all z € Ge.
ec=1ifeeT.

This definition is independent of a choice of T'.

Main Theorem. (1) Let M be a closed orientable Riemannian 3-mani-
fold and F be a transversely orientable smooth foliation being B<o with
respect to the Riemannian metric on M. Then the following statements
hold true.

(a) M is a K(m,1)-space (that is m1(M) =7 and m;(M) =0 fori > 2).

(b) F is almost without holonomy.
(c) At least one of the following conditions is satisfied.
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(i) The leaves of F are fibers of some Mg—bundle over the circle,
where Mg2 is an oriented closed surface of genus g > 1;

(ii) F is flat’ and all its leaves are dense. In this case M is home-
omorphic to a total space of some torus bundle over the circle.

(iii) There exist finitely many compact leaves {K;} each homeo-
morphic to the torus T? such that every connected component A;
of M\ U;K; is fibered over the circle with a fiber homeomorphic to
some surface S; of nonpositive Euler characteristic with boundary.
In this case every inclusion K; C A; the induced homomorphism
¢ij + mK; — mAj is a monomorphism. Moreover, the fundamen-
tal group w1 (M) is isomorphic to the fundamental group of the graph
of groups G whose wvertices correspond to groups mi(A;), the edges
correspond to groups w1 (K;), and the “end” monomorphisms are ¢; ;.

(2) Let M be an oriented closed 3-manifold having one of the following
properties:

(a) M can be divided by a finite set of embedded tori into pieces {A;}
each of which is fibered over the circle with a fiber homeomorphic to a
compact surface S; with boundary and x(S;) < 0;

(b) M is a total space of an oriented Mg—bundle over the circle, where Mg2
is an oriented closed surface of genus g > 1.

Then M admits a B<o-foliation with respect to some Riemannian metric.

2. FOLIATIONS

2.1. Definition of foliation. Let M be an n-dimensional manifold. Then
a partition F = {F,} of M into path-connected subsets (leaves) is called
a foliation of dimension p (or codimension ¢, where p+ ¢ =n) on M if F
admits an atlas U = {(Uy, @)} rea consisting of foliated charts.

The latter means that each connected component of a leaf in a chart
(Ux, pa) with coordinates (x1,...,%p, y1,...,Yq) is given by

y1 = const, ..., yq = const,
and the transition maps
gij = wiop; (Ui NU;) = oi(U; N U;)
have the form
9ij(x,y) = (Gij (7, ), §i5 (y)), (2.1)
where z € RP,y € RY, so the second coordinate function g;; : RPT? — RY
does not depend on y.

L' A “flatness” means that all leaves have zero Gaussian curvature in the induced Rie-
mannian metric
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The atlas U = {(Uy, px)}ren is supposed to be at least C2?-smooth and
good in the sense that

1) U is locally finite;
2) U, is relatively compact in M, and ¢ (Uy) = (—1,1)" C R™;

3) U;uU; C Wy, where (Wj;, ;) is a foliated chart not necessarily
belonging to U.
Let m: (—1,1)" — (—1, 1) be the natural projection to the last ¢ coordi-

nates. Then the preimage P, := (pgl(ﬂfl(a:)) is called a local leaf. Denote
by @) the space of local leaves. Clearly, Q) = (—1,1)%, and

U= |J ¢l @)

ze(—1,1)9

A foliation F is said to be oriented if the tangent bundle of p-dimensional
distribution T M C TM is oriented, and transversely oriented whenever
some transversal to F distribution of dimension ¢ = n — p is oriented.
If the manifold M is Riemannian, then the transverse orientability of F is
equivalent to the transverse orientability of orthogonal distribution 77 T M.

2.2. Holonomy. We recall the notion of holonomy. Let [ : [0,1] — L be a
closed path in a leaf L. € F. Choose a chain of foliated charts

C={Uo,...,Up_1,U, =Up}
with the property that there exists a division of the segment
0,1]:0=tg<t1 <---<tp,=1

such that [([t;,t;41]) C U;. Then the composition gi,—1y, © ... g23 © gi2 of

gluing maps on the space of local leaves, see (2.1) above, is correctly defined

in a neighborhood V) C (—1,1)? of zero and its germ does not depends on

the homotopy class of [I] € m1(L), [17]. Denote it by I'; : Vo — (—1,1)4.
Then the correspondence [ — I'; is a homomorphism

U:m(L,z) = Gy

of the fundamental group m1(L,z) at x to the group of germs G, of diffeo-
morphism at the origin 0 € RY. The homomorphism @ is called a holonomy
of L and its image, denoted by H(L), is the holonomy group of L.

Evidently, they depend on the choice of a point x € L and a foliated
chart Uy at x. If we choose another point y € L and another foliated local
chart Vj at y, then H(L) is changed to a subgroup go H(L) o g~ ! of G, for
some g € G4. In particular, the isomorphism type of H(L) depends only
on the foliation F.
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Notice that if a codimension one foliation is transversely oriented, then
the one-sided holonomy

Ut m(L) = GY

of the leaf L is also well defined, where Gf denotes the group of germs of
one-sided diffeomorphisms at 0 with a domain on the half-intervals [0, €).

Nishimori proved the follows theorem describing behavior of a codimen-
sion one foliation in a neighborhood of a compact leaf with Abelian holo-
nomy.

Theorem 2.3. [14]| Let F be a transversely oriented C”-foliation of codi-
mension one on an oriented n-dimensional manifold M and Fy be a compact
leaf of F. Suppose that 2 < r < co. Let also T be a tubular neighborhood
of Fy and Uy be a union of Fy and a connected component T\ Fy. Suppose
that H(Fp) is an Abelian group. Then only one of the three cases holds.

1) For any neighborhood V' of Fy the restricted foliation f’an+ has a
compact leaf distinct from Fy.

2) There exists a neighborhood V' of Fy such that all leaves Fly nu,
except for Fy are dense in V (\Uy. In this case, H(Fy) is a free Abelian
group of rank > 2.

3) There exist a neighborhood V' of Fy and a connected oriented subman-
ifold N of codimension one in Fy with the following properties. Denote by
Fy a compact manifold with boundary obtained by attaching two copies Ny
and Ny of N to Fo\N satisfying OF, = N1|J Na. Let

f:]0,e) = [0,0)

be a contracting C"-diffeomorphism such that f(0) = 0. Denote by X
a manifold obtained from F, x [0,¢) by identifying (x,t) € N1 x [0,e) and
(x, f(t)) € Nax[0,0). After factorization, we obtain the foliation Fy on Xy.
Then for some f as above, there is a C"-diffeomorphism h: V Uy — Xy
which maps each leaf of Flynu, onto some leaf of Fy. The foliation
Flyqu, uniquely defines the homology class [N] € Hy,_2(Fy,Z), and the
germ at zero of the map f is unique up to conjugation. In this case, H(Fy)
s an infinite cyclic group.

A foliation is said to be a foliation without holonomy if the holonomy of
each leaf is trivial, and it is said to be a foliation almost without holonomy
if the holonomy of noncompact leaves is trivial. For example, the Reeb
foliation Fp is a foliation almost without holonomy on S? since all leaves
of Fr except for a single compact leaf being a torus are homeomorphic to
R? and thus have a trivial fundamental group.
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By a block we will means a compact saturated n-dimensional submanifold
B of a codimension one foliated n-dimensional manifold. Recall that a
subset of M is saturated with respect to a foliation JF if which is a union of
leaves of F. Clearly 9B is a finite union of compact leaves.

The following statement is a reformulation of results by Novikov [20] and
Imanishi [10] obtained for foliations without holonomy and for foliations
almost without holonomy, respectively.

Theorem 2.4. Let L be a noncompact leaf of a codimension one foliation

F almost without holonomy on a closed n-dimensional manifold M. Then

one of the following holds:

a) F is a foliation without holonomy whose all leaves are diffeomorphic to
the typical leaf L and dense in M. We have the group extension

1= m (L) = m(M)—ZF =0,

where k > 0 and k = 1 iff the foliation F is a locally trivial fibration
over the circle. Moreover, the universal covering M has the form
M=LxR.

b) The leaf L belongs to some block B all of whose leaves which contained
in the interior B are diffeomorphic to the typical leaf L and are either
dense in B (B is called a dense block in this case) or proper in B (B
is called a proper block in this case). In both cases we have the group

extension
1 = m (L) — m(B) = ZF =0, (2.2)

where k > 0. In this case k = 1 iff B is proper and the foliation in B
18 a locally trivial fibration over the circle. Also, the universal covering
of each block B has the following form

B~LxR.

2.5. Growth of leaves. A minimal set of the foliation F is a closed satu-
rated set which has no other closed saturated sets.
The following theorem is a reformulation of [15, Corollary 1.3].

Theorem 2.6. Let F be a transversely oriented C°-foliation of a codi-
mension one on a compact manifold M. Suppose that every leaf of F has
less than exponential (e.g., polynomial) growth. Then F does not have any
exceptional minimal set. In particular, each minimal set of the foliation F
is either the whole manifold M or a compact leaf.

Here the growth means the volume growth of balls B, (R) C L, € F as
a function of radius R.
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A leaf L of a transversely oriented codimension one foliation F is called
resilient if there is a transversal arc [z,y), © € L, and a loop o such that
Ty : [z,y) — [z,y) is the contraction to z, and LN (x,y) # 0.

Theorem 2.7. [8, Proposition 2.1.8] Let M be a compact manifold and F
be a C?-foliation of codimension one on M. Then a resilient leaf of F must
have exponential growth.

3. BASIC RESULTS

Theorem 3.1. Let M be a closed orientable Riemannian 3-manifold M
and F be a codimension one transversely orientable B-foliation with respect
to the Riemannian metric on M. Then

(1) F is a foliation almost without holonomy;
(2) if a leaf L' C L for some leaf L € F then L' is flat;
(3) if a leaf L € F is non-flat then L is embedded in M.

Proof. Let L € F be a noncompact leaf. Suppose that there exists another
leaf I’ € L and a point z € L' such that Gauss curvature Ky (z) # 0.
Notice that the induced Riemannian metric smoothly depends on leaves
and the leaf curvature function K, (y), y € M is continuous on M. Then
Kp,(y) is bounded, since M is compact. Suppose that K, (y)| < C at
any point y € M.

There exists a foliated compact normal neighborhood V(z) of z and a
homeomorphism f : I x D?(r) — V(z), where I = [0,1], D?(r) is the stan-
dard Euclidean disk of radius r, and f(I x 0) is a regular parametrization
of an arbitrary small path ~ passing through x = f(1/2,0) and orthogonal
to F.

Denote D?(r) =t x D?(r) and let L; be the leaf of F containing f(t,0),
t € I. The normality of the neighborhood V(x) means that the disks
f(D?(r)) € L; € F are normal neighborhoods of points f(t,0) in the
leaves L, t € I, which are defined by the tangent to F exponential map
expr |y : TF — M as follows: expr maps a tangent to F vector v € T, F
with the origin at x € M to «,(1), where «, is a geodesic on the leaf L,
defined by the initial conditions a,,(0) = x and o/, (0) = v. Choosing v and
r we can make V'(x) so small that K, (y) # 0 for each y € V().

Now we can take r small enough so that Areay,(D?(r)), t € I, are not
less than the area of an embedded disc of radius r in a simply connected
manifold of constant curvature C'. It follows from the well known formula
for the area of a small ball of radius r at a point p of a Riemannian surface
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M with a function of curvature K (x), x € M, that
Areay(D*(r)) = Areagz (D(r)) (L~ 587 + o(r?).

Thus there is a constant const; such that Arear,(D?(r)) > const; > 0,
t € I. Since L' € L we can find a countable number of disks D (r) C L,
tiel,i=1,...,4+00. It means that the total absolute curvature

oo
/ |K|dp > min |K|, (x) ZAreaL(DZ(r)) = 00.
L eV, i1
But it contradicts to the assumption and we conclude that L’ is flat. In
particular, this implies that limit compact leaves are flat tori. According
with Theorem 2.3 the leaf L is either locally dense or embedded. Since a
locally dense leaf contained in the boundary of another leaf it has to be flat,
which proves (2). It also follows that a not flat leaf has to be embedded
into M, and this proves (3).

To prove (1) suppose that L has nontrivial holonomy. Since F is trans-
versely oriented and a nontrivial periodic diffeomorphism of an interval
should be an involution relative to the origin, the holonomy must be in-
finite. Let v be a closed path in L representing a nontrivial holonomy
element.

Case 1. Suppose that the one-sided holonomy ¥ ([v]) is nontrivial and
the holonomy map T : [0,e) — [0,€") does not have any fized points in
[0,€) for some €.

In this case, U (£[y]) is represented by a contracting map. If L is locally
dense, then L must be a resilient leaf, which is impossible by Theorem 2.7.
Recall that by Theorem 1.4 the leaves of F have polynomial grows. Other-
wise, another noncompact leaf P would wind around L and by Theorem 2.6
one could find a compact leaf K C L[\ P. It simply follows from part 3)
of Theorem 2.3 that the leaf P must have infinitely many ends, which is
impossible as leaves of F have a finite topology (see §1).

Case 2. The half-interval [0,¢) contains a sequence of fized points {F;}
of the holonomy map T : [0,¢) — [0,€") which converges to zero.

Since {F;} N[0, Fy| is closed in [0,¢), where Fy, € {F;} ([0, ¢), it follows
that either the holonomy of L is trivial and this proves the claim or we have
to find a half-interval [a,d) C [0,€) on which I',/ is a contracting map. The
leaf L' corresponding to the point a € [0,¢) has a contracting holonomy
on v/ C L', where 7/ is a closed path corresponding to the fixed point a of
the map I'y. Since the set of compact leaves is closed (see [17]) and M is
a normal topological space, we can choose ¢ small enough for the leaf L’
to be noncompact. Thus we are under assumptions of Case 1 which proves
Theorem 3.1. O
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3.2. Proof of Main Theorem. (1) Statement (a) follows from Theo-
rem 1.5 and (b) is a consequence of Theorem 3.1.

(c) Suppose that all leaves of the foliation F are compact. Then from
orientibility of both F and M we obtain that each leaf is orientable and
has trivial holonomy. Hence by Reeb stability Theorem F is a fiber bundle
over the circle. Since the leaves according to the condition of the Main
Theorem have nonpositive curvature, we obtain that each fiber must be
homeomorphic to a surface of genus g > 1 due to Gauss-Bonnet Theorem.
This proves substatement (i).

Suppose that F does not contain compact leaves. By Theorem 3.1 F is
a foliation without holonomy. Hence it follows from Theorem 2.4 that all
leaves are dense. In this case by Theorem 3.1 each leaf of F is flat and M
must be a torus bundle over the circle (see [2, Paragraph 4|). This proves
substatement (ii).

To establish (iii) assume that F contains both compact and noncompact
leaves. It can be shown that proper blocks described in the Theorem 2.4
satisfy the condition described in (iii). Indeed, the boundary of a proper
block B is a family of limit compact leaves which must be a family of flat
tori by Theorem 3.1. The foliation F in a collar of the torus 72 C 9B is
described in the part 3) of Theorem 2.3. It allows us to construct a family
of tori transversal to F and dividing B into two parts:

e one of which is a disjoint union of finitely many copies of T2 x I,

e and another one is homeomorphic to B and has an induced from B
structure of a fibre bundle over the circle with the fiber being a compact
surface with boundary.

Hence we get from Theorem 3.1 that a dense block (see Theorem 2.4 for def-
inition) consists of flat leaves and as proved in [2] it must be homeomorphic
to one of the following manifolds:

T2 x I D? x St K,

where K is a nontrivial I-bundle over Klein bottle. But the fundamental
group of a dense block B has a form of the extension (2.3) with k£ > 1,
whence we immediately conclude that the only possibility is B = T? x I.
Recall also that the set of compact leaves is closed in M and therefore
we can divide M into finitely many blocks which either are such described
above or they are arbitrary thin blocks containing infinitely many compact
leaves. It is easy to see that each thin block is homeomorphic to the direct
product of a compact leaf with a closed interval K x I (see [2, Paragraph
4]).

The structure of fundamental group m; (M) immediately follows from
Theorem 1.6 and [6, Th.6.2.11]. This completes (iii).
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(2) To prove (a) we will construct a B<g-foliation in each block A; and
then connect those blocks preserving Riemannian metric on the leaves by
gluing of (T2 x I)-blocks via the corresponding diffeomorphisms to get a
manifold diffeomorphic to M. Since each A; is homeomorphic to some S-
bundle E over the circle, the idea is to construct the Riemannian metric
on F which is locally Euclidean on collars of boundary tori of E so that
the fibers of E' will have nonpositive curvature and will be orthogonal to
the flat boundary tori in the collars. After that we will construct B<o-
foliation on F, making the ends of the fibers endless euclidean cylinders
winding around boundary tori. Note that that we can choose two opposite
direction of the winding to define agreed orientation on the boundary tori
of adjacent blocks.

Firstly suppose that S is a compact surface with a boundary 9.5 consis-
ting of n disjoin circles and x(S) < 0. Let Diff, (S) be a group of orientation
preserving smooth diffeomorphisms of S with the C*°-topology of uniform
convergence on compact sets of all differentials. Assume that some block
Aj from Main Theorem is homeomorphic to a locally trivial S-bundle E
over the circle B. Then there exists f € Diff, (S) such that

E=8x1/sx0n~ f(s) x1, B=1/{0,1} = S

The diffeomorphism f induces a permutation o : A — A of the finite
collection A of connected components of 3S. Each orbit of this permutation
corresponds to one boundary component of JF, which is diffeomorphic to
the 2-torus 72 since f preserves orientation of S.

The following principal Diffy(S)-fibre bundle holds, [4]:

lefU(S) — Metfl(S) — T(S),

where Diffy(S) C Diff, (S) is the path component of the identity map in
Diffy (S), Met_1(S) is the space of hyperbolic structures (with geodesic
boundaries) on S, and 7(S) is the Teichmiiller space of smooth conformal
structures on S. Recall that a space of smooth conformal structures on .S co-
incides with Met_1(S) if x(S) < 0, see [18]. It follows from the uniformiza-
tion Theorem for compact Riemann surfaces with boundary claiming that
every such surface (except for the disk and annulus) admits a unique con-
formal hyperbolic metric with geodesic boundary. In this case Diffy(S) and
T(S) are contractible and so is the Frechet manifold Met_1(S), see [4].
Moreover, T (S) is homeomorphic to R%9~6+3" with the Fenchel-Nilsen co-
ordinates, see [18] and [12], where the last n coordinates correspond to the
lengths of the boundary circles of 9S. Suppose that the lengths of boundary
circles are fixed and equal the same constant {. Obviously, in this case the
corresponding Teichmiiller space 7;(S) is homeomorphic to R%~6+2" and
the restriction Met' |(S) of Met_1(S) to T;(S) is contractible also. In



Nonpositive curvature foliations on 3-manifolds 13

particular we can join the points go and g; = f*go in Met! ;(S) by some
smooth path g; in Met';(S) to obtain a Riemannian metric on E having
the following form in the corresponding local coordinate system:

ds® = dt* + g;. (3.1)

Notice that the metric of this kind depends on a choose of a horizontal
(i.e. orthogonal to the fibers of p : F — B) one-dimensional distribution,
[1]. For any such metric the projection p : E — B becomes a Riemannian
submersion with hyperbolic fibers (S, g¢) having geodesic boundaries of
length [.

Consider the boundary torus T' C 0F, and let

V 200,0) x Cy x Cy

be a collar of T', where Cj, i = 1,2, are circles such that [0,0) x C} X s
belongs to the fiber for each s € C5. Then

k
Vs, = | |([0,6) x Cy x sy),
i=1
where k is the number of elements of the corresponding orbit of 0. We can
assume that f* is the identity diffeomorphism for the corresponding k in
the collar of each boundary component of 95.
Let us choose a half-geodesic coordinate system in some neighborhood
Us of the boundary of each level set [0, ) x C1 x s. We obtain the hyperbolic
metric on Uy having the same form for arbitrary s € Cs, [21]:

ds? = dr® + ch®(r)d¢?,

where r € [0, R], ¢ € [0,1]. Assume that the circle C' = 0 x 0 x C5 consists
of origins of the coordinate systems in Us;. Notice that the submersion
p: B — B restricted on C is a covering map and we can assume that the
parameter s is locally the same as the parameter ¢t on base B. Moreover, if
t € [0, 1] parameterizes the circle B, then s € [0, k] parameterizes the circle
Cs.
Consider the collar W = (J, Us of T and define the flow {®;}, t € R,
on W by the equality of half-geodesic coordinates. Here the parameter ¢
corresponds to the parameter on the universal covering R of B. It means
that if z € Us has half-geodesic coordinates (r, ¢), then ®4(z) € U(stymod &
and has the same half-geodesic coordinates. The flow {®;} is smooth since
the Riemannian metric g; is changed smoothly with ¢. Evidently, trajec-
tories of {®;} define a transversal distribution on W homotopic to the
horizontal distribution. We can extend that homotopy remaining identical
outside of V' to obtain a smooth transversal distribution on the whole FE.
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Let us change the Riemannian metric (3.1) so that the resulting distribu-
tion becomes horizontal (i.e. orthogonal to fibers). Clearly, the flow {®;}
preserves the new Riemannian metric on W being the metric of a direct
product

ds? = dr* 4 ch?(r)d¢* + dt?
in the new coordinate system (r,¢,t). Let us change the metric ds? re-

placing the function ch?(r) by a smooth convex function such that (see
Figure 3.1):

ch(c), 0<r<mr
h(r) = < convex, 11 <r <79
ch(r), ro <r <R,

where 7 < ¢ < ro.

h(r)

chic)

FIGURE 3.1. Graph h(r)

Since h is convex, the curvature of the metric ds®> = dr? 4 h%(r)d¢? is
nonpositive and it is flat for 0 < r < r; as well as the curvature of the
metric ds? = dr? + h%(r)d¢* + dt?.

The leaves of the fiber bundle p : E — B are level hypersurfaces t = const
in W(r,¢,t) wiht respect to the new Riemannian metric. Let us do the
turbulisation of this fibration around of T' to obtain a foliation on W with
a compact leaf T'. For this define the foliation by the kernel of the 1-form

w(r) = (1— f(r))dr £ f(r)dt,
where f :[0,1] — [0,1] is an arbitrary smooth function such that
0, 0<r<mry
f(r) = < increasing, 14 <7 <73
17 r3 <r < R7
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and 74 < rg <7y

The sign in the definition of w is chosen depending on the direction of
the winding.

The kernel ker(w) defines a trivial foliation {r x T'} in the neighborhood
0 < r < ryq of the compact leaf T and the foliation by euclidean cylinders
in the domain r4 < r < r1. One can see that leaves of ker(w) are flat in the
domain 0 < r < r;. Repeating the arguments, we will obtain a foliation of
nonpositive curvature on £ such that the boundary of F consists of compact
leaves. Notice that curvature of each noncompact leaf has compact support.
This proves the case (2)(,) when x(S5) < 0.

Notice that the case when S is a 2-disk (i.e. x(S) > 0) is not pos-
sible. Indeed, then the block should be homeomorphic to a Reeb compo-
nent (see [20]) and the homomorphism i, : m1(7T?) — 71 (B) induced by the
inclusion 7 : 72 — B must have a nontrivial kernel which contradicts to
Theorem 1.6.

Also if S is annulus (i.e. x(S) = 0), then B is homeomorphic to 72 x I
or K (see above), which admit a flat proper foliation as was shown in [2].

It remains to glue two blocks (or single block) by a family of flat tori
T? x I. Recall that the space of flat Riemannian metrics Meto(T?) is
homeomorphic to

R, x Metd(T?),
where Met}(T?) is the space of all flat metrics on T2 with unit area. At
the same time there is a fiber bundle

Diffo(7?)/T? — Met$(T?) — T(T?),

where T (T?) is the Teichmiiller space of 7 (7?) which is homeomorphic to
Lobachevski plane H?, and the factor-group Diffy(72)/T? is contractible,
[5]. Here we identify T? with the subgroup of torus motions in Diffy(7?).
We conclude that the space Meto(T?) is contractible. Therefore we can
join any two flat metrics go and g1 on T? by a smooth path g; in Meto(T?)
which gives a family of tori I x T2 with the metric dt? + g;. Pasting the
cylinders I x T? with corresponding Riemannian metrics between blocks
we obtain the proof of (2)(,).

In particular, we also obtain a flat foliation on any torus bundle which
partially proves (2) ).

The same arguments applied to the spaces Met_l(Mg), where M, 92 is
a closed orientable surface of genus g > 1, give us a foliation by fibers of
constant curvature —1 on a mapping torus

2
My =1x M, /(o,x)~(17f(:v))’
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Recall that Met_; (M, 92 ) is contractible, [5]. The Riemannian metric dt?+ g,
on My is defined by the family metrics g;, t € [0,1] of constant curvature

on t X S connecting the metrics go and g1 = f*go. It finishes the proof
of (2)(,) and Main Theorem. O

Corollary 3.3. Not all hyperbolic forms admit B-foliation.

Proof. Indeed, it is well known that the fundamental group of a hyperbolic
form does not contain Z @ Z (see [18]). Thus the realizable case is (1))

®
only. U

Remark 3.4. Noice that such hyperbolic forms exist, [11], but there are
many hyperbolic forms with a finite first homology group, [19], and which
therefore cannot be fibered over the circle. Note also that not all spherical
forms admit nonnegative curvature foliations, see [2].

Remark 3.5. All closed oriented 3-manifolds M admit B-foliation. This
immediately follows from open book decomposition theorem, which allows
us to decompose M into fibered pieces including solid tori with Reeb folia-
tions, which admit nonnegative curvature, see [2].

The author is grateful to Misha Kapovich for consultations on Teich-
miiller spaces and to Sergiy Maksymenko for useful remarks.
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