УДК 548.736.4

Андрій СТЕЦЬКІВ

ФАЗОВІ РІВНОВАГИ У ПОТРІЙНІЙ СИСТЕМІ Dy-Li-Si ЗА ТЕМПЕРАТУРИ 400 °С

Івано-Франківський національний медичний університет, вул. Галицька, 2, 76018 Івано-Франківськ, Україна e-mail: andrijstetskiv69@gmail.com

Методами рентгенофазового та локального рентгеноспектрального аналізів досліджено взаємодію компонентів та побудовано ізотермічний переріз діаграми стану системи Dy-Li-Si в концентраційному інтервалі 30–100 ат. % Si за температури 400 °C. У досліджуваній системі вперше виявлено утворення шести нових тернарних фаз. Для сполук складів DyLiSi₂ (CT NdRuSi₂, символ Пірсона mP8, просторова група P2₁/m, a = 0.4010(1), b = 0.3869(1), c = 0.8119(2) нм, $\beta = 102.32(1)^\circ$, $R_B = 0.066$), DyLiSi (CT ZrNiAl, символ Пірсона hP9, просторова група P-62т, a = 0.7011(2), c = 0.4193(1) нм, $R_B = 0.059$), DyLi_{0.35}Si_{1.65} (CT α -ThSi₂, символ Пірсона t112, просторова група I4₁/amd, a = 0.4039(2), c = 1.3912(5) нм, $R_B = 0.073$) визначено кристалічну структуру методом порошку. Для dva DyLi₃Si₄, DyLi₃Si ma Dy₄LiSi₄ сполук DySi₂, DySi_{2-x}, DySi₄, Dy₅Si₃, Li₂₂Si₅, Li₁₃Si₄, Li₁₄Si₆, Li₁₂Si₇, Li₂Si. За температури відпалу в системі не утворюються протяжні тверді розчини на основі бінарних фаз.

Ключові слова: потрійна система, фазові рівноваги, інтерметалічна сполука, кристалічна структура.

Головними способами пошуку нових матеріалів з певним комплексом фізикохімічних властивостей залишаються: вивчення діаграм фазових рівноваг багатокомпонентних систем; визначення кристалічної структури сполук, які утворюються в них; комплексне дослідження властивостей сплавів. Серед інтерметалічних сполук, які останнім часом активно вивчають, велику увагу приділяють сполукам, що утворюються в системах, які містять у своєму складі рідкісноземельні метали та Літій.

Літературні дані інформують про ізотермічні перерізи діаграм стану систем Ce–Li–Si [1], Gd–Li–Si [2], Ho–Li–Si [3] та Er–Li–Si [4], які систематично вивчали за температури 200 °C. Вони характеризуються утворенням невеликої кількості потрійних сполук (максимум – 4 – у системах Ce–Li–Si, Gd–Li–Si i Ho–Li–Si) й областями незмішування з бінарними системами P3M–Li, які простягаються в потрійні системи до максимального вмісту Силіцію у 23 ат. %. Усі решта системи вивчали лише з метою пошуку інтерметалічних сполук певних стехіометричних складів і дослідження їх властивостей (зокрема, системи La–Li–Si, Pr–Li–Si, Nd–Li–Si, Sm–Li–Si, Eu–Li–Si та Yb–Li–Si).

Мета нашої праці – вивчити взаємодію компонентів у системі Dy-Li-Si в концентраційному інтервалі 30–100 ат. % Si за температури 400 °C, побудову ізотермічного перерізу діаграми стану та визначити кристалічну структуру нових тернарних сполук, що утворюються в ній.

Для бінарної системи Dy–Si діаграму стану не побудовано, вивчали методом рентгеноструктурного аналізу лише окремі зразки на предмет утворення сполук, відтак, встановлено існування п'яти інтерметалідів. Подвійну систему Li–Si [5] досліджено достатньо добре. Для неї побудовано діаграму стану та визначено кристалічні структури сполук. Кристалографічні характеристики подвійних фаз вищезгаданих систем наведено в табл. 1.

Таблиця 1

Кристалографічні характеристики бінарних сполук систем Li–Si та Dy–Si

Table	1
1 00000	-

Crystallographic data of binary compounds of Li–Si and Dy-Si systems							
Сполука	СТ	СП	ПГ	Параметри комірки, нм		Літ-ра	
				а	b	С	
Li ₂₂ Si ₅	Li ₂₂ Pb ₅	cF432	F-43m	2,008	2,008	2,008	6
Li ₂₁ Si ₅	Li ₂₁ Si ₅	cF416	F-43m	1,8710	1,8710	1,8710	7
Li ₂ Si	Li ₂ Si	mS12	C2/m	0,7700	0,4410	0,6560	8
					$\beta = 113,4^{\circ}$		
Li ₁₃ Si ₄	Li13Si4	oP34	Pbam	0,799	1,518	0,443	9
Li ₇ Si ₂	Li ₇ Si ₂	oP36	Pbam	0,799	1,521	0,443	9
Li ₁₄ Si ₆	Li_5Sn_2	hR21	<i>R</i> -3 <i>m</i>	0,4435	0,4435	1,8134	10
$Li_{12}Si_7$	Li ₁₂ Si ₇	oP152	Pnma	0,8600	1,9755	1,4336	10
LiSi	MgGa	<i>tI</i> 32	$I4_1/a$	0,9353	0,9353	0,5743	11
Dy ₅ Si ₄	Gd_5Si_4	oP36	Pnma	0,73673	1,45245	0,76616	12
Dy ₅ Si ₃	Mn ₅ Si ₃	hP16	$P6_3/mcm$	0,839	0,839	0,628	13
DySi	TlI	oS8	Cmcm	0,42438	1,04857	0,38151	12
DySi ₂	α -GdSi ₂	oI12	Imma	0,4032	0,3933	1,3306	14
DySi _{2-x}	AlB ₂	hP3	P6/mmm	0,3837	0,3837	0,4111	15

Для дослідження системи було виготовлено 43 подвійних і потрійних сплави. Зразки масою 1 г синтезували методом електродугового плавлення шихти з компактних металів високої чистоти (Dy з вмістом основного компоненту не менше 0,998 мас. частки, Li – 0,9996 мас. частки, Si – 0,9999 мас. частки).

Приготовлену шихту із наважок чистих компонентів плавили в електродуговій печі з вольфрамовим електродом на мідному водоохолоджуваному поді в атмосфері очищеного аргону (99,998 об'ємних % Аг) під тиском 1,0 атм. Як гетер використовували губчастий титан. Втрати під час плавлення не перевищували 1 мас. % для кожного сплаву, тому склад сплавів приймали таким, що дорівнює складу шихти. Одержані зразки відпалювали у вакуумованих кварцових ампулах при температурі 400 °С впродовж 480 год. Відпалені сплави гартували в холодній воді, не розбиваючи ампул.

Фазовий аналіз синтезованих зразків проводили за масивами експерименттальних даних дифракції рентгенівського випромінювання, одержаних за допомогою дифрактометрів ДРОН-2,0М (Fe K α -випромінювання) та URD-6 (Cu K α -випромінювання). Для детальнішого вивчення кристалічної структури використовували масив даних, отриманих на дифрактометрах STOE STADI P (Cu K α -випромінювання) та URD-6 (Си Ка-випромінювання) при кімнатній температурі. Щоб запобігти текстуруванню, зразки наносили на поверхню кварцевої кювети у вигляді пасти з порошку сплаву, розтертого в індиферентній олії. Для усунення інструментальних похибок, що впливають на точність вимірів кутів відбить на дифрактограмі, в досліджуваний сплав вводили внутрішній стандарт – порошок Силіцію ($a_{\rm Si} = 0,543107$ нм).

Розрахунки та індексування порошкових дифрактограм проводили з використанням програм LATCON [16] (уточнення періодів гратки) і POWDER CELL-2.3 [17] (розрахунок теоретичних дифрактограм). Розрахунки для уточнення структури зразків проводили за допомогою програм WinCSD [18] та FullProf 98 [19]. Для з'ясування та підтвердження фазового складу деяких зразків системи застосовували метод енергодисперсійної рентгенівської спектроскопії (ЕДРС) у поєднанні з растровим електронним мікроскопом PEMMA-102-02.

Оскільки Літій неможливо визначити за допомогою рентгенівських спектральних мікроаналізаторів, то його вміст у сплавах встановлювали за допомогою методу полуменевої фотометрії, використовуючи полуменевий фотометр Carl Zeiss Flapho-4. Для експериментального визначення вмісту Літію сплав масою до 150 мг попередньо розчиняли в 25 мл 1М HCl, а потім приготований розчин досліджували за допомогою полуменевого фотометру Flapho-4, використовуючи інтерференційний фільтр (671 нм). Виміряне значення вмісту Літію у приготовленому розчині вимірювали в мг/л, що дало змогу перелічити в атомні або масові відсотки лужного металу в сплаві.

Ізотермічний переріз діаграми стану потрійної системи Dy–Li–Si за 400 °С в концентраційному інтервалі 30–100 ат. % Si побудовано на основі результатів рентгенофазового та локального рентгеноспектрального аналізів. З метою перевірки літературних даних про сполуки подвійних систем Dy–Si та Li–Si виготовлено сплави, склади яких відповідають описаним у літературі бінарним сполукам [6–15]. За температури 400 °С підтверджено існування сполук DySi_{2-x}, DySi₂, DySi, Dy₅Si₄, Dy₅Si₃, Li₂₂Si₅, Li₁₃Si₄, Li₁₄Si₆, Li₁₂Si₇ та Li₂Si. Існування інших бінарних фаз системи Li–Si, про які зазначають автори [7, 9], за температури відпалу не підтверджено.

Унаслідок експериментальних досліджень цієї системи було підтверджено існування десяти бінарних фаз подвійних систем Dy–Si та Li–Si, які формують дво- та трьохфазові області. Крім того, система характеризується утворенням шести тернарних сполук і відсутністю твердих розчинів на основі бінарних фаз (рис. 1).

Для фаз τ_1 – DyLi₅Si₄, τ_2 – DyLi₃Si та τ_6 – Dy₄LiSi₄ кристалічну структуру не визначено через важкість отримання якісних монокристалів або хоча б однофазних зразків, а потрійні сполуки τ_3 – DyLiSi₂, τ_4 – DyLiSi та τ_5 – DyLi_{0,35}Si_{1.65} згідно з методом порошку кристалізуються, відповідно, у структурних типах NdRuSi₂ (R_B = 0,066), ZrNiAl (R_B = 0,059) та α-ThSi₂ (R_B = 0,073). Область незмішування компонентів простежується до максимального вмісту Si у 28 ат. %. Кристалографічні характеристики знайдених потрійних сполук наведено в табл. 2.

Під час порівняння досліджуваної системи та систем {La, Ce, Gd, Tb, Ho, Er}-Li-Si, для яких було побудовано ізотермічні переріз діаграм стану, найменшу кількість сполук має система з Ербієм (виявлено існування трьох тернарних сполук). Система Dy-Li-Si характеризується максимальним значенням потрійних фаз (6). У табл. 3 подано літературні дані про потрійні системи РЗМ-Li-Si та кількість сполук, які в них утворюються.

Рис. 1. Ізотермічний переріз діаграми стану системи Dy-Li-Si при 400 °C. **Fig. 1.** Isothermal section of phase diagram of the Dy-Li-Si system at 400 °C.

Кристалографічні характеристики сполук системи Dy-Li-Si

Таблиця 2

Table 2

Crystallographic data of ternary compounds of the Dy–Li–Si system						
Cramma	СТ	СП	ПГ	Параметри комірки, нм		
Сполука	CI	CII	111	а	b	С
$\tau_1 - DyLi_5Si_4$		•••	•••			
$\tau_2 - DyLi_3Si$		•••				
$\tau_3 - DyLiSi_2$	NdRuSi	mP8	$P2_1/m$	0,4010(1)	0,3869(1)	0,8119(2)
	2				$\beta = 102,32(1)^{\circ}$	
$\tau_4 - DyLiSi$	ZrNiAl	hP9	P-62m	0,7011(2)	0,7011(2)	0,4193(1)
$\tau_5 - DyLi_{0,35}Si_{1,65}$	α -ThSi ₂	<i>tI</i> 12	$I4_1/amd$	0,4039(2)	0,4039(2)	1,3912(5)
$\tau_6 - Dy_4 Li Si_4$						

Усі системи не містять твердих розчинів на основі бінарних та тернарних сполук і в них утворюються лише сполуки постійного хімічного складу. Спільною характеристикою порівнюваних систем є наявність фаз, що кристалізуються в структурному типі α -ThSi₂ та Ce₂Li₂Ge₃. Інші структурні типи простежуються максимум у двох системах (ZrNiAl, CaLiSi₂, NdRuSi₂). Варто зауважити, що більшість фаз, які синтезовані в системах РЗМ–Li–Si, кристалізуються у гексагоннальній і тетрагональній симетрії.

Таблиця 3

Характеристика	потрійних	систем P3M-Li-Si	
----------------	-----------	------------------	--

Table 3

Characteristics of the ternary systems R-Li-Si						
Система	Наявність ізотермічного перерізу	Кількість сполук	Література			
La-Li-Si	+	4	20, 21			
Ce-Li-Si	+	4	1			
Pr-Li-Si		1	21			
Nd-Li-Si		2	21, 22			
Sm-Li-Si		1	21			
Eu-Li-Si		1	23			
Gd–Li–Si	+	4	2			
Tb-Li-Si	+	5	20			
Dy-Li-Si	+	6	20			
Ho-Li-Si	+	4	3			
Er-Li-Si	+	3	4			
Tm-Li-Si		-				
Yb–Li–Si		1	3			
Lu-Li-Si		-				

Одержані тернарні сполуки можна використовувати як вихідні компоненти для синтезу тетрарних фаз, так і твердих розчинів заміщення на основі потрійних фаз шляхом заміщення атомів Літію атомами *d*-металу (Co, Ni, Cu aбo Zn) [20].

ЛІТЕРАТУРА

- 1. Павлюк В. В., Печарський В. К., Бодак О. І. Ізотермічний переріз діаграм стану систем Ce-Li-{Si, Ge} при 470 К // Доп. АН УРСР. Сер. Б. 1989. № 2. С. 51–54.
- Павлюк В. В., Бодак О. И. Фазовые равновесия в системах Gd–Li–Si (Ge) при 470 К // Металлы. 1993. №2. С. 211–214.
- Павлюк В. В. Синтез і кристалохімія інтерметалічних сполук літію: автореф. дис. ... дра хім. наук. Львів, 1993. 38 с.
- 4. *Матвіїшин Р. І.* Взаємодія Ербію із перехідними металами (Co, Ni), Літієм та релементами IV групи (Si, Ge): автореф. дис. ... канд. хім. наук. Львів, 2009. 21 с.
- Окатото Н. Li–Si (Lithium–Silicon) // Bull. Alloy Phase Diagrams. 1990. Vol. 11. Р. 306–312.
 Гладышевский Е. И., Олексив Г. И., Крипякевич П. И. Новые представители структур-
- ного типа Li₂₂Pb₅ // Кристаллография. 1964. Т. 9. № 3. С. 338–341.
- Nesper R., Von Schnering H. G. Li₂₁Si₅, a Zintl Phase as Well as a Hume-Rothery Phase // Solid State Chem. 1987. Vol. 70. P. 48–57.

- Axel H., Schafer H., Weiss A. Die Kristallstruktur von Lithium silicid Li₂Si // Angew. Chem. 1965. Bd. 77. S. 379-380.
- Schafer H., Axel H., Weiss A. Die Kristallstruktur der Phase Li₇Si₂ // Z. Naturforsch. B. 1965. Bd. 20. S. 1302.
- 10. *Dębski A., Gąsior W., Góral A.* Enthalpy of formation of intermetallic compounds from the Li–Si system // Intermetallics. 2012. Vol. 26. P. 157–161.
- 11. Evers J., Oehlinger G., Sextl G. LiSi, a unique Zintl phase although stable, it long evaded synthesis // Eur. J. Solid State Inorg. Chem. 1997. Vol. 34. P. 773–784.
- Roger J., Babizhetskii V. S., Guizouarn T. et al. The ternary RE–Si–B systems (RE = Dy, Ho, Er and Y) at 1270 K: Solid state phase equilibria and magnetic properties of the solid solution REB_{2-x}Si_x (RE = Dy and Ho) // J. Alloys Compd. 2006. Vol. 417. P. 72–84.
- Mayer I., Shidlovsky I. M₅X₃-type rare earth silicides and germanides and their ternary phases with carbon. // Inorg. Chem. 1969. Vol. 8. P. 1240–1243.
- Morozkin A. V. Phase equilibria in the Dy–V–Si system at 1200 K // J. Alloys Compd. 2002. Vol. 346. P. L4–L6.
- 15. Nirmala R., Morozkin A. V., Buddhikot D. et al. Magnetocaloric effect in the binary intermetallic compound DySi // J. Magn. Magn. Mater. 2008. Vol. 320. P. 1184–1187.
- 16. *Schwarzenbach D.* Program LATCON: refine lattice parameters. Lausanne: University of Lausanne, 1966.
- 17. *Kraus W., Nolze G.* PowderCell for Windows. Berlin: Federal Institute for Materials Research and Testing, 1999.
- Akselrud L. G., Grin Yu. N. WinCSD: software package for crystallographic calculations (Version 4) // J. Appl. Crystallogr. 2014. Vol. 47. P. 803–805.
- 19. *Rodriguez-Carvajal J.* FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis, version 3.5d; Laboratoire Léon Brillouin (CEA–CNRS): Saclay, France, 1998.
- Стецьків А. О. Структурна хімія силіцидів, германідів та станідів лужних та рідкісноземельних металів: автореф. дис. ... д-ра хім. наук. Львів, 2017. 35 с.
- Merlo F., Palenzona A., Pani M. et al. Structural and magnetic properties of the new R₂Li₂Si₃ compounds (R = La, Ce, Pr, Nd, Sm). // J. Alloys Compd. 2005. Vol. 394. P. 101–106.
- Steinberg G., Schuster H. U. Ternare silizide des lithiums mit yttrium oder neodym mit modifizierter U₃Si₂-structur // Z. Naturforsch. 1979. Bd. 34b. S. 1237–1239.
- 23. Xie Q., Nesper R. Structural and electronic characterization of Eu₂LiSi₃, Eu₂LiGe₃ and Eu_xSr_{2-x}LiGe₃ mixed crystals // Z. Anorg. Allg. Chem. 2006. Vol. 632. P. 1743–1751.

SUMMARY

Andrij STETSKIV

PHASE EQUILIBRIA IN THE TERNARY SYSTEM Dy-Li-Si AT 400 °C

Ivano-Frankivsk National Medical University, Galytska Str., 2, 76018 Ivano-Frankivsk, Ukraine e-mail: andrijstetskiv69@gmail.com

The isothermal cross-section of the phase diagram of the system Dy–Li–Si based on X-ray phase and local X-ray spectral analyses was constructed at the temperature 400 °C in the range 30–100 at. % Si.

Six new ternary compounds have been synthesized for the first time: DyLiSi₂ (ST NdRuSi₂, Pearson symbol *mP8*, space group P2₁/m, a = 0.4010(1), b = 0.3869(1), c = 0.8119(2) nm, $\beta = 102.32^{\circ}$, $R_B = 0.066$), DyLiSi (ST ZrNiAl, Pearson symbol *hP9*, space group *P-62m*, a = 0.7011(2), c = 0.4193(1) nm, $R_B = 0.059$), DyLi_{0.35}Si_{1.65} (ST α -ThSi₂, Pearson symbol *t112*, space group *I*4₁/*amd*, a = 0.4039(2), c = 1.3912(5) nm, $R_B = 0.073$), DyLi₅Si₄ (unknown structure), Dy₄LiSi₄ (unknown structure) and DyLi₃Si (unknown structure).

All these compounds have been refined using powder X-ray diffraction data (diffractometers STOE STADI P and URD-6 (Cu $K\alpha$ -radiation)). The existence of the binary phases DySi_{2-x}, DySi₂, DySi, Dy₅Si₄, Dy₅Si₃, Li₂₂Si₅, Li₁₃Si₄, Li₁₄Si₆, Li₁₂Si₇, Li₂Si was confirmed. Solubility of the third component in the binary compounds was not observed.

Keywords: ternary system, phase equibria, intermetallic compounds, crystal structure.

Стаття надійшла: 22.06.2017. Після доопрацювання: 03.07.2017. Прийнята до друку: 05.07.2017.