
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE NANOMATERIALS: APPLICATIONS AND PROPERTIES 

Vol. 1 No 1, 01PCN28 (3pp) (2012) 

 

 

2304-1862/2012/1(1)01PCN28(3) 01PCN28-1  2012 Sumy State University 

Description of the Stochastic Condensation Process under Quasi-Equilibrium Conditions 
 

O.V. Yushchenko*, T.I. Zhylenko 

 

Sumy State University, 2, Rimsky Korsakov Str., 40007 Sumy, Ukraine 
 

(Received 19 June 2012; published online 24 August 2012) 

 
The system of three differential equations describing the stochastic condensation process under quasi-

equilibrium conditions is constructed taking into account the additive and multiplicative components. The 

phase diagram of the system states was constructed and analyzed. The domains of the existence of the 

condensation processes, disassembly of previously deposited material, and the complete evaporation were 

determined. The distribution density of the concentration of adsorbed atoms was defined. 
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1. INTRODUCTION 
 

Recently, the development of various branches of 

science and technology closely connected with the use 

of nanomaterials. At the same time the use of nanopo-

rous materials, which are widely used in biology and 

medicine, is of particular interest. One of the promising 

directions for the production of such materials is a con-

densation process in the steady-state regime close to 

the phase equilibrium. This state is achieved due to the 

presence of the plasma, which increases the effective 

temperature of the growing surface. Thus the self-

organization is provided by the natural course of the 

condensation process [1-3]. From a physical point of 

view, this self-organization is caused by the fact, that 

under the influence of the plasma the increasing of the 

adsorbed atoms energy leads to the increase of the 

growing surface temperature. The last is compensated 

by the flow of desorption of the adsorbed atoms respon-

sible for the supersaturation n-ne. 

As a result of such processes in the systems with a 

weak feedback for small values of the equilibrium con-

centration ne and deposited flux the only state, that 

meets the stationary regime of condensation, is real-

ized. With increased feedback and inversion of the de-

posited flow a steady-state disassembly of the previous-

ly deposited condensate appears. This state corre-

sponds to the mode of the nanoporous structures for-

mation. The theoretical consideration of this process 

[4, 5] presents a self-consistent description of the three 

degrees of freedom: the surface concentration of ad-

sorbed atoms n, the temperature T of the growing sur-

face, measured from the ambient temperature, and the 

desorption flow J. 

 

2. BASIC EQUATIONS 
 

Using the previous example [4, 5], the representa-

tion of the self-organizing system reduces to three evo-

lution equations for the corresponding degrees of free-

dom: the order parameter n, the conjugate field T, and 

the control parameter J.  

The evolution equation for the surface concentra-

tion of adsorbed atoms is determined by the continuity 

condition and the Gauss theorem. The equations for the 

remaining degrees of freedom contain dissipative terms 

and the contributions that represent the positive and 

negative feedbacks. In addition we take into account 

the stochastic sources, reflecting the random influence 

of the external factors, which always takes place in a 

real experiment. In this case for the temperature we 

consider the case of additive noise, and for the flow – 

multiplicative. This is because the temperature fluctu-

ations depend only on the external conditions (e.g., the 

stability of the cooling device), and fluctuation of the 

flow of desorption is always linked to the surface con-

centration of adsorbed atoms. 

As a result, the system of equations describing the 

stochastic process of condensation takes the form 
 

 ( ) ,n e nn n n J   

 

 ( ),T TT T a nJ t  (2.1) 

 

 ( ) ( ),J ac JJ J J a nT n t   

 

where n, T, J are the relaxation times of the corre-

sponding quantities, aTaG  – the positive coupling con-

stants, and Jac is an accumulated flow. The stochastic 

sources are represented as Ornstein-Uhlenbeck process  
 

 ( ) 0, ( ) ( ) exp ,T
t tI

t t t  (2.2) 

 

 ( ) 0, ( ) ( ) exp .
t tI

t t t   

 

Here IT, I are the intensities of the temperature and flow 

fluctuations, ,  
 
- corresponding relaxation times. 

For the analysis of this system is convenient to use 

dimensionless variables, relating the time t, concentra-

tion of adsorbed atoms n, the temperature T of the grow-

ing surface, the desorption flow J, and the fluctuations 

intensities IT, I to the scales 
 

1/2 1 1 1/2, ( ) , ( ) , ( ) , .s n s T J s n J s n T J s nt n a a T a J a a I

 

Due to the coherence in the fluctuation processes 

the time of changes in the temperature and flow fluc-
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tuations will be closely interrelated, thus it is possible 
to provide an approximation     .  In  addition,  to  
facilitate the mathematical calculations it is appropri-
ate to use the following relation for the intensity of 
noise IT  k2I where the coefficient k2 shows how much 
the intensity of temperature fluctuations more than the 
intensity of flow fluctuations. 

As a result, the dimensionless system of equations 
describing the stochastic system of plasma-condensate 
takes the form 

 

 ,en n n J   
 

 1 ,T T nJ t  (2.3) 
 

 1 ,acJ J J nT n t   
 

where 1 1/ , / ,T n J n Ja k and  
 

 ( ) 0, ( ) ( ) exp
t tIt t t  (2.4) 

 
It is known [6], that in general the system (2.3) does 

not have an analytical solution, so we will take into 
account the approximation J  n  T (  – 1  0,   1) 
Then the expression on the left side of the second equa-
tion of system (2.3) is negligibly small. Finally, instead 
of the system of three differential equations, we arrive 
at a motion equation for the nonlinear stochastic oscil-
lator 

 

 n n n f n g n t  (2.5) 
 
Where the friction coefficient (n), the force f(n) and 

the amplitude of the noise g(n) are given by the expres-
sions 

 

 21 1 ,n n   
 

 21 ,ac ef n J n n n  (2.6) 
 

 1 .g n n   
 

3. THE STATIONARY SOLUTION OF THE FOK-
KER-PLANCK EQUATION 
 
Based on the method,  first  proposed in  [7]  and de-

veloped in paper [8], the motion equation (2.4) can be 
associated with Fokker-Planck equation [9] 

 

 
2

1 2
2

( ) ( , ) ( ) ( , )( , ) ,
D n P n t D n P n tP n t

t n n
 (3.1) 

 
where P(n,  t) is a density of the distribution function, 
and the coefficients of drift and diffusion are defined by 
functions (2.6) 
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2 0 2( ) ,gD M t   

 
At the same time the moments of the correlation func-
tion (2.4) are defined as follows 

 
 0 0( ) ,M t M I   
 
 1 1( ) .M t M I   
 
In the stationary case P(n, t) does not depend on the 

time, and then the steady-state of the corresponding 
process (condensation, disassembly or evaporation) is 
defined by the extremum of the distribution, which 
reduces to the expression  

 
2

22
22

2 1 1
1 1

1 1
ac e

I n
J n n n I n

n
. (3.3) 

 

The condition Jac  – ne limits the domain of exist-
ence of the zero solution (evaporation process) and fol-
lows from equation (3.3) after substituting n  0.  

After the numerical analysis of the dependence 
(3.3), we construct a phase diagram of the system (Fig. 
1), which defines the region of the existence of different 
solutions of equation (3.3). 

 

 
Fig. 1 – Phase diagram of the system for n  = 0.25,  = 0.25, 
Jac  4, k  0.25. 

 
As it is evident from Fig. 1 the phase diagram has 

five regions. The region 1 corresponds to the process of 
condensation; with a decreasing accumulated flow or 
with increasing of noise intensity the system falls in 
the region 2, where the condensation process coexists 
with the process of the surface disassembly, and equa-
tion (24) has two nonzero solutions. In region 3 only the 
state of disassembly is realized. Here the condensate 
atoms, previously deposited on the substrate, do not 
completely evaporate, forming a nanoporous struc-
tures. For the increasing fluctuation intensity and re-
versal accumulated flow the system may move into the 
region 4, where the evaporation is more intense, coex-
isting with the island porous structure. In region 5 only 
the evaporation process is realized.  
 
4. CONCLUSION 
 

The study of the stochastic plasma-condensate sys-
tem was performed based on the synergetic scheme 
that takes into account the self-consistent behavior of 
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the concentration of adsorbed atoms, the temperature 
of the growing surface and desorption flow. At the same 
time to describe the conditions maximally close to the 
experiment the temperature and flow fluctuations were 
taken into account. Solving the corresponding Fokker-
Planck equation in the stationary case, the phase dia-
gram of the system was constructed. The appropriate 

regions of the diagram corresponding to the condensa-
tion, disassembly and evaporation processes were ana-
lyzed. As a result, we can conclude that the represented 
investigation is quite relevant for the consideration of 
the conditions for the obtaining of the nanoporous ma-
terials. 
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