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In this study, an aqueous sol-gel chemistry route based on phosphoric acid as the phosphorus precur-

sor, calcium acetate monohydrate and cerium (III) nitrate hexahydrate as source of calcium and cerium 

ions, respectively, have been used to prepare cerium-substituted calcium hydroxyapatite (CHAp) powders. 

The tartaric acid was used as complexing agent in the sol-gel processing. The final products were obtained 

by calcination of the dry precursor gels for 5 h at 1000 °C. The phase transformations, composition, and 

structural changes in the polycrystalline samples were studied by infrared spectroscopy (IR), X-ray powder 

diffraction analysis (XRD), scanning electron microscopy (SEM), UV-visible reflection spectroscopy and 

luminescence measurements. It was demonstrated, however, that the high substitution of calcium by ceri-

um does not proceed in the CHAp. The reflectance spectra of Ce substituted CHAp show nearly 100% re-

flection in the wavelength range of 450-800 nm. The luminescent properties of these samples were also in-

vestigated.  
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1. INTRODUCTION 
 

Calcium hydroxyapatite, Ca10(PO4)6(OH)2, common-

ly referred to as CHAp, is one of the calcium phosphate 

based bioceramic material which makes up the majori-

ty of the inorganic components of human bones and 

teeth. Synthetic CHAp is known to be one of most im-

portant implantable materials due to its biocompatibil-

ity, bioactivity and osteoconductivity coming from the 

analogy to the mineral components of natural bones. 

For the use in medical practice, the CHAp ceramics 

have been conventionally strengthened and toughened 

in the form of granules and dense or porous ceramics 

composites, coatings, whiskers, nanorods and different 

pieces with complex shapes. Although these materials 

can closely replicate the structure of human bone, the 

improvement of properties of the materials is still very 

much desirable [1].  

The specific chemical structural and morphological 

properties of CHAp bioceramics are highly sensitive to 

the changes in chemical composition and processing 

conditions [2-5]. However, the stability of crystal struc-

ture of CHAp is higher than that of natural apatite. 

CHAp is difficult to degrade in living body. Most natu-

ral apatite is non-stoichiometric because of the pres-

ence of minor constituents such as cations (Mg2+, Mn2+, 

Zn2+, Na+, Sr2+) or anions (HPO4
2– or CO3

2–) [6, 7]. The 

traces of metal ions introduced in apatite structure can 

effect on the lattice parameters, the crystallinity, disso-

lution kinetics and other physical properties of apatite. 

The reports regarding the substitution of Ca2+ ions by 

bivalent or trivalent metal ions attracted attention 

during the past few years [8–10]. However, according to 

these reports some metal ions did not enter the crystal 

lattice of CHAp. It was also suggested that lanthanide 

elements might play an important role in enamel de-

mineralization reduction [11].  

Over the last few decades, the sol-gel technique has 

been used to prepare a variety of mixed-metal nanopo-

rous oxides, nanomaterials, nanoscale architectures 

and organic-inorganic hybrids [12-15]. It has been 

demonstrated that sol-gel process offers considerable 

advantages such as better mixing of the starting mate-

rials and excellent chemical homogeneity in the final 

product. Moreover, the molecular level mixing and the 

tendency of partially hydrolyzed species to form ex-

tended networks facilitate the structure evolution 

thereby lowering the crystallization temperature. Re-

cently, for the preparation of calcium hydroxyapatite 

samples with different properties an aqueous sol-gel 

processing route was elaborated [16-18]. The main aim 

of this study was to investigate cerium substitution 

effects in Ca10-xCex(PO4)6(OH)2 synthesized using an 

environmentally friendly aqueous sol-gel method. 

 

2. EXPERIMENTAL PART 
 

Calcium hydroxyapatite powders substituted by ce-

rium Ca10-xCex(PO4)6(OH)2 having different concentra-

tions of cerium (x = 0.01; 0.025; 0.05; 0.1; 0.5 and 1.0) 

were prepared by aqueous sol-gel method. In the sol-gel 

process Ca(CH3COO)2·H2O (≥ 99 %, Fluka), phosphoric 

acid H3PO4 (85%, Eurochemical), tartaric acid C4H6O6 

(99,5 %, Aldrich), cerium (III) nitrate hexahydrate 

Ce(NO3)3∙6H2O (99,9 %, Merck) were used. Firstly, cal-

cium acetate monohydrate and cerium (III) nitrate 

hexahydrate were dissolved in small amount of dis-

tilled water. Secondly, phosphoric and tartaric acids 

were added to the solution of metals. The resulting 

solution was vigorously stirred for 12 h at 65 ˚C tem-
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perature. Obtained sol was concentrated under evapo-

ration till the transparent gel has formed. Further, the 

gel was dried for 24 h at 100 ˚C and then calcined for 5 

h at 800 ˚C in air. The powders were grinded in agate 

mortar to increase the homogeneity and additionally 

calcined for 5 h at 1000 ˚C in air.  

X-ray diffraction analysis (XRD) was performed on 

a Bruker AXE D8 Focus diffractometer with a LynxEye 

detector using Cu K  radiation. Infrared spectra of 

samples in KBr pellets were recorded with a Bruker 

Equinox 55/S/NIR FTIR spectrometer (resolution 1 cm-

1). The particle size and morphology of the resultant 

Ca10-xCex(PO4)6(OH)2 powders were examined using 

FE-SEM Zeiss Ultra 55 scanning electron microscope 

with In-Lens detector. UV-Vis diffuse reflectance spec-

tra were recorded on Perkin-Elmer Lambda 35 UV-Vis 

spectrophotometer with an integrated 50 mm sphere 

attachment. Investigation of luminescent properties 

was performed with PerkinElmer LS-55 fluorescence 

spectrometer. 

 

3. RESULTS AND DISCUSSION  
 

The XRD patterns of cerium substituted compounds 

Ca10-xCex(PO4)6(OH)2 (x = 0.01; 0.025; 0.05; 0.1; 0.5 and 

1.0) obtained at 1000 °C are shown in Fig. 1. 
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Fig. 1 – XRD patterns of Ca10-xCex(PO4)6(OH)2 (x=0.01; 0.025; 

0.05; 0.1; 0.5 and 1.0) powders synthesized by sol–gel method 

and annealed at 1000 0C for 5 h 
 

As seen, the XRD patterns of CHAp with low con-

centrations of cerium (x = 0.01; 0.025; 0.05 and 0.1) 

revealed that the main crystalline component in the 

synthesis products is CHAp and only minor amount of 

calcium oxide could be detected. The obtained XRD 

patterns are in a good agreement with the reference 

data for Ca10(PO4)6(OH)2 (PDF [72-1243]) and CaO 

(PDF [37-1497]). With increasing concentration of ceri-

um (x = 0.5 and 1.0), however, the formation of cerium 

oxide CeO2 (PDF [78-694]) and calcium phosphate 

Ca3(PO4)2 (PDF [86-1585]) phases occurs.   

The IR spectra of the Ca10-xCex(PO4)6(OH)2 samples 

are shown in Fig. 2. As was expected, all IR spectra are 

very similar. The absorbing bands indicate the for-

mation of a typical HA structure containing sharp O–H 

and P–O peaks. The spectra of these samples clearly 

show the bands of a significant intensity at 1048 cm-1 

and 1092 cm-1. These bands arise due to the factor 

group splitting of the v3 fundamental vibrational mode 

of the PO4 3- tetrahedral. The bands at ~962 cm-1 and 

at ~570–602 cm-1 correspond to symmetric stretching 

modes v1 and antisymmetric bending modes v4 P–O 

vibration of the phosphate groups respectively [19]. The 

peak observed at 630 cm-1, assigned in hydroxyapatite 

spectra to the O-H group vibrational mode and band of 

the stretch vibration mode of OH group in apatite 

structure at 3573 cm-1 is well visible, surface OH band 

at 3644 cm-1 also appears. 
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Fig. 2 – IR spectra of Ca10-xCex(PO4)6(OH)2 (x=0.01; 0.025; 

0.05; 0.1; 0.5 and 1.0) powders synthesized by sol–gel method 

and annealed at 1000 0C for 5 h 
 

The observed ν3 carbonate bands at 1480 cm−1, 1420 

cm−1 and the ν2 mode at 873 cm−1 suggest that part of 

PO4
3– in CHAp is substituted by CO3

2−. The carbonate 

might come from the atmosphere carbon dioxide which 

combined into the crystal structure during dissolving, 

stirring, reaction and the calcination processes [20].  

Fig. 3 shows the representative SEM micrograph of 

cerium substituted CHAp sample.  
 

 
 

Fig. 3 – SEM micrograph of Ca9.0Ce1.0(PO4)6(OH)2 powders 

synthesized at 1000 C 
 

SEM analysis data showed that cerium substituted 

CHAp samples are composed of the plate-like crystals 

with size of 0.5-1 µm. However, some of particles are 

close to nanometre dimensions. These nanograins show 
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tendency to form larger agglomerates. The SEM results 

also suggest that obtained cerium substituted CHAp 

crystallites are homogeneous with small particle size 

distribution. 

The luminescent properties of these samples were 

also investigated. Fig. 4 shows the emission spectra of 

sol-gel derived cerium substituted CHAp samples. 
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Fig. 4 – Emission spectra of Ca10-xCex(PO4)6(OH)2 (x = 0.01; 

0.05; 0.1; 0.5 and 1.0) powders synthesized by sol–gel method 

and annealed at 1000 C for 5 h 
 

The position of the broad emission band at around 350 

nm is almost independent on the Ce concentration, 

however, the intensity of photoluminescence peak 

slightly depends on the cerium concentration. 

 

 

4. CONCLUSIONS 
 

Cerium substituted calcium hydroxyapatite  

Ca10-xCex(PO4)6(OH)2 samples were synthesized us-

ing sol–gel method. The results of X-ray diffraction 

analysis showed the formation of almost single CHAp 

phase at low concentrations of cerium (x = 0.01; 0.025; 

0.05 and 0.1). With further increasing amount of ceri-

um (x = 0.5 and 1.0) the formation of side phases, such 

as cerium oxide (CeO2) and calcium phosphate 

Ca3(PO4)2 have been detected. It was demonstrated 

that infrared spectroscopy is very effective method to 

characterize the formation of CHAp. The SEM results 

showed that CHAp solids were homogeneous having 

small particle size distribution. The luminescent prop-

erties of these samples were also investigated. The po-

sition of the broad emission band at around 350 nm is 

almost independent on the Ce concentration, however, 

the intensity of photoluminescence peak slightly de-

pends on the cerium concentration. In conclusion, Ce 

substituted CHAp samples show interesting lumines-

cent properties and could be a good candidate for bio-

compatible drug carriers. 

 

ACKNOWLEDGEMENTS 
 

This research was funded by a grant (No. TAP LLT 

07/2012) from the Research Council of Lithuania. 

 

REFERENCES 
 

1. S.V. Dorozhkin, J. Mater. Sci. 44, 2343 (2009). 

2. A. Bigi, E. Boanini, K. Rubini, J. Solid State Chem. 177, 

3092 (2004). 

3. J. Liu, K. Li, H. Wang, M. Zhu, H. Yan, Chem. Phys. Lett. 

396, 429 (2004). 

4. C.E. Fowler, M. Li, S. Mann, H.C. Margolis, J. Mater. 

Chem. 15, 3317 (2005). 

5.  G. Goller, F.N. Oktar, S. Agathopoulos, D.U. Tulyaganov, 

J.M.F. Ferreira, E.S. Kayali, I. Peker, J. Sol-Gel Sci. 

Technol. 37, 111 (2006). 

6. I. Mayer, J.D.B. Featherstone, J. Cryst. Growth 219, 98 

(2000). 

7. S. Ben Abdelkader, I. Khattech, C. Rey, M. Jemal, Ther-

mochim. Acta. 376, 25 (2001). 

8. M. Wakamura, K. Kandori, T. Ishikawa, Polyhedron 16, 

2047 (1997). 

9. Idem., Colloids Surf. 164, 297 (2000). 

10. A. Serret, M. V. Cabanas, M. Vallet-Regi, Chem. Mater. 

12, 3836 (2000). 

11. F.B. Bagam Bisa, H.F . Kappert, W. Schili, J. Oral. Maxil-

lofac. Surg. 52, 52 (1994). 

12. J. Livage, M. Henry, C. Sanchez, Progr. Solid State Chem. 

18, 259 (1988). 

13. B.L. Cushing, V.L. Kolesnichenko, C.J. O‘Connor, Chem. 

Rev. 104, 3893 (2004). 

14. J.D. Mackenzie, E.P. Bescher, Acc. Chem. Res. 40, 810 

(2007). 

15. C. Yu, D. Cai, K. Yang, J.C. Yu, Y. Zhou, C. Fan, J. Phys. 

Chem. Solids 71, 1337 (2010). 

16. I. Bogdanoviciene, A. Beganskiene, K. Tõnsuaadu, J. Gla-

ser, H-J. Meyer, A. Kareiva, Mater. Res. Bull. 41, 1754 

(2006). 

17. I. Bogdanoviciene, K. Tõnsuaadu, A. Kareiva, Polish J. 

Chem. 83, 47 (2009). 

18. I. Bogdanoviciene, K. Tõnsuaadu, V. Mikli, I. 

Grigoraviciute-Puroniene, A. Beganskiene, A. Kareiva. 

Centr. Eur. J. Chem. 8, 1323 (2010). 

19. N. Pleshko, A. Boskey, R. Mendelsohn, Biophys. J. Bio-

phys. Soc.  60, 786 (1991). 

20. J. Chen, Y. Wang, X. Chen, L. Ren, C. Lai, W. He, Q. 

Zhang, Mater. Lett. 65, 1923 (2011). 

 


