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On fractal properties of Weierstrass-type
functions

Claire David

Abstract. In the sequel, starting from the classical Weierstrass function

defined, for any real number x, by W(x) =
+8ÿ

n=0

λn cos (2 π Nn
b x), where λ

and Nb are two real numbers such that 0 ă λ ă 1, Nb P N and λ Nb ą 1,
we highlight intrinsic properties of curious maps which happen to constitute
a new class of iterated function system. Those properties are all the more
interesting, in so far as they can be directly linked to the computation of the
box dimension of the curve, and to the proof of the non-differentiabilty of
Weierstrass type functions.

Анотація. Метою даної роботи є узагальнення попередніх результатів
автора про класичну функцію Вейерштрасса та її графік. Його можна
отримати як границю послідовності префракталів, тобто графів, отри-
маних за допомогою ітераційної системи функцій, які, як правило, не
є стискаючими відображеннями. Натомість вони мають в деякому сенсі
еквівалентну властивість до стискаючих відображень, оскільки на ко-
жному етапі ітераційного процесу, який дає змогу отримати префра-
ктали, вони зменшують двовимірні міри Лебега заданої послідовності
прямокутників, що покривають криву. Такі системи функцій відіграють
певну роль на першому кроці процесу побудови підкови Смейла. Вони
можуть бути використані для доведення недиференційованості функції
Вейєрштрасса та обчислення box-розмірності її графіка, а також для по-
будови більш широких класів неперервних, але ніде не диференційовних
функцій. Останнє питання ми вивчатимемо в подальших роботах.
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INTRODUCTION
In his seminal paper of 1981, J. E. Hutchinson [8] introduces, for the first

time, what will be later qualified of “iterated function system” (I.F.S.), as
a finite set of contraction maps, each defined on a compact metric set K of
the euclidean space Rd, d P N‹:

S = tT1, . . . , TN u , N P N‹

where N‹ denotes the set of strictly positive integers, such that

K =
Nď

i=1

Ti(K)

The compact set K is then said to be “invariant” with respect to the set S
(one often refer to this result as the “Gluing Lemma”).
A prequel occurence of such maps, under the form of similitudes, can

already be found in the Mandelbrot books of 1977 [11], [12].
Hutchinson’s novelty is to consider not the compact K itself, but the

set S, which arises naturally, in so far as the invariant compact K is fully
determined by the set S, and, interestingly, is also the limit of a sequence
of pre-fractal graphs that can be built, in an iterative way, thanks to the
maps that constitute the set S.
Following this work, iterated function systems were taken up and even

more developed by M. F. Barnsley et al. [2], as “a unified way of generat-
ing and classifying a broad class of fractals”. As explained by the authors,
fractals were “traditionally viewed as being produced by a process of suc-
cessive microscopic refinement taken to the limit”, which, of course, makes
sense with the geometric representation one may have of fractal sets, since,
when looking at smaller and smaller scales, one finds, again and again, the
same form. Of course, at stake are specific and classical types of fractals,
as Sierpiński gaskets, dragon curves, Cantor sets, Julia curves, etc. For
M. F. Barnsley and S. Demko, those fractals are to be seen as the attrac-
tors of iterated function systems, which, of course, joins the approach of
J. E. Hutchinson.
M. F. Barnsley and S. Demko place themselves in a probabilistic approach.

Given still a compact metric space K, the related Banach space C(K) of
real-valued functions defined on K, with respect to the norm

f P C(K) ÞÑ }f}8 = max t|f(x)|, x P Ku
and a finite collection

w = tw1, . . . , wN u , N P N‹

of Borel measurable functions from K to K, they define the set tK,wu as
an iterated function system if and only if there exists an associated set of
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positive real numbers

tp1, . . . , pN u , @ i P t1, . . . , Nu : pi ą 0,
Nÿ

i=1

pi = 1

such that the operator T on C(K), given, for any f of C(K), by

@x P K : T (f)(x) =
Nÿ

i=1

pi (f ˝ wi)(x)

has the property:
T (C(K)) Ă C(K).

Treating w as a set-valued function, through
@x P K : w(x) = tw1(x), . . . , wN (x)u

they then naturally introduce, for the i.f.s. tK,wu, and a given x of K, the
related attractor

A(x) = lim
nÑ+8w

˝n
(x)

in the sense:
lim

nÑ+8 }w˝n
(x) ´ A(x)}8 = 0.

Classical fractal sets as, for instance, the Sierpiński Gasket, fit this defi-
nition.
In our previous work on the Weierstrass curve [4], which, as exposed,

for instance, by A. S. Besicovitch and H. D. Ursell [3], or, a few years
later, by B. Mandelbrot [11], bears fractal properties, we showed that the
curve could be obtained by means of a sequence a graphs (ΓWm)mPN, that
approximate the studied one. This is done using a family of nonlinear
C8 maps from R2 to R2, which happen not to be contractions, in the
aforementioned classical sense. The nonlinearity does not enable one to
resort to the probabilistic approach of M. F. Barnsley and S. Demko, since
there does not exist a constant associated set of probabilities. Yet, even
if they are not contractions, our maps bear what can be viewed as an
equivalent property, since, at each step of the iterative process, they reduce
the two-dimensional Lebesgue measures of a given sequence of rectangles
covering the curve. This is due to the fact that they correspond, in a sense,
to the composition of a contraction of ratio rx in the horizontal direction,
and a dilatation of factor ry in the vertical one, with

rx ry ă 1.

Such maps are considered in the book of Robert L. Devaney [6], where
they play a part in the first step of the horseshoe map process introduced
by Stephen Smale.
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The Weierstrass curve is invariant with respect to the set of those maps,
which makes it possible to dispose of an equivalent result of the Gluing
Lemma. But what deserves to be enlightened, in our case, is that the
intrinsic properties of those curious maps make them all the more interes-
ting, in so far as they can be directly linked to the computation of the
box dimension of the curve, and to the proof of the non-differentiabilty of
the Weierstrass function, as shown in [5]. All the more is the generaliza-
tion to a broader class of applications that could, then, enable one to build
everywhere continuous, though nowhere differentiable, functions, as we will
expose it in the sequel.

1. THE CASE OF THE WEIERSTRASS FUNCTION
Notation 1.1. In the following, λ and b are two real numbers such that:

0 ă λ ă 1, b = Nb P N, λNb ą 1.

We deliberatly made the choice to introduce the notation Nb which replaces
the initial b, in so far as, to the origins, b is any real number, whereas we
deal with the specific case of a natural integer that we consequently choose
to denote by Nb, as an echo to the initial b.
The Weierstrass function, introduced in 1875 by K. Weierstrass [13],

known as one of these so-called pathological mathematical objects, contin-
uous everywhere, while nowhere differentiable, is the sum of the uniformly
convergent trigonometric series, defined, for any real number x, by:

W(x) =
+8ÿ

n=0

λn cos (2πNn
b x) .

Definition 1.2. (Weierstrass Curve). We will call Weierstrass Curve the
restriction to [0, 1)ˆR, of the graph of the Weierstrass function, and denote
it by ΓW .
Theoretical study. We place ourselves, in the following, in the euclidian
plane of dimension 2, referred to a direct orthonormal frame. The usual
Cartesian coordinates are (x, y).
Property 1.3. (Periodic properties of the Weierstrass function). For any
real number x:

W(x+ 1) =
+8ÿ

n=0

λn cos (2πNn
b x+ 2πNn

b ) =
+8ÿ

n=0

λn cos (2πNn
b x) = W(x).

The study of the Weierstrass function can be restricted to the interval [0, 1).
By following the method developed by J. Kigami [10], we approximate

the restriction ΓW to [0, 1) ˆ R, of the Weierstrass Curve, by a sequence of
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graphs, built through an iterative process. To this purpose, we introduce
the iterated function system of the family of C8 maps from R2 to R2:

tT0, . . . , TNb´1u
where, for any integer i belonging to t0, . . . , Nb ´ 1u and any (x, y) of R2:

Ti(x, y) =
(

x+i
Nb
, λ y + cos

(
2π x+i

Nb

))
.

Property 1.4. [4]. ΓW =
Nb´1Ť
i=0

Ti(ΓW).

Definition 1.5. (Word on the graph ΓW). Let m be a strictly positive
integer. We will call number-letter any integer Mi of t0, . . . , Nb ´ 1u, and
word of length |M| = m, on the graph ΓW , any set of number-letters of the
form:

M = (M1, . . . ,Mm).

We will write:
TM = TM1 ˝ ¨ ¨ ¨ ˝ TMm .

Definition 1.6. For any integer i belonging to t0, ..., Nb ´ 1u, let us denote
by:

Pi = (xi, yi) =
(

i
Nb´1 ,

1
1´λ cos

(
2πi

Nb´1

))

the fixed point of the map Ti.
We will denote by V0 the ordered set (according to increasing abscissa),

of the points:
tP0, ..., PNb´1u

since for any i of t0, . . . , Nb ´ 2u:
xi ď xi+1.

The set of points V0, where, for any i of t0, . . . , Nb ´ 2u, the point Pi

is linked to the point Pi+1, constitutes an oriented graph (according to
increasing abscissa), which we will denote by ΓW0 . In turn, V0 is called the
set of vertices of the graph ΓW0 .
For any natural integer m, we set:

Vm =
Nb´1ď

i=0

Ti (Vm´1) .

The set of points Vm, where two consecutive points are linked, is an
oriented graph (according to increasing abscissa), which we will denote by
ΓWm . Again Vm is called the set of vertices of the graph ΓWm . In what



48 Cl. David

follows we will denote by N S
m the number of vertices of the graph ΓWm , and

write:
Vm =

!
Sm

0 ,Sm
1 , . . . ,Sm

N S
m´1

)
.

Property 1.7. For any natural integer m:
Vm Ă Vm+1.

Property 1.8. For any integer i belonging to t0, . . . , Nb ´ 2u:
Ti (PNb´1) = Ti+1 (P0) .

FIGURE 1.1. Fixed points P0, P1, P2, and the graph ΓW0 ,
in the case when λ = 1

2 and Nb = 3.

FIGURE 1.2. Graph ΓW1 , in the case when λ = 1
2 , Nb = 3,

T0(P2) = T1(P0), and T1(P2) = T2(P1).

Definition 1.9. (Vertices of the graph ΓW). Two points X and Y of ΓW
will be called vertices of the graph ΓW if there exists a natural integer m
such that:

(X,Y ) P V 2
m

Definition 1.10. (Consecutive vertices on the graph ΓW). Two points X
and Y of ΓW will be called consecutive vertices of the graph ΓW if there
exist a natural integer m, and an integer j of t0, . . . , Nb ´ 2u, such that:

#
X = (Ti1 ˝ . . . ˝ Tim) (Pj)

Y = (Ti1 ˝ . . . ˝ Tim) (Pj+1)
ti1, . . . , imu P t0, . . . , Nb ´ 1um



On fractal properties of Weierstrass-type functions 49

FIGURE 1.3. Graphs ΓW0 (in green), ΓW1 (in red), ΓW2 (in
orange), ΓW (in cyan), in the case where λ = 1

2 and Nb = 3.

or:
X = (Ti1 ˝ Ti2 ˝ . . . ˝ Tim)(PNb´1), Y = (Ti1+1 ˝ Ti2 . . . ˝ Tim)(P0).

Property 1.11. The set Ť
mPN

Vm is dense in ΓW .

Definition 1.12. (Edge relation, on the graph ΓW). Given a natural in-
teger m, two points X and Y of ΓWm will be called adjacent if and only if
X and Y are two consecutive vertices of ΓWm . We will write:

X „
m
Y

This edge relation ensures the existence of a word M = (M1, . . . ,Mm)
of length m, such that X and Y both belong to the iterate:

TM V0 = (TM1 ˝ ¨ ¨ ¨ ˝ TMm) V0

Given two points X and Y of the graph ΓW , we will say that X and Y
are adjacent if and only if there exists a natural integer m such that:

X „
m
Y

Proposition 1.13 (Adresses, on the Weierstrass Curve). Given a strictly
positive integer m, and a word M = (M1, . . . ,Mm) of length m P N‹, on
the graph ΓWm, for any integer j of t1, . . . , Nb ´ 2u, any X = TM(Pj) of
VmzV0, i.e. distinct from one of the Nb fixed point Pi, (0 ď i ď Nb ´ 1),
has exactly two adjacent vertices, given by:

TM(Pj+1) and TM(Pj´1)

where:
TM = TM1 ˝ ¨ ¨ ¨ ˝ TMm .

By convention, the adjacent vertices of TM(P0) are TM(P1) and TM(PNb´1),
those of TM(PNb´1), TM(PNb´2) and TM(P0).
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Notation 1.14. For any integer j belonging to t0, . . . , Nb ´ 1u, any natural
integer m, and any word M of length m, we set:

TM(Pj) = (x(TM(Pj)), y(TM(Pj))),

Lm = x(TM(Pj+1)) ´ x(TM(Pj)) =
1

(Nb ´ 1)Nm
b

hj,m = y(TM(Pj+1)) ´ y(TM(Pj)).

����

� �

�� (Pj)

�� (Pj+1)

Notation 1.15. We will denote by

DW = 2 +
lnλ
lnNb

the Hausdorff dimension of ΓW , see [1], [9].

Theorem 1.16 (An upper bound and a lower bound, for the box-dimension
of the Weierstrass Curve). [4] For any integer j belonging to

t0, 1, . . . , Nb ´ 2u,
each natural integer m, and each word Mm of length m, let us consider the
rectangle Rj,m,Mm, whose sides are parallel to the horizontal and vertical
axes, of width:

Lm = x(TMm(Pj+1)) ´ x(TMm(Pj)) =
1

(Nb ´ 1)Nm
b

and height |hj,m|, such that the points TMm(Pj) and TMm(Pj+1) are two
vertices of this rectangle. We set:

ηW = 2π2

"
(2Nb ´ 1)λ(N2

b ´ 1)

(Nb ´ 1)2(1 ´ λ)(λN2
b ´ 1)

+
2Nb

(λN2
b ´ 1)(λN3

b ´ 1)

*
.
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C1(Nb) =

$
’’’’’’’’’’’’&
’’’’’’’’’’’’%

(Nb ´ 1)2´DW
"

2
1´λ

sin
(

π
Nb´1

)
min

0ďjďNb´1

ˇ̌
ˇsin

(
π(2 j+1)

Nb´1

)ˇ̌
ˇ ´ 2π

Nb (Nb´1)
1

λNb´1

*
,

if Nb is odd,

(Nb ´ 1)2´DW max
"

2
1´λ

sin
(

π
Nb´1

)
min

0ďjďNb´1

ˇ̌
ˇsin π(2j+1)

Nb´1

ˇ̌
ˇ´

´ 2π
Nb(Nb´1)

1
λNb´1

, 4
N2

b

1´N´2
b

N2
b

´1

*
,

if Nb is even.
and:

C2(Nb) = ηW(Nb ´ 1)2´DW .

Then:
C1(Nb)L

2´DW
m ď |hj,m| ď C2(Nb)L

2´DW
m .

Notation 1.17. Given a natural integer m, we set:

hm = L2´DW
m =

N
(DW ´2) m
b

(Nb ´ 1)2´DW
.

Then the following inequality holds:

hjm ď hm.

��

� �

Y ~
m

X

X ~
m

Y

Corollary 1.18 (of Theorem 1.16). For any natural integer m, any integer
j belonging to t0, 1, . . . , Nb ´ 2u, and each word Mm+1 of length m+1, the
two-dimensional Lebesgue measure

µL
(
Rj,m+1,Mm+1

)

of the rectangle Rj,m+1,Mm+1, is such that, for any integer k belonging to
t0, 1, . . . , Nb ´ 2u, any integer ℓ belonging to t0, 1, . . . , Nb ´ 2u, and each
word Mm of length m:

µL(Rj,m+1,Mm+1) ă µL(Rℓ,m,Mm).
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Proof. Given a natural integer m, j in t0, 1, . . . , Nb ´ 2u, and a word
Mm+1 of length m+ 1, the two-dimensional Lebesgue measure of the rec-
tangle Rj,m+1,Mm+1 can be obtained thanks to the values of the cartesian
coordinates of the consecutive vertices TMm+1(Pj) and TMm+1(Pj+1):

µL(Rj,m+1,Mm+1) =
(
x(TMm+1(Pj+1)) ´ x(TMm+1(Pj))

)
ˆ

ˆ
ˇ̌
ˇy(TMm+1(Pj+1)) ´ y(TMm+1(Pj))

ˇ̌
ˇ.

One may then write:

TMm+1 = Tk ˝ TMm , k P t0, 1, . . . , Nb ´ 1u
where Mm is a word of length m. Thus, due to:

y(TMm+1(Pj+1)) = λ y(TMm(Pj+1)) + cos
(

2π

(
x(TMm+1

(Pj+1))+k

Nb

))

y(TMm+1(Pj)) = λ y (TMm (Pj)) + cos
(

2π

(
x(TMm+1

(Pj))+k

Nb

))

and:

x(TMm(Pj+1)) ´ x (TMm (Pj)) = Lm ď |y(TMm(Pj+1)) ´ y(TMm(Pj))|
one has:
ˇ̌
y(TMm+1(Pj+1)) ´ y(TMm+1(Pj))

ˇ̌ ď
ď λ

ˇ̌
y(TMm(Pj+1)) ´ y(TMm(Pj))

ˇ̌
+

+
2π

Nb

ˇ̌
x(TMm(Pj+1)) ´ x(TMm(Pj))

ˇ̌

ď λ
ˇ̌
y(TMm(Pj+1)) ´ y(TMm(Pj))

ˇ̌
+

2π

Nb
Lm

ď
(
λ+

2π

Nb

) ˇ̌
y(TMm(Pj+1)) ´ y(TMm(Pj))

ˇ̌

which yields:

µL
(
Rj,m+1,Mm+1

)
=
Lm

Nb
ˆ ˇ̌
y(TMm+1(Pj+1)) ´ y(TMm+1(Pj))

ˇ̌

ď Lm

Nb
ˆ
"
λ
ˇ̌
y(TMm(Pj+1)) ´ y(TMm(Pj))

ˇ̌
+

2π

Nb
Lm

*

ď Lm

Nb
ˆ
(
λ+

2π

Nb

) ˇ̌
y(TMm(Pj+1)) ´ y(TMm(Pj))

ˇ̌
.
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Due to the symmetric roles played by the integers j and ℓ, one has just
to prove the result for j = ℓ. Since:

µL (Rj,m,Mm) = Lm ˆ ˇ̌
y(TMm(Pj+1)) ´ y(TMm(Pj))

ˇ̌

and, due to Nb ě 3, we get that
1

Nb

(
λ +

2π

Nb

)
´ 1 =

1

N2
b

"
λNbloomoon

ă1

+2π ´N2
b

*
ă 0

which yield the expected result. □

2. A SPECIFIC CLASS OF I.F.S.
Weierstrass-type functions have been previously studied, but under the

Hausdorff dimension point of view. One may refer, for instance, to the
study by B. R. Hunt [7], where the author considers functions defined, for
any real number x, by:

WΘ(x) =
+8ÿ

n=0

an g (bn x+ θn)

where
ř
an is a positive and convergent series, (bn)nPN a positive and in-

creasing sequence, Θ = (θn)nPN a uniformly distribed sequence of numbers
each belonging to [0, 1], and playing the part of arbitrary phases, g being a
Lispchitz and 1-periodic function.
In the case where the following assumptions are satisfied:
(i) there exist two strictly positive real numbers ρ and σ such that:

1 ă ρ ă σ, @n P N : ρ bn ď bn+1 ď σ bn

(ii) there exists D in ]1, 2[ such that:

lim
nÑ+8

ln an

ln bn
= D ´ 2

(iii) there exist a positive integer p, a strictly positive real constant M ,
a constant ℓ in (0, 1), such that for all δ in

[
ℓ

σp , ℓ
]
, and for any real

number x chosen randomly according to a uniform distribution on
[0, 1], the density function of:

x ÞÑ g(x+ δ) ´ g(x)

has a L
p

p´1 norm at most equal to M .
B. R. Hunt [7] shows that for almost every Θ in [0, 1]8, the graph of WΘ

has Hausdorff dimension D. It happens that in the case of such functions,
the Hausdorff dimension is equal to the box-dimension.
Yet, as concerns the lower bound estimate required to obtain the explicit

value of the Hausdorff/box dimension, the author calls for strictly positive
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constants K and K 1 which, as in existing earlier works, are not given ex-
plicitely (see, in the Hunt study, [7, section 3., page 798]). Moreover, no
relation is made with the non-differentiability of such functions.
One may also note that such functions cannot be described by means

of a finite iterated function systems, which does not allow any use of the
Gluing Lemma.
In addition, the fact that the author considers, very generally, Lispchitz

functions g is not specifically justified. It is all the more interesting as
evoked in the above since, if the functions g were contractant ones, one
falls back more easily on classical configurations. In fact, one may just
consider the limit case of functions satisfying a Lipschitz condition with a
Lipschitz constant of value 1.
What seemed of interest to us was to generalize our results to, indeed, a

class of Weierstrass-type functions, but defined through an iterated function
system which would bear analogous properties of the maps Ti, 0 ď i ď Nb ´
1. First, the box-dimension can be obtained rather simply, without calling
for theoretical background in dynamic systems theory, just by applying
a similar method as in [4]. Then, one can also simply prove the non-
differentiability of such functions, as in [5].

Notation 2.1. In the sequel:
(i) N is a strictly positive integer, greater than 2;
(ii) T and M are strictly positive real numbers;
(iii) (αi)0ďiďN´1 P t0, ¨ ¨ ¨ , N ´ 1uN and (βi)0ďiďN´1 P t0, . . . , N ´ 1uN

are ordered sets of positive integers:

@ i P t0, . . . , N ´ 2u : αi ď αi+1, βi ď βi+1

(iv) ψ is a T -periodic, bounded function from R to R satisfying a Lipschitz
condition;

(v) ry is a real number such that:

0 ă ry ă 1, ryN ą 1.

(vi) We set:

rx =
1

N
.

(vii) tϕ0, . . . , ϕN´1u and tφ0, . . . , φN´1u are sets of affine contractive maps
from R to R, of respective ratios rx and ry, defined, for any integer i
of t0, . . . , N ´ 1u, and for any real number x:

ϕi(x) = rx(x+ αi), φi(x) = ry(x+ βi).
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(viii) We denote by tψ0, . . . , ψN´1u the set of maps from R to R such that,
for any integer i of t0, . . . , N ´ 1u:

ψi = ψ ˝ ϕi.

Notation 2.2. We introduce the set of maps from R2 to R2

t rT0, . . . , rTN´1u
such that, for any integer i of t0, . . . , N ´ 1u, and any (x, y) of R2:

rTi(x, y) =
(
ϕi(x), φi(y) + ψi(x)

)
.

Definition 2.3. We introduce the W-type function, defined, for any real
number x, by:

ĂW(x) =
+8ÿ

n=0

rn
y ψ(TNnx).

Property 2.4. For any real number x, the series:

ĂW(x) =
+8ÿ

n=0

rn
yψ(TNnx).

is convergent
Proof. One may simply note that for any real number x:

ˇ̌
rn
y ψ(TNnx)

ˇ̌ À rn
y sup

tPR
|ψ(t)|

which yields the expected result, since
+8ř
n=0

rn
y is a geometric convergent

series. □
Definition 2.5. We will call W-type curve the restriction to [0, T ) ˆ R, of
the graph of the W-type function, and denote it by ΓĂW .
2.6. Theoretical study. We place ourselves, in the following, in the eu-
clidian plane of dimension 2, referred to a direct orthonormal frame. The
usual Cartesian coordinates are (x, y).

Property 2.7. For any integer i of t0, . . . , N ´ 1u, the map rTi admits a
fixed point, that we will denote by rPi:

rPi =

(
αi

N ´ 1
,

βi

1 ´ ry
+

1

1 ´ ry
ψi

(
αi

N ´ 1

))
.

Lemma 2.8. For any integer i belonging to t0, . . . , N ´ 1u, the map Ti is
a bijection of the Weierstrass-type curve on R.
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Proof. Let us consider i P t0, . . . , Nu, a point (y,W(y)) of ΓĂW , and let us
look for a real number x such that:

Ti

(
x,ĂW(x)

)
=
(
y,ĂW(y)

)
.

One has:
y = ϕi(x) = rx (x+ αi)

which yields:
x = r´1

x y ´ αi.

This enables one to obtain:

ĂW(x) = W(r´1
x y ´ αi) =

+8ÿ

n=0

rn
y ψ
(
TNn+1 y ´ T αiN

n i
)

=

=
+8ÿ

n=0

rn
y ψ
(
TNn+1 y

)

due to the T -periodicity of the function ψ, which leads to:
ψ
(
TNn+1 y ´ T αiN

n i
)

= ψ
(
TNn+1 y

)

since αi, N and i are integers. Also:
rTi

(
x,ĂW(x)

)
=
(
ϕi(r

´1
x y ´ αi), φi(ĂW(x)) + ψi(r

´1
x y ´ αi)

)

=

(
y, ry

+8ÿ

n=0

rn
y ψ(TNn+1 y) + ψ(T y)

)

=

(
y,

+8ÿ

n=0

rn+1
y ψ(TNn+1 y) + ψ(T y)

)

=

(
y,

+8ÿ

n=0

rn
y ψ(TNn y)

)

=
(
y,ĂW(y)

)
.

There exists thus a unique real number x such that:
Ti

(
x,ĂW(x)

)
=
(
y,ĂW(y)

)
.

Lemms is completed. □

Theorem 2.9 (An upper bound and a lower bound for the box-dimension
of the Weierstrass-type Curve). For any j P t0, 1, . . . , N ´ 2u, each natural
integer m, and each word M of length m, let us consider the rectangle,
whose sides are parallel to the horizontal and vertical axes, of width:

Lm = x(TM(Pj+1)) ´ x(TM(Pj)) = rm
x
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and height |hj,m|, such that the points TM(Pj) and TM(Pj+1) are two ver-
tices of this rectangle. We set:

C1(N) = 1
1´ry

min
0ďjďN´1

!
(βi+1 ´ βi) +

␣
ψi+1

(αi+1

N´1

)´ ψi

(
αi

N´1

)()´

´ rx
ry

1

1 ´ rx
ry

αj+1 ´ αj

N ´ 1
,

and:

C2(N) =
|βj+1 ´ βj |

1 ´ ry
+

1

1 ´ ry

ˇ̌
ˇ̌ αj+1

N ´ 1
´ αj

N ´ 1

ˇ̌
ˇ̌ + |αj+1 ´ αj |

N (ry ´ rx)
.

If:
C1(N) ě 0

one has:
C1(N)L

2´D ĂW
m ď |hj,m| ď C2(N)L

2´D ĂW
m .

where:
DĂW = 2 +

ln ry
lnN .

which yields the fractal character of the Weierstrass-type Curve, the box-
dimension of which is then DĂW .
Proof. The proof is obtained as in [4]. It is based on the fact that, given
a strictly positive integer m, and two points X and Y of Vm such that:

X „
m
Y

there exists a word M of length |M| = m, on the graph ΓĂW , and an integer
j of t0, . . . , N ´ 2u2, such that:

X = rTM(Pj), Y = rTM(Pj+1).

By writing rTM under the form:
rTM = rTim ˝ rTim´1 ˝ . . . ˝ rTi1

where (i1, . . . , im) P t0, . . . , N ´ 1um, one gets:

x
( rTM(Pj)

)
= rN

x xj +
mÿ

k=1

rk
x αk, x

( rTM(Pj+1)
)

= rN
x xj+1 +

mÿ

k=1

rk
x αk

and

y
(
rTM (Pj)

)
= rm

y yj +
mÿ

k=1

rm´k
y ψk

(
rk
x xj +

kÿ

ℓ=0

rℓ
x αm´ℓ

)
,
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y
(
rTM(Pj+1)

)
= rm

y yj+1 +
mÿ

k=1

rm´k
y ψk

(
rk
x xj+1 +

kÿ

ℓ=0

rℓ
x αm´ℓ

)

This leads to

hj,m ´ rm
y (yj+1 ´ yj) =

mÿ

k=1

rm´k
y

"
ψik

(
rk
x xj+1 +

kÿ

ℓ=0

rℓ
x αm´ℓ

)
´

´ ψik

(
rk
x xj +

kÿ

ℓ=0

rℓ
x αm´ℓ

)*
,

where

rm
y (yj+1 ´ yj) = rm

y

βj+1 ´ βj

1 ´ ry
+

rm
y

1 ´ ry

!
ψj+1

(αj+1

N´1

)´ ψj

( αj

N´1

))
.

Since the maps ψik , 1 ď k ď m, satisfy a Lipschitz condition, with a
Lipschitz constant equal to 1, one has thus:ˇ̌
y(TM(Pj)) ´ y(TM(Pj+1)) ´ rm

y (yj+1 ´ yj)
ˇ̌ ď

ď
mÿ

k=1

rm´k
y rk

x |xj+1 ´ xj | =
mÿ

k=1

rm´k
y rk

x

|αj+1 ´ αj |
N ´ 1

=

= rm
y

rx
ry

1 ´ rm
x

rm
y

1 ´ rx
ry

|αj+1 ´ αj |
N ´ 1

ď rm
y

rx
ry

1

1 ´ rx
ry

|αj+1 ´ αj |
N ´ 1

,

which leads to

y(TM(Pj)) ´ y(TM(Pj+1)) ě rm
y

βj+1 ´ βj

1 ´ ry
+

+
rm
y

1 ´ ry

!
ψi+1

(
αi+1

N´1

)
´ ψi

(
αi

N´1

))
´ rx

rm
y ´ rm

x

ry ´ rx

|αj+1 ´ αj |
N ´ 1

.

If
1

1 ´ ry
min

0ďjďN´1

!
(βj+1 ´ βj) +

!
ψj+1

(
αj+1

N´1

)
´ ψj

(
αj

N´1

)))
´

´ rx
ry

1

1 ´ rx
ry

|αj+1 ´ αj |
N ´ 1

ě 0

due to the symmetric roles played by TM(Pj) and TM(Pj+1), one may only
consider the case when
y(TM(Pj)) ´ y(TM(Pj+1)) ě rm

y
βj+1´βj

1´ry
+

+
rm
y

1´ry

!
ψi+1

(
αi+1

N´1

)
´ ψi

(
αi

N´1

))
´ rm

y
rx
ry

1

1 ´ rx
ry

|αj+1´αj |
N´1 ě 0.



On fractal properties of Weierstrass-type functions 59

which yields

y(TM(Pj)) ´ y(TM(Pj+1)) ě
ě rm

y

"
1

1 ´ ry
min

0ďjďN´1

!
(βi+1 ´ βi) +

!
ψi+1

(
αi+1

N´1

)
´ ψi

(
αi

N´1

)))
´

´ rx
ry

1

1´ rx
ry

αj+1´αj

N´1

*
.

The predominant term is thus

rm
y = em (D ĂW ´2) lnN = Nm (D ĂW ´2) = L

2´D ĂW
m (N ´ 1)2´D ĂW

One also has

|hj,m| ď rm
y |yj+1 ´ yj |+

+
mÿ

k=1

rm´k
y

ˇ̌
ˇ̌ψik

(
rk
x xj+1 +

kÿ

ℓ=0

rℓ
x αm´ℓ

)
´ ψik

(
rk
x xj +

kÿ

ℓ=0

rℓ
x αm´ℓ

)ˇ̌
ˇ̌

ď rm
y

|βj+1 ´ βj |
1 ´ ry

+
rm
y

1 ´ ry

ˇ̌
ˇψj+1

(
αj+1

N´1

)
´ ψj

(
αj

N´1

)ˇ̌
ˇ

+
mÿ

k=1

rm´k
y

ˇ̌
ˇ̌ψik

(
rk
x xj+1 +

kÿ

ℓ=0

rℓ
x αm´ℓ

)
´ ψik

(
rk
x xj +

kÿ

ℓ=0

rℓ
x αm´ℓ

)ˇ̌
ˇ̌

ď rm
y

|βj+1´βj |
1´ry

+
rm
y

1 ´ ry

ˇ̌
ˇαj+1

N´1 ´ αj

N´1

ˇ̌
ˇ +

mÿ

k=1

rm´k
y rk

x |xj+1 ´ xj |

= rm
y

|βj+1´βj |
1´ry

+
rm
y

1 ´ ry

ˇ̌
ˇαj+1

N´1 ´ αj

N´1

ˇ̌
ˇ + |xj+1 ´ xj |rm

y

rx
ry

1 ´ rm
x

rm
y

1 ´ rx
ry

= rm
y

|βj+1´βj |
1´ry

+
rm
y

1 ´ ry

ˇ̌
ˇαj+1

N´1 ´ αj

N´1

ˇ̌
ˇ + |xj+1 ´ xj | rx

rm
y ´ rm

x

ry ´ rx

ď rm
y

|βj+1´βj |
1´ry

+
rm
y

1 ´ ry

ˇ̌
ˇαj+1

N´1 ´ αj

N´1

ˇ̌
ˇ + |xj+1 ´ xj | rx

rm
y

ry ´ rx

ď rm
y

|βj+1´βj |
1´ry

+
rm
y

1 ´ ry

ˇ̌
ˇαj+1

N´1 ´ αj

N´1

ˇ̌
ˇ + rm

y

|αj+1 ´ αj |
N (ry ´ rx)

.

Since

DĂW = 2 +
ln ry
lnN , ry = e(D ĂW ´2) lnN = N (D ĂW ´2),



60 Cl. David

one has thus:

|hj,m| ď rm
y

" |βj+1 ´ βj |
1 ´ ry

+
1

1 ´ ry

ˇ̌
ˇ̌ αj+1

N ´ 1
´ αj

N ´ 1

ˇ̌
ˇ̌ + |αj+1 ´ αj |

N (ry ´ rx)

*
.

Theorem 2.9 is proved. □

Corollary 2.10. The W-type functions are non-differentiable.
Proof. One has simply to use the analogous density property as in 1.11.
Given a natural integerm, and two pointsX = (x,ĂW(x)), Y = (y,ĂW(y))

of the pre-fractal graph ΓĂWm
Ă ΓĂW such that:
x ď y, X „

m
Y

one may write:
X = rTMm,j (Pk), Y = (x+ Lm,W(x+ Lm)) = rTMm,j (Pk+1)

where Mm,j , 0 ď j ď Nm ´ 1 is a word of length m, while k denotes an
integer of the set t0, . . . , N ´ 2u.
One may note that

ˇ̌
ˇx( rTMm,j (Pk)) ´ x( rTMm,j (Pk+1))

ˇ̌
ˇ =

1

Nm
= Lm ÝÑ

mÑ+8 0.

Thusˇ̌
ˇĂW
(
x( rTMm,j (Pk))

)´ ĂW
(
x( rTMm,j (Pk+1))

)ˇ̌
ˇ ě C1(N)L

2´D ĂW
m =

= C1(N)
ˇ̌
ˇx( rTMm,j (Pk)) ´ x( rTMm,j (Pk+1))

ˇ̌
ˇ
2´D ĂW

,

which leads to
ˇ̌
ˇ̌ ĂW
(
x( rTMm,j

(Pk))
)

´ĂW
(
x( rTMm,j

(Pk+1))
)

x
(
rTMm,j

(Pk)
)

´x
(
rTMm,j

(Pk+1)
)

ˇ̌
ˇ̌ ě

ě C1(N)
ˇ̌
ˇx( rTMm,j (Pk)) ´ x( rTMm,j (Pk+1))

ˇ̌
ˇ
1´D ĂW

=

= C1(N)L
1´D ĂW
m ,

where
1 ´DĂW = ´1 ´ ln ry

lnN = ´ ln(ry N)

lnN ă 0

By passing to the limit when the integer m tends towards infinity, one
gets the non-differentiability expected result:

lim
mÑ+8

ˇ̌
ˇ̌
ˇ
ĂW(x+ Lm) ´ ĂW(x)

Lm

ˇ̌
ˇ̌
ˇ = +8.
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where:
lim

mÑ+8Lm = 0.

Corollary is completed. □
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