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Nanosized particles are currently of interest due to their attractive physical, photochemical, and cata-

lytic properties. However, such small size particles could possess not only unique and advantageous prop-

erties, but could also have potentially new types of toxicity to humans. To estimate the true nano toxicity, 

it is therefore improtant to perform carful characterization of nano colloidal suspension.  

To elucidate important parameters for nano toxicity assessment of nano colloidal materials, experi-

ments were carried out using pulsed field gradient nuclear magnetic resonance (PFG-NMR), asymmetrical 

flow field-flow fractionation (AFFFF), and dynamic light scattering (DLS) methods.  

For the assessment of the in nano toxicity, the amounts of total and bulk bovine serum albumin (BSA) 

molecules in nano colloidal suspensions were determined using the PFG-NMR and AFFFF methods. Be-

cause the amount of bulk BSA molecules in the cell culture medium is a significant factor in inducing cell 

growth and because BSA can strongly adsorb onto the nano sized particles, this value is an important pa-

rameter for in vitro toxicological assessment. In addition, structural analysis of the colloidal nanomaterials 

were successfully performed using AFFFF-multi angle light scattering (MALS) and DLS methods.  
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1. INTRODUCTION 
 

In this decade, a numerical number of experimental, 

theoretical attempts on nano sized materials have been 

widely performed [1-7]. Nano sized materials are current-

ly a subject of interest because of their attractive physical, 

photochemical, and catalytic properties. Their potentials 

of small sized materials are increased with decreasing of 

the sizes of the materials, therefore, the number of studies 

on the reduction of the nano sized materials are produced 

acceleratory.  For example, a good photocatalyst needs a 

large catalytic surface area since the size of the primary 

size of the catalyst nanoparticle defines the surface area 

available for adsorption and decomposition of the organic 

pollutants [3].  

However, such a small size induced not only a novel 

superior properties but also entirely new risk on human 

health [8]. The unexpected adverse effects of nano materi-

als on human health are received a lot of attentions, 

therefore, many international organizations and re-

searchers have been already carried out nano-toxicity 

assessments for various nanoparticles (metal, metal oxide, 

fullerenes, and carbon nanotubes) [9-12]. Those research-

es were shown that the small sized particles were possible 

to insert human body and induced toxicity [13], on the 

other hand, little toxicity of nanoparticles was reported by 

other researchers [14]. Poor characterization of the size of 

nanoparticles in suspension, different dispersion proto-

cols, and different particokinetics in suspension for in 

vitro risk analysis [12], might be some of the reasons why 

such incoherence have been coming out.  

 

2. SIZE IS IMPORTANT FACTOR FACTOR FOR 

NANO-TOXICITY ASSESSMENT 
 

One of the most significant factors for recognition of 

the toxicity of nanomaterials is size. Commercial nanopar-

ticles are commonly provided in dry powder form and the 

sizes of the primary nanoparticles are determined using 

microscopic techniques or the Brunauer, Emmett, and 

Teller (BET) method; however, nanoparticles are easily 

aggregated or agglomerated in a cell culture medium for 

in vitro toxicity assessment, because the high ionic nature 

of the solution and the electrostatic/van der Waals inter-

action between protein and nanoparticles results in the 

formation of secondary particles [15-18]. The hydrody-

namic sizes of secondary nanoparticles in dispersion have 

a dramatic effect on cell response to exposure; therefore, 

not only the size of the primary nanoparticles, but also the 

size of the secondary nanoparticles, could be used as a 

characteristic parameter to determine the in vitro toxicity 

of nanoparticles in a cell culture medium [19]. 

The transport rate of particles to cells strongly affects 

the amount of uptake of particles by the cells; therefore, 

estimation of the transport processes of nanoparticles to 

cells for in vitro assessment is significant. It would be as-

sumed the two transport modes of particles to cells for in 

vitro assessment; diffusion and gravitational settling (sed-

imentation) [20]. Although shape affects particle buoyan-

cy, the settling convection increases due to local collections 

of particles, and the presence of proteins in the culture 

media can affect the settling rate. Diffusion processes 

should apply to nanosized materials, whereas submicron 

sized materials settle on the cells, because the diffusion 

rate of nanosized materials should be faster than that of 

micro-sized materials, and the sedimentation rate of mi-

cro and submicron sized materials is faster than that of 

nanosized materials. The determination of both secondary 

particle sizes and the transport mode of particles is there-

fore one of the key to prevent misinterpretation of in vitro 

toxicity assessment for nanomaterials.  

 

3. CHARACTERIZATION BY DYNAMIC LIGHT 

SCATTERING  
 

Dynamic Light Scattering (DLS) is widely used to de-

termine the size of Brownian nanoparticles in colloidal 

http://nap.sumdu.edu.ua/
http://sumdu.edu.ua/


 

H. KATO PROC. NAP 1, 03PCSI04 (2012) 

 

 

03PCSI04-2 

suspensions in the nano and submicron ranges [21-25]. 

When particles are dispersed in a liquid phase, they 

are in constant random motion, that is, Brownian mo-

tion, in which a given particle undergoes random posi-

tion changes in time. The diffusion of spherical parti-

cles can be described by the Stokes-Einstein equation, 
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where kB is the Boltzmann constant, T is the absolute 

temperature,  is the viscosity of the solvent, D is the 

diffusion coefficient of the particles, and d is the diame-

ter of the particles. According to the Stokes-Einstein 

assumption, small particles move quickly by diffusion.  

We have previously established a practical protocol for 

determination of the size of secondary particles and 

transport rate of particles to cells for in vitro toxicity as-

sessments using the Dynamic Light Scattering (DLS) 

method [26-27]. The protocol of size determination of par-

ticles by DLS includes assessment of the DLS measure-

ment reproducibility, change of the size of secondary na-

noparticles during a period of in vitro toxicity assessment, 

and the difference in size of the secondary nanoparticles 

(determined using different DLS analytical procedures). 

Processes associated with particles in a suspension could 

be investigated by examining changes in the size and light 

scattering intensity of secondary nanoparticles during in 

vitro toxicity assessment using this protocol.  

In previous study [27], various metal oxide particles 

with nanoscale primary particle sizes were character-

ized using the established protocol; however, all metal 

oxide particles in the culture medium resulted in sub-

micron sized secondary particles, as confirmed by DLS 

measurement. Although these larger sized particles 

were expected to be settled faster by gravitation than 

by diffusion, less sedimentation was observed than the-

oretically expected in culture medium, which indicates 

that the effective densities of metal oxide secondary 

nanoparticles are lower than the corresponding true 

densities of pure metal oxide particles. Namely, stably 

dispersed secondary metal oxide nanoparticles with 

slow gravitational settling kinetics are induced by sec-

ondary nanoparticles consisting of small amounts of 

metal oxide particles and large amounts of protein, 

which results in lower particle densities than the pure 

metal oxide particles. 

 

4. CHARACTERIZATION OF ADSORPTION 

ABILITY OF PROTEIN ON NANOMATERIALS 

BY FLOW FIELD-FLOW FRACTIONATION 
 

The accurate assessment of the adsorption ability of 

the protein is significant for in vitro toxicity assess-

ments since cell proliferation is strongly inhibited by a 

lack of protein caused by the influence of the adsorp-

tion ability of metal oxide nanoparticles [15, 16, 28], 

and the amount of bound protein strongly affects on the 

gravitational settling kinetics of secondary nanoparti-

cles [27]. Furthermore, the adsorbed surfactants or 

protein molecules induced a high stability of nano-

materials in culture medium because of a steric inter-

action between protein molecules adsorbed on the na-

noparticles [29, 30]. For example, the protective layer 

of protein prevents aggregation of the carbon nanopar-

ticles, as has been reported previously for fullerene and 

carbon nanotubes [31, 32]. The observed zeta potentials 

of secondary nanoparticles (nanocarbon and metal ox-

ide) in culture medium dispersion are between -15 to 

0mV, again indicating that the stability of the second-

ary nanoparticles in the culture medium is maintained 

by steric interactions between the small amount of ad-

sorbed protein molecules on the nanoparticles, while 

the effect of electrostatic interactions between adsorbed 

proteins was minimal. The studies of such protein ad-

sorption to nanoparticles have therefore already begun 

to provide insights into the interaction between nano-

particles and proteins using techniques such as infra-

red spectroscopy, mass spectrometry, fluorescence 

spectroscopy, and size exclusion chromatography 

methods [33-37].  

Flow field-flow fractionation (FFFF) is an elution 

technique wherein nanoparticles and macromolecules 

are separated by flow control in an aqueous solution.38 

In FFFF, the retention time, tr, of the nanoparticles 

can be predicted by Giddings’ theory. According to this 

theory, the retention time, tr, of the corresponding na-

noparticles is represented by 
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where kBT is the thermal energy, η is the carrier elution 

viscosity, d is the diameter of the nanoparticle, w is the 

channel thickness, V0 is the volumetric flow rate of the 

channel-flow, and VC is the cross-flow rate. Thus, when 

the cross-flow and channel-flow rates are constant, size 

separation of the nanoparticles can be carried out, and 

the retention time is proportional to the size of the na-

noparticles and molecules in the FFFF system [39]. 

FFFF can therefore be an effective method to separate 

free protein molecules from colloidal nanoparticles such 

as bound protein and fullerene molecules during a short 

elution time, i.e., 15 min for one measurement. 

It is common knowledge that carbonaceous nano-

sized materials should have a high affinity for protein 

in the absence of surface modification, in the case of 

carbon black and nanodiamond, the calculated weight 

ratios between protein molecules and carbon 

black/nanodiamond nanoparticles were calculated to 

approximately 1:2 by FFFF measurement [30]. The 

observed ratios did not change depending on the con-

centration of the carbon nanomaterials, suggesting that 

the surfaces of carbon black and nanodiamond were 

fully covered at this ratio. For carbon black and 

nanodiamond, the increase in particle size corresponds 

to a thickness of the adsorbed BSA layer, it is called 

protein corona, of 20 – 30 nm. This result provided sig-

nificant information that is expected to be useful for 

toxicity studies on nanomaterials.  

Furthermore, it is possible to perform a structural 

analysis of the secondary nanoparticles with adsorbed 

protein in a cell culture medium using FFFF and Multi 

Angle Light Scattering (MALS) :Static Light Scattering 

(SLS) methods. Not only the size but also the shape of 

the resulting colloidal structure that forms by adsorp-

tion of protein in the culture medium with nanoparti-

cles is also very significant factors for in vitro toxicity 
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assessment because nanoparticles with different geomet-

ric structures exhibit quite different cytotoxicity and bio-

activity in vitro [40]. Since fitting to the scattering profile 

from a sample with a separated narrow size distribution 

of colloidal particles is preferable to determine reliable 

structure in the principle of SLS analysis, the FFFF-

MALS system is effective methods to estimate the struc-

ture of secondary nanoparticle. For example, the structur-

al analysis of the fullerene colloidal nanoparticles in cul-

ture medium was previously performed and it was found 

that the colloidal fullerene particles adopted a flexible 

polymeric structure [41]. On the other hands, the colloidal 

fullerene aqueous dispersion in water took a hard spheri-

cal structure [39]. Thus, this significant difference of the 

structures of nanoparticles in water and culture medium 

may provide a significant information in terms of in vitro 

toxicity assessments that may affect the inherent toxicity 

of nanoparticles. 
 

 

5. CONCLUSION 
 

The appropriate combination of the various charac-

terization methods for nanomaterials should be taken 

into consideration by researchers performing accurate 

toxicity studies with nanosized materials and would be 

of benefit for the interpretation of the toxicity assess-

ment results. Furthermore, the accurate selection of the 

characterization method of nanomaterials also plays an 

important role in producing a novel application of nano-

materials in research of functional / industrial materials. 
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