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The micellization of asymmetric PAAm-b-PEO-b-PAAm triblock copolymers (TBCs) with increasing 

length of chemically complementary polyacrylamide and poly(ethylene oxide) blocks was studied using 

static light scattering, photography, UV-Vis spectroscopy and TEM. The formation of “hairy-type” and 

“flower-like” micelles was established in dilute aqueous and aqueous/ethanol solutions. The “hairy” mi-

celles contained a “core” comprised cooperatively interacting PEO and PAAm segments and “corona” 

formed by unbound units of longer PAAm blocks. Appearance of the “flower-like” micelles was conditioned 

by insolubility of PAAm blocks. Stability of the “flower-like” micelles was higher than that of the “hairy-

type” ones. Significant encapsulation of a model drug prednisolon by TBC micelles was established.  
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1. INTRODUCTION 
 

The formation and properties of block copolymer 

micelles in aqueous medium are intensively studied 

due to their application as nanoscale carriers for the 

encapsulation and delivering insoluble and toxic drugs 

[1-3]. The main attention was paid to the micelles of 

amphiphilic block copolymers comprised hydrophobic 

and hydrophilic blocks [4]. But the micelles of block 

copolymers with hydrophilic chemically complementary 

components, which form the intramolecular poly-

complexes (IntraPCs) [5], are not practically studied. At 

the same time, these micelles are of special interest 

because of their enhanced binding capability in respect 

of different drugs and stability in competitive process-

es, which take place in living organisms. 

In the present work, we synthesized the IntraPC-

forming triblock copolymers (TBCs) such as PAAm-b-

PEO-b-PAAm with hydrophilic biocompatible and par-

tially biodegradable blocks of poly(ethylene oxide) and 

polyacrylamide of a variable length. Then we studied 

their micellization in aqueous and aqueous/ethanol 

solutions and encapsulation of a model poorly soluble 

drug prednisolon (PS) into the micellar nanocontainers. 

 

2. EXPERIMENTAL 
 

2.1 Materials and syntheses 
 

Three samples of poly(ethylene glycol) (PEG) with 

the molecular weights Mn  6, 14 and 35 kDa from “Al-

drich” (USA), ammonium cerium nitrate from the same 

firm and acrylamide (AAm) from “Reanal” (Hungary) 

were applied to synthesize PAAm-b-PEO-b-PAAm 

triblock copolymers. A commercial PS from “Sigma Al-

drich” (USA) with molecular structure (1) was used as a 

model drug. 

 

 

  (1) 

 

 

The triblock copolymers were synthesized by a tem-

plate radical block copolymerization of PAAm with 

PEG initiated by CeIV ions [5]. The reagents were 

mixed in the deionized water and inert atmosphere at 

25 C for 24 h. The molar ratios [CeIV]/[PEG]  2 and 

[CeIV]/[AAm]  1 10 – 3 were constant in all cases. Gel-

like TBCs were diluted by water, re-precipitated by 

acetone, dissolved again in water and freeze-dried. 

Chemical structure and molecular parameters of TBCs 

were characterized by NMR spectroscopy [6]: 
 

Table 1 - Molecular parameters of TBCs 
 

Copolymer 
MnPEO, 

kDa 

MnPAAm,  

kDa 

МnTBC 
a), 

kDa 

n b) 

TBC1 

TBC2 

TBC3 

6 

14 

35 

116 

1045 

3055 

238 

2104 

6145 

12 

46 

54 
a) MnTBC=MnPEO+2 MnPAAm. 
b) The ratio between units of PAAm and PEO blocks. 

 

Thus, a series of asymmetric TBCs with increasing 

length of both the blocks was obtained.  

Also, a sample of pure PAAm with Mv  630 kDa 

(found by viscometry) was used in our studies.  

 

2.2 Characterization  
 

UV spectra of PEO, PAAm, PS and polymer/PS 

blends in aqueous/ethanol solutions were recorded us-
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Fig. 4. Representation of (a) PS molecular structure as well as UV spectra for: (b) a pure PS in 

aqueous/ethanol solutions (C=?) at 20 –1, 80 –2 and 100 vol % -3 of EtOH, (c) PEG1+PS 

and (d) PAAm+PS blends in the mixed (H2O/EtOH = 70/30 vol %) solvent –4, compared to 

UV spectra of a pure PS (C=8.53 10
-3

 kg m
-3

) –5 and corresponding polymer 

(CPEG=CPAAm=4 10
-3

 kg m
-3

) –6, and also for the differences between UV spectra of the 

blends and individual polymers –7. T=23 C. 
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ing a UV-Vis spectrometer Perkin Elmer Lambda 20 

(Sweden). The turbidity ( ) of TBC and TBC/PS solutions 

was determined at   490 nm using a LMF-72 photocol-
orimeter from “LOMO” (Russia).  

FTIR spectra of TBC, PS, and TBC/PS blend were 
measured using a Nexus-470 Nicolet (USA) spectrometer 

with a resolution 4 cm – 1. 
Static light scattering (SLS) was used to probe the 

micelle formation in TBC solutions and to establish: i) 
the critical micellization concentration (CMC) and ii) 

other parameters of TBC micelles from Zimm plot [7]. 
For these purposes, a modernized instrument FPS-3 

(Russia) contained a light-emitting diode (   520 nm) 
from “Kingbright”, an ADC-CPU™ controller from “In-

softus” (Ukraine) and the computer program WINRE-
CORDER was used. To define CMC values, the scattered 

intensities of the vertically polarized light (Iv) were 

measured at the =90  scattering angle and T  21 C in 
a wide region of TBC concentrations. But to establish the 

weight-average molecular weight (Mw) of micelles, their 

z-average root-mean-square radius of gyration ( Rg
2

z
1/2) 

and the second virial coefficient (A2), the surplus scatter-

ing coefficient (Rv( )) (the Rayleigh ratio [7]) was found in 

TBC solutions at C  CMC as a function of . The abso-

lute dusty-free benzene (as a standard) and the deion-
ized dusty-free water (as a solvent) were applied in the 

experiments. To find the optical constant (K) of TBC 

solutions, the specific refractive index increment ( n/ C) 
was measured with interferometry. The value of 

n/ C  1.65·10 – 4 m3·kg – 1 in TBC3 solutions turns out 

practically the same as that ( n/ C  1.65·10 – 4 m3·kg – 1) 

in PAAm solutions. Based on these data, the dependence 

of C K/Rv( ) versus sin2( /2)  k C or Zimm plot  (here k is 
the scaling factor) was constructed.  

TEM images of TBC micelles were recorded with a 
JEM-I23O instrument (“JEOL”, Japan) operating at an 

accelerating voltage of 90 kV. Small drops (  1 10 – 4 

cm3) of TBC solutions (CTBC  0.2 kg m – 3) in the deion-
ized water or water/ethanol (30/70 v/v) mixture were 

deposited in copper grids coated with Formvar film and 

carbon and then were dried for  0.5-1 min in a vacuum 

desiccator at 20 C.  
 

3. RESULTS AND DISCUSSION  
 

The classical amphiphilic block copolymers of A-b-B 
and A-b-B-b-A types form micelles in aqueous medium 

due to a self-assembly of hydrophobic blocks. Morphology 

of these micelles, their size and aggregation number, the 
relative dimension of “core” and “corona”, and also the 

stability in a solution are determined by chemical nature 
of block components as well as the length of hydrophobic 

and hydrophilic blocks [8]. In the IntraPC-forming block 
copolymers, “hydrophobic blocks” appear in dilute aque-

ous solutions owing to cooperative interactions of chemi-
cally complementary polymer chains [5]. Due to self-

assembly of such “hydrophobic blocks” in water, the mi-
cellization process is developed.  

 
3.1 Micellization of TBCs in water 

 

We studied the micellization process in TBC solu-

tions using photography, SLS, TEM and Vis spectrosco-
py. Onset of the micellization could be fixed by a signifi-

cant increase in the scattered intensity since some criti-
cal concentration (Fig. 1 a): 
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Fig. 1 – (a) Dependence of the scattered intensity vs TBC1 

concentration; (b) Zimm plot for TBC3. 
 

The CMC values and the Gibbs free micellization 

energies calculated by the relation: G  RT lnCMC [9] 

are represented in Table 2: 
 

Table 2 - Parameters of the micellization process 
 

Sample 
CMC 108, mol dm – 3 - G , kJ mol – 1  

H2O H2O/EtOHa) H2O H2O/EtOH 

TBC1 

TBC2 

TBC3 

37.8 

19.0 

4.9 

8.4 

3.8 

1.3 

36.15 

37.83 

41.15 

39.82 

41.76 

44.38 
a) H2O/EtOH=30/70 v/v. 

 

The regular reduction in CMC values and the in-

crease in - G  with growth of PEO (and PAAm) length 

indicated enhance in the micellar stability at the transi-

tion from TBC1 to TBC3. For TBC3 with the longest 

PEO block, additional micellar parameters: 

Mw  37686 kDa, A2  1.283·10 – 5 mol·m3·kg – 2 and 

Rg
2

z
1/2  248.4 nm were found from Zimm plot (Fig. 1 b) 

using the double extrapolation procedure [7]. The aggre-

gation number Z  6 was also estimated for these mi-

celles using the ratio: Z  Mw/MnTBC3. 

Taking into account highly asymmetric character of 

TBC macromolecules (Table 1), the formation of “hairy-

type” micelles [8] in dilute aqueous solutions could be 

assumed (the left part of Fig. 2). A small “core” of these 

micelles would contain H-bonded PEO and PAAm seg-

ments but a large “corona” would comprise the surplus 

unbound segments of PAAm. 
  

 
 

Fig. 2 – A scheme of TBC micellization in water and micelle 

transformations at ethanol addition. 
 

Real morphology of TBC1 and TBC3 micelles in wa-

ter solutions is shown in TEM images (Fig. 3 a, c). It is 

seen that TBC1 macromolecules form mainly spherical 

“hairy” micelles (Fig. 3 a), while morphology of TBC3 

micelles is more multifarious. In addition to relatively 

small spherical micelles the image in Fig. 3 c demon-

strates also “cubic-like” (or “plate-like”) micellar struc-

tures. On average, their size is some higher than that 

of TBC1 micelles. The appearance of such unusual mi-

celles could be explained by the formation of their 

“cores” by rigid “hydrophobic blocks” of TBC3, which 

ones contain (unlike to TBC1) more lengthy sequences 

of H-bonded units of PAAm and PEO. Displaying small 

dark spots throughout TEM images in Fig. 3 a, c is of 
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special interest. This fact indicates the presence in TBC 

solutions together with large polymolecular micelles 

also small monomolecular micelles, which are individu-

al IntraPCs shown in Fig. 2. 
 

 
 

 
 

 
 

Fig. 3 – TEM images of (a, b) TBC1 and (c) TBC3 micelles 

prepared in (a, c) aqueous and (b) aqueous/ ethanol (30/70 v/v) 

solutions. CTBC  0.2 kg m – 3 

 

3.2 Micellization of TBCs in the mixed solvent 
 

The addition of ethanol up to ~ 30 v % noticeably 

enhances the transparency of TBC solutions and reduc-

es the scattered intensities in them. The last values 

remain practically unchanged in all range of concentra-

tions under study. But at ethanol content  40 v %, the 

turbidity of TBC solutions sharply grows (Fig. 4 a) 

since very low concentration (Fig. 4 b) that implies the 

arising new micellar structures. 
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Fig. 4 – (a) The turbidity of TBC1 –1, TBC2 –2 and TBC3 -3 solu-

tions vs EtOH content (CTBC  0.4 kg m-3); (b) the example of CMC 

determination for TBC3 in aqueous/ethanol (30/70 v/v) solution. 

T  21 C. 

We interpreted this picture by influence of some fac-

tors. First, ethanol is capable of destroying hydrophobic 

interactions in a micellar “core”. Also, it can partially 

ruin H-bonds between PAAm and PEO because of com-

petitive interactions with functional groups of the 

blocks. These factors act at small ethanol percent and 

lead to destruction of initial “hairy” micelles (a central 

part of Fig. 2). Further, pure ethanol is insolvent in 

respect of PAAm chains. Therefore, an intense micelli-

zation of TBCs at high ethanol percent is developed due 

to insolubility of PAAm blocks. In this case, the ap-

pearance of the “flower-like” micelles would be waiting 

(the right part of Fig. 2) [10]. Insoluble “tails” of PAAm 

would form a large micellar “core”, while soluble “loops” 

of PEO would be concentrating in a “corona”. According 

to CMC and - G  values in Table 2, the “flower-like” 

micelles in aqueous/ethanol solutions are more stable 

than “hairy” ones in water. Such result is conditioned 

by essentially larger length of PAAm chains as com-

pared to PEO block. 

A real view of the “flower-like” micelles is shown in 

Fig. 3 b. It is seen that they possess as spherical as 

elongated (spheroid) shape. Moreover, their size (for 

TBC1) is higher than that of the “hairy-type” micelles 

obtained in water (Fig. 3 a, b). 
 

3.3 Encapsulation of the model drug 
 

The supplement of PS changed a micellization pic-

ture in TBC water/ethanol solutions that was reflected 

in the turbidity curves and photos (Fig. 5).  
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Fig. 5 – (a) The turbidity of TBC3/PS solutions -1 vs EtOH 

content (CTBC  0.4 kg m – 3, the ratio   0.64 molPS/base-

molTBC); (b) a photo of TBC3/PS solution at EtOH content of 

10 v %. The difference -2 (a) between tubidity curves ( (TBC3/PS)-

TBC)  f[EtOH].  
 

At small ethanol percent (up to 20 v %) we observed 

a high turbidity in TBC/PS solutions (Fig. 5 a, curve 1) 

caused by the formation of “snow-flakes-like” micellar 

structures (Fig. 5 b), which were absent in PS-free solu-

tions (Fig. 4 a). Also, an additional increase in the tur-

bidity caused by PS introduction occurred at ethanol 

content  40 v % (Fig. 5 a, curve 2). This indicated the 

interaction of PS with TBCs, which initiated the 

changes in the “hairy-type” micelles at small ethanol 

percent and intensified the micelle formation at high 

ethanol content. 

The drug molecules (structure (1)) contain two car-

bonyl and three hydroxyl groups, which are capable of 

forming H-bonds with proton-donor and proton-

acceptor groups of TBCs. Therefore, we studied H-

bonding in TBC/PS blend by FTIR and UV spectrosco-

py. In the last case we analyzed the changes in UV 

spectrum of PS in two solvents (H2O/EtOH  70/30 and 

30/70 v/v) under the effect of PEO and PAAm separate-

a 

b 

c 
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ly (Fig. 7 a, b). In both solvents a similar picture was 

observed: PEG did not change the position 

( max  247 nm) and intensity of n * transition (Fig. 7 

a), while PAAm presence led to the lowering the transi-

tion intensity (Fig. 7 b). This result confirmed the ex-

istence of weak H-bonds [11] between PS carbonyls and 

–NH2 fragments of PAAm amide groups in both the 

solvents. 
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Fig. 6 – UV spectra for: PEG3 –1 (a), PAAm –1 (b), PS –2 (a, 

b), PEG3/PS –3 (a) and PAAm/PS –3 (b) in water/ethanol 

(30/70) solutions, and the differences (DPEG3/PS-DPEG3) –4 (a) 

and (DPAAm/PS-DPAAm) –4 (b) vs . (CPEG  CPAAm  4 10 – 3 kg m – 3, 

CPS  8.53 10 – 3 kg m – 3).  
 

Participation of –OH groups of PS in H-bonding 

with TBCs was confirmed by FTIR (the data are not 

shown). The main effect consisted in the appearance of 

new intense band of O-H vibrations at  3290 cm – 1 in 

FTIR spectrum of TBC/PS blend unlike to spectra of 

TBC and PS. Thus, one could be assume that the for-

mation of “snow-flakes-like” structures in TBC solu-

tions at PS addition developed due to H-bonding drug 

molecules with PAAm and PEO blocks followed by hy-

drophobic segregation of the bound segments. 

Characterization of PS encapsulation by the TBC 

“hairy” micelles was carried out in the solvent 

H2O/EtOH  80/20 v/v at TBC concentration 

C  1 kg∙m – 3, three ratios of   0.021, 0.42, 0.60 molPS/ 

base-molTBC and a contact time of 24 h. The “snow-

flakes-like” micellar structures were separated by a 

centrifugation; then PS concentration in solutions was 

established by UV spectroscopy at   247 nm. At the 

smallest   0.021 an essential clouding of TBC1-3 so-

lutions was not observed. Therefore, in these cases it 

was impossible to separate the products of TBC inter-

action with PS and to determine the quantity of bound 

drug. The results for other two PS/TBC ratios are col-

lected in Table 3. 
 

Table 3 – PS encapsulation by “hairy” micelles 
 

Copolymer , molPS/base-molTBC XPS a), wt % 

TBC1 
0.42 

0.60 

8.8 

48.5 

TBC2 
0.42 

0.60 

8.5 

55.6 

TBC3 
0.42 

0.60 

17.8 

56.8 
b) The degree of PS encapsulation. 

 

It is seen a drastic enhance in PS content in the “snow-

flakes-like” micelles with  growth and a small increase 

in that at the transition from TBC1 to TBC3. 

 

CONCLUSION 
 

The asymmetric triblock copolymers PAAm-b-PEO-

b-PAAm with chemically complementary blocks formed 

the “hairy-type” micelles in aqueous medium. Their 

stability grew with increase in the length of PEO (and 

PAAm) blocks. Morphology of the micelles was changed 

from spherical shape for TBC1 to the mixture of spheri-

cal and “cubic-like” (or “plate-like”) structures for 

TBC3. Small ethanol additives (up to  30 v %) caused 

a gradual destruction of the “hairy” micelles, while at 

high ethanol percent (  40 v %) the formation of new 

“flower-like” ones took place. The “hairy” TBC micelles 

encapsulated significant quantities of poorly soluble 

drug PS via hydrogen bonds and hydrophobic interac-

tions that led to the appearance of the “snow-flakes-

like” micellar structures. 
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