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On fractal properties of Weierstrass-type
functions

Claire David

Abstract. In the sequel, starting from the classical Weierstrass function

+oo
defined, for any real number z, by W(z) = Z A" cos (27 Ny x), where A
n=0

and N, are two real numbers such that 0 < A <1, Ny € Nand AN, > 1,
we highlight intrinsic properties of curious maps which happen to constitute
a new class of iterated function system. Those properties are all the more
interesting, in so far as they can be directly linked to the computation of the
box dimension of the curve, and to the proof of the non-differentiabilty of
Weierstrass type functions.

Awnorania. Meroro maHol poboTH € y3araJbHEHHS IOIEPEIHIX Pe3y/IbTariB
aBTOpa TPo KiaacwuHy ¢yHKIi0 Beiteprmrpacca ta ii rpadix. Moro moxma
OTPUMATH SIK TPAHMUIO IIOCJIIJOBHOCTI mpedpakTasiB, To0To rpadis, oTpu-
MaHWUX 33 JOMOMOIOI0 iTepaliitHol cucreMu (DYHKIIH, SKi, sIK MPaBUJIO, HE
€ cTuCKaodYuMu BijgobpazkenusaMu. HaToMicTh BOHM MAIOTH B JIEAKOMY CEHCI
€KBIiBaJIEGHTHY BJIACTUBICTb 10 CTUCKAIYUX Bi0OparkeHb, OCKILJIBKUA HA KO-
JKHOMY eTalll iTepalliifHOro IpoIecy, siKhil J1a€ 3MOry OoTpuMaTw Ipedpa-
KTaJIld, BOHM 3MEHIINYIOTH JBOBUMIipHI Mipu Jlebera 3amamHol IOC/IIZOBHOCTI
MIPSIMOKYTHUKIB, IO MOKPUBAIOTH KpuBY. Taki cucremMu QYHKIIN BiIirparTh
IEBHY POJIb Ha TEPIIOMY KpoIli mporiecy mobymosu migkosu Cwmeitna. Bornn
MOXKYTh OYTH BUKOPHUCTAHI JJI TOBEJIEHHST He udepeHIlitoBaHOCTI QyHKITIT
OyIoBU OLIBII IMUPOKUX KJIACIB HEIIEPEPBHUX, aJie Hijle He AudepeHIliHOBHIX
dyukriit. OcTaHHE MUTAHHS MU BUBYATUMEMO B TOJAJBIIHX POOOTaX.
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INTRODUCTION

In his seminal paper of 1981, J. E. Hutchinson 8] introduces, for the first
time, what will be later qualified of “iterated function system” (I.F.S.), as
a finite set of contraction maps, each defined on a compact metric set K of
the euclidean space R?, d € N*:

S:{Tl,...,TN}, N e N*

where N* denotes the set of strictly positive integers, such that

N
K = Ty(K)

The compact set K is then said to be “invariant” with respect to the set S
(one often refer to this result as the “Gluing Lemma”).

A prequel occurence of such maps, under the form of similitudes, can
already be found in the Mandelbrot books of 1977 [11], [12].

Hutchinson’s novelty is to consider not the compact K itself, but the
set §, which arises naturally, in so far as the invariant compact K is fully
determined by the set &, and, interestingly, is also the limit of a sequence
of pre-fractal graphs that can be built, in an iterative way, thanks to the
maps that constitute the set S.

Following this work, iterated function systems were taken up and even
more developed by M. F. Barnsley et al. [2]|, as “a unified way of generat-
ing and classifying a broad class of fractals”. As explained by the authors,
fractals were “traditionally viewed as being produced by a process of suc-
cessive microscopic refinement taken to the limit”, which, of course, makes
sense with the geometric representation one may have of fractal sets, since,
when looking at smaller and smaller scales, one finds, again and again, the
same form. Of course, at stake are specific and classical types of fractals,
as Sierpinski gaskets, dragon curves, Cantor sets, Julia curves, etc. For
M. F. Barnsley and S. Demko, those fractals are to be seen as the attrac-
tors of iterated function systems, which, of course, joins the approach of
J. E. Hutchinson.

M. F. Barnsley and S. Demko place themselves in a probabilistic approach.
Given still a compact metric space K, the related Banach space C'(K) of
real-valued functions defined on K, with respect to the norm

f e C(K) — | fllo=max {|f(x)],z € K}
and a finite collection
w={wy,...,wn}, N eN*

of Borel measurable functions from K to K, they define the set {K,w} as
an iterated function system if and only if there exists an associated set of
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positive real numbers

N
{p1,...,pn}, Vie{l,...,N} :p; >0, sz‘zl
=1

such that the operator T' on C'(K), given, for any f of C'(K), by

N
Vee K: T(f)(zx)= sz' (f ow;)(x)

has the property:
T(C(K)) c C(K).
Treating w as a set-valued function, through
Vee K : w(x) ={w(x),...,un(x)}

they then naturally introduce, for the i.f.s. {K,w}, and a given x of K, the
related attractor
— T o™
Alw) = lm o™ (x)
in the sense:

lim [w" () — A(x)] = 0.

n— 400

Classical fractal sets as, for instance, the Sierpinski Gasket, fit this defi-
nition.

In our previous work on the Weierstrass curve [4], which, as exposed,
for instance, by A. S. Besicovitch and H. D. Ursell [3|, or, a few years
later, by B. Mandelbrot [11], bears fractal properties, we showed that the
curve could be obtained by means of a sequence a graphs (I'w,, ), .oy, that
approximate the studied one. This is done using a family of nonlinear
C® maps from R? to R?, which happen not to be contractions, in the
aforementioned classical sense. The nonlinearity does not enable one to
resort to the probabilistic approach of M. F. Barnsley and S. Demko, since
there does not exist a constant associated set of probabilities. Yet, even
if they are not contractions, our maps bear what can be viewed as an
equivalent property, since, at each step of the iterative process, they reduce
the two-dimensional Lebesgue measures of a given sequence of rectangles
covering the curve. This is due to the fact that they correspond, in a sense,
to the composition of a contraction of ratio r, in the horizontal direction,
and a dilatation of factor r, in the vertical one, with

Te Ty < 1.

Such maps are considered in the book of Robert L. Devaney [6], where
they play a part in the first step of the horseshoe map process introduced
by Stephen Smale.
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The Weierstrass curve is invariant with respect to the set of those maps,
which makes it possible to dispose of an equivalent result of the Gluing
Lemma. But what deserves to be enlightened, in our case, is that the
intrinsic properties of those curious maps make them all the more interes-
ting, in so far as they can be directly linked to the computation of the
box dimension of the curve, and to the proof of the non-differentiabilty of
the Weierstrass function, as shown in [5]. All the more is the generaliza-
tion to a broader class of applications that could, then, enable one to build
everywhere continuous, though nowhere differentiable, functions, as we will
expose it in the sequel.

1. THE CASE OF THE WEIERSTRASS FUNCTION

Notation 1.1. In the following, A and b are two real numbers such that:
O<)\<1, b:NbEN, )\Nb>1.

We deliberatly made the choice to introduce the notation N, which replaces
the initial b, in so far as, to the origins, b is any real number, whereas we
deal with the specific case of a natural integer that we consequently choose
to denote by Np, as an echo to the initial b.

The Weierstrass function, introduced in 1875 by K. Weierstrass [13],
known as one of these so-called pathological mathematical objects, contin-
uous everywhere, while nowhere differentiable, is the sum of the uniformly
convergent trigonometric series, defined, for any real number z, by:

40
W(x) = Z A" cos (2mNy'z) .
n=0
Definition 1.2. (Weierstrass Curve). We will call Weierstrass Curve the
restriction to [0, 1) x R, of the graph of the Weierstrass function, and denote
it by Fw.

Theoretical study. We place ourselves, in the following, in the euclidian
plane of dimension 2, referred to a direct orthonormal frame. The usual
Cartesian coordinates are (z,y).

Property 1.3. (Periodic properties of the Weierstrass function). For any
real number x:

+00 T
W(x+1) = 2 A" cos (2T Ny'x + 27 Ny') = Z A" cos (2T Ny'z) = W(x).
n=0 n=0

The study of the Weierstrass function can be restricted to the interval [0, 1).

By following the method developed by J. Kigami [10]|, we approximate
the restriction I'yy to [0,1) x R, of the Weierstrass Curve, by a sequence of
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graphs, built through an iterative process. To this purpose, we introduce
the iterated function system of the family of C® maps from R? to R?:

{Tov, ..., Tn,-1}

where, for any integer i belonging to {0,..., Ny — 1} and any (z,y) of R?:

Ti(z,y) = (%’bl, Ay + cos (27‘(’ %)) :

Np—1
Property 1.4. [4]. T'yw = |J T:i(Tw).

i=0
Definition 1.5. (Word on the graph I'yy). Let m be a strictly positive
integer. We will call number-letter any integer M; of {0,..., N, — 1}, and
word of length | M| = m, on the graph I')y, any set of number-letters of the
form:

M= (My,...,My).
We will write:
Thm=Tpm,0-0Tq,,-

Definition 1.6. For any integer ¢ belonging to {0, ..., N, — 1}, let us denote
by:

Pi= (o) = (w0 s cos (7))
the fixed point of the map 7.

We will denote by Vj the ordered set (according to increasing abscissa),
of the points:

{P()v"')PNb—l}
since for any i of {0,..., N, — 2}:

Ti < Tit1-

The set of points Vy, where, for any i of {0,..., N, — 2}, the point P;
is linked to the point P;yi, constitutes an oriented graph (according to
increasing abscissa), which we will denote by I'yy,. In turn, Vj is called the
set of vertices of the graph I'yy,.

For any natural integer m, we set:

Np—1
V= |J T (Vin-1)-
i=0
The set of points V,,, where two consecutive points are linked, is an

oriented graph (according to increasing abscissa), which we will denote by
I'y,,. Again V,, is called the set of vertices of the graph I'yy, . In what
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follows we will denote by NS the number of vertices of the graph I'yy, , and
write:

Voo = { S5 8P St 1}
Property 1.7. For any natural integer m:
Vin © Vipt1.
Property 1.8. For any integer ¢ belonging to {0,..., N, — 2}:
T; (Pn,-1) = Ti41 (Fo) -

Y

Py

FIGURE 1.1. Fixed points Py, P1, P», and the graph I'yy,,
in the case when \ = % and Ny = 3.

y

P,

(]
! To (P2)=T1 (Po) Ty (P2) =Tz (Po) /
/\ /\ » x
\/ \/ 1
Py To (P1) T2 (P1)

Py

FIGURE 1.2. Graph I')y,, in the case when \ = %, Ny = 3,
T()(Pg) = Tl(P()), and Tl(Pg) = TQ(Pl)

Definition 1.9. (Vertices of the graph I'yy). Two points X and Y of I'yy
will be called vertices of the graph I'yy if there exists a natural integer m

such that:
(X,Y) e Vy

Definition 1.10. (Consecutive vertices on the graph I'yy). Two points X
and Y of T'yy will be called consecutive vertices of the graph I'yy if there
exist a natural integer m, and an integer j of {0, ..., N, — 2}, such that:

{ X=(T,0...0T;,) (F)

{’il,...,i }E{O,...,Nb—l}m
Y =(Ti,0...0T,) (Pi1) "
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y

N 7

\ -
" N/

FIGURE 1.3. Graphs I'yy, (in green), I'yy, (in red), I'yy, (in
orange), I'yy (in cyan), in the case where A = £ and N}, = 3.

or:
X = (T’Z1 O EQ ©0...0 Crim)(PNb—l)a Y = (1—;21—1—1 @) fTiQ ...0O sz)(Po)
Property 1.11. The set |J V,, is dense in T'yy.

meN

Definition 1.12. (Edge relation, on the graph I')y). Given a natural in-
teger m, two points X and Y of I'yy,, will be called adjacent if and only if
X and Y are two consecutive vertices of I'yy,,. We will write:

X~Y

m

This edge relation ensures the existence of a word M = (My,..., M)
of length m, such that X and Y both belong to the iterate:

TmVo=(Tm,0---0Tm,,) Vo

Given two points X and Y of the graph I'yy, we will say that X and Y
are adjacent if and only if there exists a natural integer m such that:

X~Y

m

Proposition 1.13 (Adresses, on the Weierstrass Curve). Given a strictly
positive integer m, and a word M = (My,..., My,) of length m € N*, on
the graph T'yy,,, for any integer j of {1,..., Ny —2}, any X = Ta(P;) of
Vin\Vo, i.e. distinct from one of the Ny fized point P;, (0 < i < N, —1),
has exactly two adjacent vertices, given by:

Tm(Pjt1) and Tam(Pj-1)

where:
Tmy=Tpm,0--0T\,,-

By convention, the adjacent vertices of Ta(Py) are Ta(P1) and Ta(Pn,—1),
those of Ta(Pn,—1), Trm(Pn,—2) and T (Fo)-
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Notation 1.14. For any integer j belonging to {0, ..., Ny — 1}, any natural
integer m, and any word M of length m, we set:

Tm(Py) = (2(Tm(Fy)), y(Tm(P)))),
Ly = 2(Tm(Pjy1)) — 2(Tm(P)) =

hjm = y(Tm(Pj+1)) — y(Tm(P))-

1
(Np — 1) Ny

L
m Twm (Pjs1)

Notation 1.15. We will denote by

In \

Dyy =2
w +1an

the Hausdorff dimension of I'y, see [1], 9]

Theorem 1.16 (An upper bound and a lower bound, for the box-dimension
of the Weierstrass Curve). [4] For any integer j belonging to

{0,1,...,N, — 2},

each natural integer m, and each word M, of length m, let us consider the
rectangle R;m . m.,,, whose sides are parallel to the horizontal and vertical
axes, of width:

1
(Np — 1) Ny"

L = 2(Tpm,, (Pj11)) — 2(Tm,, (P})) =

and height |h; |, such that the points T, (P;) and Th,,(Pj+1) are two
vertices of this rectangle. We set:

o @Ny—DANE - 1) 2N
=2 {uvb SIE - NONE—T) T W= NG - 1>}'
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_ . . . 2j+1) o 1
Ny, —1)2-Dw ] _2_ip (L) min ‘sm(w( J ))—
(Ny ) T—X Ny—1) 0<j<Np—1 Np—1 Np (Np—1) ANp—1 (>

if Ny s odd,

= _ . : . w(2j+1
C1(No) (N — 1)2~Pw max{ —2_ sin ( —2— min |sin ZIHD |
T—x Mo—1) o< oN, —1 Np—1
—2
___2n 1 4 1-N
Np(Np—1) ANp—1’ NZ NZ—1 |’

if Ny is even.
and:
Co(Np) = nw(Ny — 1)> P,
Then:
Cr(Np) Ly PV < |hjm| < Co(Np) Ly 2w

Notation 1.17. Given a natural integer m, we set:

(Dyw—2)m
" (Np — 1)~ Pw
Then the following inequality holds:
hjm < hyy,.

Corollary 1.18 (of Theorem 1.16). For any natural integer m, any integer
j belonging to {0,1,..., Ny — 2}, and each word M,4+1 of length m+1, the
two-dimensional Lebesque measure

e (Rjm+1, Monsr)

of the rectangle Rjmi1,Mumy1, 18 Such that, for any integer k belonging to
{0,1,..., Ny — 2}, any integer £ belonging to {0,1,..., Ny — 2}, and each
word M., of length m:

/JE(Rj,m—i—l,Merl) < Mﬁ(R&m,Mm)'
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Proof. Given a natural integer m, j in {0,1,..., N, — 2}, and a word
M, 41 of length m + 1, the two-dimensional Lebesgue measure of the rec-
tangle R m11,M,,,,; can be obtained thanks to the values of the cartesian
coordinates of the consecutive vertices Tvy,, ., (P;) and Trq,,,, (Pj+1):

HE Rt Mnis) = (2T (Pr1)) = 2(Tat i (P))
X NY(T M1 (Pj1)) = YTy (B5)) -
One may then write:
Totyy = ThoTan,, ke{01,...,Ny,—1}

where M., is a word of length m. Thus, due to:

Y(Tr,, ., (Pis1)) = Ay(T,, (Pjs1)) + cos (27r (I(TMm-s-}\;bpﬂ-l))"i—k))

VTt () = N (Tt (P) + cos (2 (Pt B2 )
and:
(T, (Pj41)) — @ (Tay, (Pj)) = Lin < [y(Tat, (Pjs1)) — Y(Tn,, (P5))]
one has:
Y(Tryr (Pi41)) = Y(Tar (P))] <
< My(Ta,, (Pj+1)) — y(Tn,, ()| +
+ %‘x(TMm (Pjy1)) — (T, (P]))‘

2m

< My(Tm,, (Pi+1)) — y(Tan,, (Py))] + N Lm

< ()\ T ﬁb) Y(Tr, (Pit1) = Y(Tim,,, (Fy)))]
which yields:

o <'Rj,m—|—1,/\/lm+1> = Fb X |y(TMm+1 (Pj-l-l)) - y(TMm+1 (PJ))‘

IN
|

N, < {)“y(TMm(PH—l)) — y(T,, (Py))| + %Lm}

N
|

L,, 21
N, X <)\ + E) ‘y(TMm(Pj—{—l)) — ZJ(TMm(Pj))’-
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Due to the symmetric roles played by the integers j and ¢, one has just
to prove the result for j = £. Since:

pe (Rjm M) = L X [y(Tan,,, (Pi1)) = y(Tan,, (P5))]
and, due to N, > 3, we get that

1 21 1
— (A +Z= ) 1= =1 AN, 12r— N2V <0
Ng( +NJ zﬁ{sﬁb+ﬁ b}

<

which yield the expected result. ]

2. A SPECIFIC CLASS OF I.F.S.

Weierstrass-type functions have been previously studied, but under the
Hausdorff dimension point of view. One may refer, for instance, to the
study by B. R. Hunt [7], where the author considers functions defined, for
any real number x, by:

+0
W@(JJ) = Z ang(bnx‘i‘en)

n=0
where Y a, is a positive and convergent series, (by,)neny a positive and in-
creasing sequence, © = (0,,),en a uniformly distribed sequence of numbers
each belonging to [0, 1], and playing the part of arbitrary phases, g being a
Lispchitz and 1-periodic function.
In the case where the following assumptions are satisfied:

(i) there exist two strictly positive real numbers p and o such that:
l<p<o, VneN: pb,<bpy1<o0b,
(ii) there exists D in |1,2[ such that:

lnan:D_2

nl—l>rn{loo In b,

(iii) there exist a positive integer p, a strictly positive real constant M,
a constant ¢ in (0, 1), such that for all ¢ in [%,ﬂ, and for any real
number x chosen randomly according to a uniform distribution on
[0, 1], the density function of:

z = g(x+9) - g(z)

_Db_
has a Lr-! norm at most equal to M.

B. R. Hunt |7] shows that for almost every © in [0, 1]*, the graph of Wg
has Hausdorff dimension D. It happens that in the case of such functions,
the Hausdorff dimension is equal to the box-dimension.

Yet, as concerns the lower bound estimate required to obtain the explicit
value of the Hausdorff/box dimension, the author calls for strictly positive
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constants K and K’ which, as in existing earlier works, are not given ex-
plicitely (see, in the Hunt study, |7, section 3., page 798]). Moreover, no
relation is made with the non-differentiability of such functions.

One may also note that such functions cannot be described by means
of a finite iterated function systems, which does not allow any use of the
Gluing Lemma.

In addition, the fact that the author considers, very generally, Lispchitz
functions ¢ is not specifically justified. It is all the more interesting as
evoked in the above since, if the functions g were contractant ones, one
falls back more easily on classical configurations. In fact, one may just
consider the limit case of functions satisfying a Lipschitz condition with a
Lipschitz constant of value 1.

What seemed of interest to us was to generalize our results to, indeed, a
class of Weierstrass-type functions, but defined through an iterated function
system which would bear analogous properties of the maps T;, 0 < ¢ < Np—
1. First, the box-dimension can be obtained rather simply, without calling
for theoretical background in dynamic systems theory, just by applying
a similar method as in [4]. Then, one can also simply prove the non-
differentiability of such functions, as in [5].

Notation 2.1. In the sequel:

(i) N is a strictly positive integer, greater than 2;
(ii) T and M are strictly positive real numbers;
(iii) (cv)o<i<n—1 € {0,--- , N — 1} and (B;)o<icn-1 € {0,...,N — 1}V
are ordered sets of positive integers:

Vie{0,...,N—=2}: <1, Bi<Bin

(iv) v is a T-periodic, bounded function from R to R satisfying a Lipschitz
condition;
(v) 7y is a real number such that:

O<ry <1, ryN>1.

(vi) We set:
1
Iy = 57
(vii) {é0,...,0Nn-1} and {po,...,pN—_1} are sets of affine contractive maps

from R to R, of respective ratios r, and ry, defined, for any integer i
of {0,..., N — 1}, and for any real number x:

¢i(z) = ra(z + i), pi(z) = ry(z + Bi).
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(viii) We denote by {1, ...,n—_1} the set of maps from R to R such that,
for any integer i of {0,..., N —1}:

Vi = o ¢
Notation 2.2. We introduce the set of maps from R? to R?
{Toy - Tn-1}

such that, for any integer i of {0,..., N — 1}, and any (z,y) of R?:

Ti(x,y) = (¢i(2), wi(y) +bi(x)).

Definition 2.3. We introduce the W-type function, defined, for any real

number z, by:
+00

W(z) = > ri (TN ).

n=0

Property 2.4. For any real number z, the series:
W(x) = > rip(TN"z).
n=0

is convergent

Proof. One may simply note that for any real number z:

ry W(TN"2)| < 7y sup [(t)]
teR

+0

which yields the expected result, since >, ry 1s a geometric convergent
n=0

series. [

Definition 2.5. We will call W-type curve the restriction to [0,7) x R, of
the graph of the W-type function, and denote it by L'y

2.6. Theoretical study. We place ourselves, in the following, in the eu-
clidian plane of dimension 2, referred to a direct orthonormal frame. The
usual Cartesian coordinates are (x,y).

Property 2.7. For any integer i of {0,..., N — 1}, the map TZ admits a
fixed point, that we will denote by F;:

P, = : :
' (N—l’l—ry+1—rwa<N—1>>

Lemma 2.8. For any integer i belonging to {0,...,N — 1}, the map T; is
a bijection of the Weierstrass-type curve on R.
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Proof. Let us consider i € {0,..., N}, a point (y, W(y)) of I'j3;, and let us
look for a real number x such that:

Ty (2, W(x)) = (v, W(y))-

One has:

Yy = ¢z(w) =Tz (JI + ai)
which yields:

T = r;l Y — Q.

This enables one to obtain:

40
W) =Wy — o) = Z Ty Y (TN" 'y —Ta; N™i) =

n=0
40
= > g (TN y)
n=0
due to the T-periodicity of the function v, which leads to:

W (TN" Mty —Ta; N"4) = (TN y)
since «;, N and ¢ are integers. Also:
Tifa W(@) = (65" y = @), @ilW@)) +ir7"y — )

+00
= | y,ry ),y (TN 1y) + @D(Ty))

n=0

—+00
= [, ), iy (TN y) +¢(Ty)>

n=0

+00

= [y, ), ryw(TN" y))

n=0
There exists thus a unique real number x such that:

T;(x, W(x) = (3, W(y)).

Lemms is completed. ]

Theorem 2.9 (An upper bound and a lower bound for the box-dimension
of the Weierstrass-type Curve). For any j € {0,1,..., N —2}, each natural
integer m, and each word M of length m, let us consider the rectangle,
whose sides are parallel to the horizontal and vertical axes, of width:

L, = 2(Tpm(Pj11)) — 2(Tm(Py)) =y’
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and height |hjm|, such that the points Ty (Pj) and Ty (Pj+1) are two ver-
tices of this rectangle. We set:

Ci(N) = =2 min {(5i+1 — Bi) + {ir1 (F2) — ¢i(Na—i1)}} -

Ty 0<j<N -1

Tx 1 Q541 — Oy

ryl—2= N-1"

Ty
and:
1Bi+1 — 5j] 1 g1 o i1 —
N) = — .
Ca(N) 1—ry +1—7"y N—-1 N-1| N(ry—rg)
If:
Ci(N) =0
one has:
CLUN) L 2% < || < Co(N) L2 P
where:
Inr,
DW =2+ LN

which yields the fractal character of the Weierstrass-type Curve, the bozx-
dimension of which is then Dy;.

Proof. The proof is obtained as in [4]. It is based on the fact that, given
a strictly positive integer m, and two points X and Y of V,, such that:

X~Y

m

there exists a word M of length [M| = m, on the graph I'j3;, and an integer
j of {0,..., N — 2}2, such that:

X =Tm(P)), Y = Tm(Pjy1).

By writing T 'm under the form:

~ ~

Tw=1,0T, ,o0...0T5

where (i1,...,4m,) € {0,..., N — 1}, one gets:

z(Tm(Py)) = r x4 Z R ay, x(TM(PjH)) =Y w0+ Z R ay,
k=1 k=1
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m k
y (TM(Pj+1)) =ity L (rﬁ Tiy1+ )T amﬁ)

k=1 =0
This leads to

m
hjm — (yg+1 y;) = Z Zl k{%k (r x3+1+2r Oyp— g)
k=1 =0
k
— iy (rﬁ Tj+ YTk am—e) },
=0
where
Bit1 — 5 Ty
e — ) =y P U s () — ()}
— Ty Ty

Since the maps v;,, 1 < k < m, satisfy a Lipschitz condition, with a
Lipschitz constant equal to 1, one has thus:

(T (P))) — y(Tam(Pig)) — ry (yi1 — y5)] <
S m—k .k S m—k K |%+1 —
< Zry Tz |$j+1_$j‘ - Ty Tz N —1 -
k=1 k=1
_ Tz
_omTe - g —al e L |aji —
Yoy l-Z  N-1 Yoy l-t N-1
which leads to
Bjr1 — B
Yy(Trm(P5)) = y(Tm(Pj11)) = 1)) ]1 — T+
Y
,,,.m o rr'm_fr'm ‘a _a‘
Qit1 oy - y x Jj+1 J
F Qe (3) o ()} - o P
If
1

min {(Bj—f—l — Bj) + {¢j+1 (Ojifjji

1 -7, 0gj<N-1

. _a.
J
= >0
Ty =
ry =g, N-1

due to the symmetric roles played by T (P;) and T (Pj+1), one may only
consider the case when

Y(Tam(P})) — y(Taa(Pjs1)) = i Bl g

17’y

rm a . 1 |ajp1—al
Y 141 _ . (07 M Ty J+1 7
+ 1, {%H ( ) i (N—Zl)} Ty 5, T_ T2 N-T = 0.

Ty
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which yields

Y(Tm(FPy)) — y(Tm(Pjs1)) =
=1y { 1 —17“y 0<jngj$_1 {(5z‘+1 — i) + {¢¢+1 (f\lfﬂ) — (%) }} —

T 1 Q417G
Ty 1_T_5E N-1 :

The predominant term is thus
T;TL — €m (Dw—2) InN — Nm (DVNV_Z) — Lm w (N _ 1)2—DV~V
One also has

|hjm| < 7" Y541 — yil+

m k k
—k k V4 k V4
+ Z 7“;7 Vi, (Tx Tj1 + Z Ty Oém—e) — iy, (Tx Tj+ Z Ty am—é)
m
< M ‘5j+1_5j|+ Ty ‘Q/Mrl (aj+1)_¢.< o )‘
~
Y 1—r, 1—r, J N—1 J\N=1
m k k
m—k k V4 k V4
o T PN CTRES 2 R O P
Bia—pl . Ty N
m i+1—05 Yy Q41 . Qi m—k k . _ .
STy T—ry + 1—, |N-T7 N-I + 2 Ty Ty [Tj11 — 2]
y k=1
Tz
. . rim . . r —rm
m |B]+1_B]| Y Q541 Qj m T Y
—r — + |xjp1 — x| — ———
y  1—r _ N—1 N-1 J+ Iy [
Yy 1 Ty Ty 1 ngj
rm rm _ pm
m |Bj+1—PBil y Qji1 aj Yy i
— — +|zjp1 — x| ry —
Y 1—ry 1 — ry N-1 N—-1 | J+ J‘ x Ty — T
m m
. T ) ) T
< M |ﬂ]+1 BJ| Y Q41 &y +lzing —xq|r Y
=y 1—7ry 1_Ty N-1 N—1 | J+ J‘ T ry —To
m
< M |Bj+1—B5] + Ty Uil Q| 4 m M
< )
T — 1—r, N—1_  N-1 Y N (Ty —ry)
Since
Inr o o
Dy =2+ ¥, ry = P2 MN _ N(D7-2)
InN
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one has thus:

|Bj+1 — Bj 1| oyt v |aj1 — oy
him| <rl? — )
hjam| <1 { 11, 1-r,|N-1 N—1| N(ry—ra)
Theorem 2.9 is proved. l

Corollary 2.10. The W-type functions are non-differentiable.

Proof. One has simply to use the analogous density property as in 1.11.

Given a natural integer m, and two points X = (z, W(z)), Y = (y, W(y))
of the pre-fractal graph I'; < L'y such that:

r<y, X~Y
m
one may write:
X = f/\/lm,j (Pki)v Y = (‘I + L, W(ZL' + Lm)) = TMm,j (Pk+1)

where M,,, j, 0 < j < N™ — 1 is a word of length m, while k£ denotes an
integer of the set {0,..., N —2}.
One may note that

(T, , (Pe) = 2(Tat , (Pen))| = 5 = L, —> 0.
Thus
~ ~ 2D~
‘W TMmJ(Pk:))) W(ZL’(TMmJ(Pk—}—l)))‘ > Ci(N) Ly, =
2_DW
= Ci(N) [2(Tat,,, (P)) = 2(Tog, (Prs))|
which leads to
'W<$(TMmJ(Pk ) (m(TM Pk+1 )‘ >
I(TMm,j (Pk)) <’1~1 m,j (Pk"‘l))
~ ~ 1-D
> CUN) [o(Tat,,,, (P) = 2T, (Prst)| 7 =
= Cy(N) Ly, %,

where

Inr, ln(ry N)

InN In N
By passing to the limit when the integer m tends towards infinity, one

gets the non-differentiability expected result:

W(z + L) — W(z)
L,

1Dy =—1- <0

lim

m—+00

= +00.
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where:
lim L,, =0.
m——+00 m
Corollary is completed. O
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