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Poly (o-anisidine) (POA) and also poly (o-anisidine)-TiO2 (POA-TiO2) nanocomposite coatings on alumi-

num alloy 3004 (AA3004) have been investigated by using the galvanostatic method. The electrosynthe-

sized coatings were characterized by FT-IR, SEM- EDX, SEM and AFM. The corrosion protection perfor-

mances of POA and also POA-TiO2 nanocomposite coatings were investigated in 3.5% NaCl solution by us-

ing the potentiodynamic polarization technique and electrochemical impedance spectroscopy (EIS). The 

corrosion rate of nanocomposite coatings was found ∼900 times lower than bare AA3004. The results of 

this study clearly ascertain that the POA-TiO2 nanocomposite has outstanding potential to protect the 

AA3004 against corrosion. 
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1. INTRODUCTION 
 

Over the years, various protection methods have 

been developed to prevent the degradation processes of 

Al and its alloys. Aluminum, a very reactive metal, 

forms a thin solid protecting film of oxide which pre-

vents the further corrosion of the material [1]. 

Much research works done on the corrosion inhibi-

tion properties of conducting polyaniline coatings have 

focused on the protection of steel but only a few studies 

have been devoted to the protection of Al alloy by poly 

(o-anisidine). O-anisidine is a substituted derivative of 

aniline with a methoxy (-OCH3) group substituted at 

the ortho-position. A review presented the use of poly 

(o-anisidine) for corrosion control, paying to structural 

alloys for the aerospace industry, such as Al 2024 [2], 

mild steel [3], platinum [4] and copper [5]. 

The incorporation of inorganic fillers into conduct-

ing polymer matrices by electrochemical polymerization 

processes have also been studied [6]. Zhu and Iroh [7] 

electrosynthesized polyaniline in the presence of TiO2, 

ZrO2 and SiO2 nanoparticles on 2024 Al alloy. The po-

tentiodynamic polarization behavior suggested a bene-

ficial effect of the fillers on the corrosion resistance 

provided by polyaniline coatings, although no mecha-

nistic information was provided. Lenz et al, electrosyn-

thesized polypyrrole on mild steel in the presence of 

TiO2 particles [8]. The polypyrrole/TiO2 composite films 

show improved performance compared to the polypyr-

role films that were attributed to the reduced porosity 

of the polymer through filling by TiO2 particles. 

The aqueous electrochemical process is an environ-

mental friendly and efficient technique used to process 

conducting polymer coatings. It is widely preferred be-

cause of its simplicity and it also can be used as a one-

step method to form coatings on metal substrates. It 

allows efficient control of the chemical and physical 

properties of the coatings, and it can also be easily 

adapted to large-scale production [9]. In this work, we 

have electrochemically synthesized strongly adherent 

POA and POA-TiO2 nanocomposite coatings on Al alloy 

3004 by using the direct electrochemical galvanostatic 

method. Then the coatings were characterized by FT-

IR, SEM-EDX, SEM and AFM. The corrosion resistant 

properties of POA and POA-TiO2 nanocomposite coated 

samples were then evaluated by polarization and EIS 

techniques in 3.5% NaCl. 

 

2. MATERIALS AND METHODS 
 

2.1 Materials 
 

Aluminum alloy 3004 was used as the substrate. 

The metal sheet was cut into rectangular samples of 1 

cm2 area and 0.6 mm thickness soldered with Al-wire 

for an electrical connection. The metal sheet then 

mounted onto the epoxy resin to offer only one active 

flat surface exposed to the corrosive environment. 

Navard Aluminum Manufacturing Group (Iran) 

supplied the AA3004 sheet. P-25 TiO2 nanoparticles 

purchased from Degussa AG (Germany) that size range 

of the TiO2 nanoparticles was 25-50 nm, other chemi-

cals were purchased from Merck. O-anisidine was 

freshly distilled and stored in the dark. Electrochemical 

experiments and corrosion tests were carried out using 

an AUTOLAB PGSTAT 30 (Eco Chemie, Utrechtthe 

Netherlands) potentiostat/ galvanostat connected to a 

Pentium IV personal computer through a USB electro-

chemical interface. Pre-treated AA3004 was used as 

working electrode in the conventional three-electrode 

cell. 

 

2.1.1 Pretreatment of AA3004 
 

Before each experiment, the working electrode was 

abraded with a sequence of emery papers of different 

grades (280, 320, 400, 800, 1000, 1200 and 2000) and 

substrates were degreased with acetone and then 

dipped in 5%NaOH solution for 2 min to activate the 
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surface. After this stage, the electrodes were cleaned 

with detergent powder to remove the black colored 

smudge formed over the surface and were washed thor-

oughly with running water and dipped in a concentrat-

ed HNO3 solution for 30 s. The electrodes were then 

washed with distilled water and used for electropoly-

merization. Before each experiment, the working elec-

trode was abraded with a sequence of emery papers of 

different grades (280, 320, 400, 800, 1000, 1200 and 

2000) and substrates were degreased with acetone and 

then dipped in 5%NaOH solution for 2 min to activate 

the surface. After this stage, the electrodes were 

cleaned with detergent powder to remove the black 

colored smudge formed over the surface and were 

washed thoroughly with running water and dipped in a 

concentrated HNO3 solution for 30 s. The electrodes 

were then washed with distilled water and used for 

electropolymerization. 

 

2.2 Methods 
 

2.2.1 Electropolymerization of POA and POA-

TiO2 Coatings on AA3004 
 

Electropolymerization of POA was carried out by 

galvanostatic method from 15 mL solution that, are 

include of the 0.5 M oxalic acid and 0.2 M o-anisidine 

composition. As a typical procedure for the preparation 

of POA-TiO2 nanocomposite coatings with 1 wt% of 

TiO2 nanoparticles, a mixture of 0.5 M oxalic acid and 

0.2 M o-anisidine monomer, with 1 wt% of dispersed 

TiO2 nanoparticles prepared. Subsequently, the ob-

tained solution was ultrasonic for 30 min in order to 

increase its uniformity. 

Electropolymerization of POA and POA-TiO2 nano-

composite over AA3004 surface were also carried out by 

keeping a fixed current for certain duration of time. In 

this regard, three current densities 5, 10 and 15 mA 

cm-2 were attempted and the corresponding potential 

transients were recorded for a period of 1800 s. Pre-

treated AA3004 was used as the working electrode in 

the conventional three-electrode assembly, having a 

graphite rod as the counter electrode and a saturated 

calomel electrode (SCE) as the reference electrode. 

 

2.2.2 Corrosion tests 
 

The AA3004 samples with electropolymerized POA 

and POA-TiO2 nanocomposite coatings were evaluated 

for their corrosion resistance properties in 3.5% NaCl 

by Tafel polarization and electrochemical impedance 

spectroscopy. The working electrode was first immersed 

in the test solution for 3600 s to establish a steady state 

open circuit potential (OCP). 

 

3. RESULTS AND DISCUSSION  
 

3.1 Galvanostatic Synthesis 
 

The E-t transient curves were obtained during the 

formation of POA-TiO2 nanocomposite coatings on alu-

minum for three different applied constant current 

densities 5, 10 and 15 mA cm-2 deposition time of 1800 s 

(Fig. 1). As can be seen in Fig. 1, the polymerization 

potential value was about 16.5 V versus SCE for all 

applied current densities. On the other hand, coatings 

of homogeneous appearance were obtained at various 

applied current densities. At higher applied current 

densities, the induction times were shorter. Thus, when 

the applied current density is higher, the substrate can 

be covered by the passive layer in a shorter time. This 

passive layer inhibits the further dissolution of Al3+ 

without affecting the other electrochemical processes. 

In other words, the electrode surface behaves like an 

inert metal [10]. 
 

 
 

Fig. 1 – E-t curves under galvanostatic polymerization condi-

tions in 0.5 M oxalic acid solution containing 0.2 M o-anisidine 

and 1 wt% dispersed TiO2 nanoparticles for AA3004 electrode 

at various current densities (mA cm-2). 
 

The galvanostatic procedure gave rise to the deposi-

tion of green coatings, characteristic of POA in the em-

eraldine oxidation state, on the surface of AA3004 

which was washed with water and ethanol and coating 

with adhesive remained on the surface. 

 

3.2 Spectroscopic characterization 
 

The typical FT-IR absorption spectra for TiO2, POA 

and POA-TiO2 nanocomposite containing 1 wt% TiO2 

nanoparticles are shown in Fig. 2.  
 

 
 

Fig. 2 – FT-IR spectra (a) TiO2 nanoparticles, (b) POA and (c) 

the POA-TiO2 nanocomposite. 
 

The characteristic for POA peaks were observed at 

3300, 3100, 1600, 1210, 1130 and 800 cm-1, in agree-

ment with the literature reported [2]. The bands at 

approximately 1490 and 1570 cm-1 are due to the ben-
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zenoid and quinoid ring units, respectively. It was 

found that the POA film formed by galvanostatic condi-

tions contained both benzenoid and quinoid moieties. 

There are other characteristic peaks at 1210 and 

1150 cm-1, due to 1, 2, 4-trisubstituted benzene rings. 

The broad intense band below 1200 cm-1 is due to Ti-O-

Ti vibration [11-13], all of which confirm the presence 

of TiO2 nanoparticles in the POA-TiO2 nanocomposite. 

 

3.3 Scanning Electron Microscopy (SEM) and 

EDX Analysis 
 

SEM micrographs of the surface of uncoated 

AA3004 and POA-TiO2 nanocomposite-coated samples 

at current densities of 15 mA cm-2 are shown in Fig. 3. 

Images show that nanoparticles are uniform, global 

and slightly agglomerated. Further observation indi-

cates that the morphology of samples is very dense and 

uniform and may be beneficial to enhancing the corro-

sion protection due. 
 

 
 

Fig. 3 – SEM images of the (a) abraded AA3004 and (b) elec-

trosynthesized POA-TiO2 nanocomposite coated AA3004 for 15 

mA cm-2.  
 

The EDX data of POA-TiO2 nanocomposite contain-

ing 1 wt% TiO2 sample is shown in Fig. 4. Nano-TiO2 

shows a peak around 4.7keV and are intense peak ap-

pears at 1.5, 1.8keV is related to Ti-O. Aluminum exist 

in the surface shows a peak toward 2.5keV [14]. These 

results confirm that Ti-O exists in the nanocomposite 

structure on aluminum alloy surface. 
 

 
 

Fig. 4 – EDX pattern of the electrosynthesized POA-TiO2 

nanocomposite coated AA3004 for 15 mA cm-2. 
 

3.4 Corrosion Protection Evaluation of the Coat-

ings 
 

The corrosion protection performance of POA-TiO2 

nanocomposite and POA coatings synthesized under 

galvanostatic conditions were examined in an aqueous 

3.5 wt% NaCl solution using potentiodynamic polariza-

tion and EIS studies. 

The typical potentiodynamic polarization curves for 

uncoated AA3004, POA-TiO2 nanocomposite coated 

AA3004 in an aqueous 3.5% NaCl, are shown in Fig. 5. 

As shown in the curves, the corrosion potential for 

POA-TiO2 nanocomposite coated AA3004 has shifted to 

more positive potentials, about 138 mV vs. SCE higher 

than the uncoated AA3004 (anodic protection). The 

electrochemical protection is caused by the increase of 

the corrosion potential and the formation of a protec-

tive passive layer on Al surface due to redox catalytic 

properties. 
 

 
 

Fig. 5 – Polarization behavior of electropolymerzied POA-

TiO2nanocomposite- coated on AA3004 at various current 

densities (mA cm-2) in 3.5% NaCl. 
 

From the results it can be found that the corrosion 

rate of Al is significantly reduced as a result of the re-

duction in corrosion current. The corrosion rate of the 

POA-TiO2 nanocomposite coated AA3004 is found to be 

9.3 × 10-5 mm year-1 and for pure POA is 4.7 × 10-4 mm 

year-1, which is~ 900 and ~ 180 times lower than those 

observed for uncoated AA3004, respectively. 

It can be seen that the corrosion current of POA-

TiO2 nanocomposite-coated was lower than and protec-

tion efficiency is upper than for POA coated AA3004. 

Therefore, it was found that the incorporation of TiO2 

nanoparticles in the POA matrix promotes the anticor-

rosive efficiency of the POA-TiO2 nanocomposite coat-

ing on AA3004. However enhanced corrosion protection 

by the POA-TiO2 nanocomposite over the protection by 

POA might result from the nanolayers of TiO2 dis-

persed in the POA matrix as filler that increase of the 

diffusion pathway corrosive agents such as oxygen gas, 

hydrogen and chloride ions [11, 15]. 

In this study, electrochemical impedance spectros-

copy was also used to evaluate the corrosion activity 

variation for AA3004 coated with the POA and POA-

TiO2 nanocomposite.  

The Nyquist impedance plots of uncoated AA3004, 

POA-TiO2 nanocomposite and POA coated AA3004 rec-

orded in an aqueous 3.5% NaCl solution are shown in 

Fig. 6. 
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Fig. 6 – Nyquist impedance plots for uncoated AA3004 and 

POA-TiO2 nanocomposite coated AA3004 in aqueous solution 

of 3.5% NaCl. 
 

The charge transfer resistance (Rct) values are ap-

proximately 41.1 and 71.2 k  cm2 for POA and POA-

TiO2 nanocomposite coated AA3004 which are about 

12.4 and 21.5 times higher than uncoated AA3004 re-

spectively. The higher value of Rct is attributed to the 

effective barrier behavior of the POA-TiO2 nanocompo-

site coating. It can be found that the incorporation of 

TiO2 nanoparticles into the POA matrix exhibited bet-

ter charge transfer resistances than for POA coated 

AA3004 electrodes. 

 

3.5 AFM Characterization 
 

AFM is a powerful technique to investigative the 

surface morphology at nano- to micro-scale and has 

become a new choice to study the influence of coatings 

on the generation and the progress of the corrosion at 

the metal/solution interface. The typical AFM images of 

abraded AA3004 (image a), pre-treated AA3004 after 

corrosion (image b),POA coatings after corrosion (image 

c) and POA-TiO2 nanocomposite coatings grown by an 

applied current density of 15 mA cm-2 after corrosion 

(image d) are shown in Fig. 7. A comparison of image d 

shows that the POA-TiO2 nanocomposite coating pro-

tects the AA3004, which does not change dramatically. 

 
 

Fig. 7 – AFM of abraded AA3004 (image a) pre-treated 

AA3004 after corrosion (image b), POA coating after corrosion 

(image c) and POA-TiO2 nanocomposite coatings grown by an 

applied current density of 15 mA cm-2 after corrosion (im-

age d). 

 

4. CONCLUSIONS 
 

The direct electrochemical synthesis of POA and 

POA-TiO2 nanocomposite coating in an aqueous solu-

tion containing oxalic acid and o-anisidine monomers 

with dispersed TiO2 nanoparticles for nanocomposite on 

AA3004 have been demonstrated. Uniform electrodepo-

sition, compact and strongly adherent coatings can be 

obtained under galvanostatic condition. This study re-

veals that the POA-TiO2 nanocomposite coating has 

excellent corrosion protection properties and can be 

considered a potential coating material to protect 

AA3004 against corrosion in aqueous 3.5% NaCl. The 

enhanced corrosion protection effect of the POA-TiO2 

nanocomposite relative to POA in the form of coating 

on metallic surface was attributed to the combination 

of the redox catalytic property of POA and the barrier 

effect of the TiO2 nanoparticles dispersing in the com-

posite.  
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