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We derive the generalized Fokker-Planck equation for the probability density function of the nanopar-

ticle magnetic moment driven by Poisson white noise. Our approach is based on the reduced stochastic 

Landau-Lifshitz equation in which this noise is included into the effective magnetic field. We take into ac-

count that the magnetic moment under the noise action can change its direction instantaneously and show 

that the generalized equation has an integro-differential form. 
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1. INTRODUCTION 
 

The study of the physical properties of nanoparticle 

materials, especially their magnetic properties, is of 

great importance. This is substantiated by the fact that 

the magnetic nanoparticles and their ensembles are 

widely used in many areas of science, engineering and 

medicine [1-3]. Moreover, the investigation of the mag-

netic properties of nanomaterials can significantly ex-

pand the scope of their application, e.g., in magnetic 

recording, sensors based on the effect of giant magneto-

resistance, magnetic refrigerators, bio-medical technol-

ogies, etc. 

Due to continuous internal and external fluctua-

tions that are an integral part of real systems, the dy-

namics of the nanoparticle magnetic moment is ran-

dom. In some cases, it can be described by the stochas-

tic Landau-Lifshitz (LL) equation in which the fluctua-

tions are modeled by a white noise. A great amount of 

effort has been devoted to the study of the role of ther-

mal fluctuations approximated by Gaussian white 

noise. In this case, the nanoparticle magnetic moment 

evolves as a continuous-time Markov process whose 

conditional probability density satisfies the ordinary 

Fokker-Planck (FP) equation [4-6]. Within a given ap-

proach, some aspects of the effects of magnetic relaxa-

tion, switching of magnetization and induced magneti-

zation are considered in Refs. [7-12]. 

However, although the Gaussian white noise is 

widely applicable (because of the central limit theo-

rem), in some cases the use of white noises with other 

statistics is more preferable. For example, such a situa-

tion occurs when the magnetic moment under strong 

fluctuations changes its direction so fast that this pro-

cess can be considered as instantaneous. To describe 

this behavior, it is reasonable to use the LL equation in 

which the fluctuations are modeled by Poisson and/or 

Lévy noises. The dynamics of the magnetic moment 

driven by these noises is Markovian and, in contrast to 

the case of Gaussian white noise, is discontinuous. In 

this paper, we derive the generalized FP equation asso-

ciated with the reduced LL equation driven by Poisson 

white noise defined as a random sequence of delta 

pulses whose counting process is Poisson. 

2. MODEL AND BASIC EQUATIONS 
 

We deal with a simple model of single-domain fer-

romagnetic nanoparticles that are characterized by the 

magnetic moment  of a constant length 

. It is assumed that the rotational dy-

namics of the vector m is described by the following 

stochastic LL equation:  
 

  (2.1) 

 

where γ(>0) is the gyromagnetic ratio, α(>0) is the 

damping parameter, the cross denotes the vector prod-

uct, is the effective magnetic field act-

ing on the magnetic moment, W is the magnetic energy 

of a particle, and  is a random magnetic field. 

Introducing the dimensionless time  and ener-

gy  (  is a characteristic magnetic field), 

the LL equation (2.1) in spherical coordinates can be 

written as a system of two equations 
 

  (2.2) 

 

Here,  and  are the polar and azimuth-

al angles of m, respectively, 
 

  (2.3) 

 

,   

, and   with 

 being the Cartesian coordinates of the random mag-

netic field h. 

We consider the coordinates  to be independent 

and identically distributed white noises. Therefore, 

since these noises are multiplicative, the system of 

equations (2.2) should be defined more precisely. To this 

end, we interpret Eqs. (2.2) in the Ito sense [13] (see 

also Refs. [5,6]). In general, to find the statistical prop-

erties of the increments  ( ), it is necessary to 

solve these equations under condition that the statisti-

cal characteristics of  are fixed. However, in order to 
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qualitatively characterize the role of non-Gaussian 

noises in the dynamics of m, we assume that the statis-

tical properties of  are prescribed. According to the 

definitions [see formulas after Eqs. (2.3)], from the con-

dition  (the angular brackets denote an aver-

age over the realizations of ) one gets  and, 

if  (  and 

, then 

 (p  and 

. These properties permit us to consider 

the increments  as independent and identically dis-

tributed variables with zero mean and represent them 

in the form  
 

 , (2.4) 
 

where  are two white noises with identical statisti-

cal characteristics. It should be emphasized that such 

interpretation of noises in Eqs. (2.2) differs from the 

original one and the stochastic dynamics of m is also 

different. Nevertheless, we exploit this toy model to get 

more insight into the effects of non-Gaussian noises. 

In this work we study the case when  (we omit 

the index p) is Poisson white noise, i.e., a random se-

quence of delta pulses defined as 
 

 . (2.5) 
 

Here,  are independent zero-mean random variables 

with the same probability density q(z), δ(τ) is the δ 

function,  is the Poisson counting process character-

ized by the probability  (  is 

the rate of the process) that  events occur with-

in the interval (0, τ], and  are the event times. For this 

noise the probability density  that the increment 

 at  equals  is given by [14] 
 

 . (2.6) 
 

According to this result, the probability per unit 

time that  exceeds any given value is, in general, 

non-zero in the limit . As a consequence, the 

dynamics of the magnetic moment m described by 

Eqs. (2.2) is discontinuous. One more feature of these 

equations is that , while the polar and 

azimuthal angles  and  must belong to the in-

tervals  and , respectively, for all . There-

fore, to find the connection between these angles and 

the increments  and , we use the relation 

, which yields 
 

  (2.7) 

and 

  (2.8) 

 

Here, the whole numbers  and  are chosen for given 

 and  from the conditions  and 

. These numbers count the number of 

rotations of m in the corresponding planes. Thus, 

Eqs. (2.2) driven by Poisson white noise are now com-

pletely defined and we are ready to derive the corre-

sponding generalized FP equation. 

3. GENERALIZED FOKKER-PLANCK EQUA-

TION  
 

The probability density  that  

and  is defined in the standard way 
 

 . (3.1) 
 

Denoting , from the definition (3.1) 

and conditions (2.7) and (2.8) one obtains 
 

  (3.2) 

 

The average in Eq. (3.2) is equivalent to the average 

over the variables  and . Taking into 

account that these two groups of variables are inde-

pendent of each other and using Eqs. (2.2), we find 
 

   
 

   
 

  (3.3) 
 

   
 

 ,  
 

where . Finally, using Eq. (2.6) and 

the standard definition , 

after straightforward calculations we arrive at the fol-

lowing generalized FP equation: 
 

   

 

 +   
 

 +  (3.4) 
 

+   
 

 .  
 

The solution of this integro-differential equation must 

be normalized, i.e., , and satis-

fy the initial condition . Another 

form of this equation, which can be useful for studying 

its properties, follows directly from Eq. (3.4) by using 

the Poisson summation formula. 

 

4. CONCLUSIONS 
 

We have introduced a toy model for studying the ef-

fects of Poisson white noise in the rotational dynamics 

of the nanoparticle magnetic moment. We have shown 

that the dynamics is discontinuous and have developed 

an approach to account for the manifold rotations of the 

magnetic moment under pulses of the noise. Finally, 

using this approach, we have derived the corresponding 

generalized Fokker-Planck equation. 
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