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We develop a numerical method to study the long-time behavior of continuous-time random walks 

characterized by superheavy-tailed distributions of waiting time. To test the method, we consider symmet-

ric jump-length distributions with both finite second moments and heavy tails for which the asymptotic 

behavior of the walking particle is known exactly. Our numerical results for the distributions of the parti-

cle position are in excellent agreement with the analytical ones. 
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1. INTRODUCTION 
 

Continuous-time random walks (CTRWs), which 

were first introduced by Montroll and Weiss [1], repre-

sent a powerful and flexible model for the description 

and analysis of various stochastic systems. Such wide-

spread use of this type of walks is achieved due to the 

fact that, like the CTRWs, many systems of different 

nature can be characterized by two random variables, 

namely, the waiting time between successive jumps 

and the jump magnitude of the walking particle. The 

reference walks are especially useful for studying the 

phenomenon of anomalous diffusion, i.e., diffusion of 

particles with nonlinear dependence of the mean-

square displacement on time [2,3]. 

One of the most important part of the analysis of 

the CTRWs is the determination of the asymptotic (in 

time) behavior of the probability density P(x,t) of the 

particle position. This problem was already solved for 

all typical distributions of waiting time and jump mag-

nitude [4,5]. Moreover, its solution was also found for 

the special but important case of superheavy-tailed 

waiting time distributions that are characterized by 

infinite moments of any fractional order [6,7]. It has 

been recently shown [8] that these CTRWs represent 

an appropriate tool to describe the phenomenon of su-

perslow diffusion, in which the mean-square displace-

ment grows as a slowly varying function of time. 

In the case of typical distributions of waiting time 

and jump magnitude, which have finite second mo-

ments or heavy tails, the numerical determination of 

P(x,t) at long times can easily be made by the standard 

methods. But the numerical analysis of the CTRWs 

with superheavy-tailed distributions of waiting time 

has some features coming from the absence of finite 

fractional moments of these distributions and has not 

been performed before. Therefore, in this paper we de-

velop the numerical method to study the long-time be-

havior of this type of CTRWs and verify it by compar-

ing the numerical results with the analytical ones ob-

tained in Refs. [6,7]. 

 

2. THEORETICAL PART  
 

2.1 Definitions and basic equations 
 

The CTRW is a cumulative continuous-time jump 

process characterized by a sequence of random jumps 

of a walking particle. Herewith, the length xn ),(  

of the n-th jump is a random variable distributed with 

probability density w(x), and the waiting time 

τn ),0[ , i.e., time between (n-1)-th and n-th jumps, is 

a random variable distributed with probability density 

p(τ). The particle position X(t) is determined as 
)(
1)( tN

n nxtX , where N(t) = 0,1,2,… is the number of 

jumps occurred up to time t (if N(t) = 0 then X(t) = 0). 

In the decoupled case, when the sets {τn} and {xn} are 

independent of each other, the probability density 

P(x,t) of X(t) depends only on the probability densities 

p(τ) and w(x). In Fourier-Laplace space this dependence 

is given by the Montroll-Weiss equation [1] 
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 )( k  is the 

Fourier transform of the density w(x), )}({
~

tpLps  

0
)(tpedt st )0(Re s  is the Laplace transform of the 

density p(τ), and )}},({
~
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. Note that since 

0)0(X , we have the initial conditions )()0,( xxP  

( )(x  is the Dirac  function) and, because the bound-

ary conditions are not imposed, we get 0),( txP  as 

.t   

From a more precise point of view, the superheavy-

tailed waiting time density p(τ) and the heavy-tailed 

jump density w(x), which is assumed to be symmetric, 

are described by the asymptotic formulas 
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where the positive function h(τ) slowly varies at infini-

ty, i.e., h(μτ) ~ h(τ) as  for all 0 , the tail in-

dex  is restricted to the interval ]2,0( , and u is a pos-

itive constant. Note that the difference between the 

asymptotic formulas (2.2) and (2.3) causes the differ-

ence between the fractional moments of p(τ) and w(x). 

Specifically, while the fractional moments )(
0

pd  

of p(τ) are infinite for all 0 , the fractional moments 

)(|| xwxdx  of w(x) are infinite only if .  

Therefore, the variance of w(x) is infinite for all jump 

densities with ]2,0( . We note also that, due to the 

normalization condition 1)(
0

pd , the slowly vary-

ing function h(τ) must possess the following property: 

)ln1()( oh  as .   
 

2.2 Previous analytical results 
 

In this subsection we briefly outline the main theo-

retical results obtained in Refs. [6,7] and which we are 

going to verify in Sec. 3 using numerical simulation. 

Since the probability density of walker position vanish-

es at long times, 0),( txP  as t , it is reasonable 

to introduce a new scaled walker position Y(t) = 

a(t)X(t), where a(t) is a positive scaling function, whose 

probability density P(y,t) is nonvanishing and 

nondegenerate. Using the relation P(x,t)dx = P(y,t)dy, 

one can get the limiting probability density of a proper-

ly scaled walker position Y(t) 
 

 ),)(()(lim)( tytaPtay t
11 . (2.4) 

 

According to this, the asymptotic behavior of the origi-

nal probability density P(x,t) at t  is given by 
 

 ))(()(~),( xtatatxP . (2.5) 

 

It has been shown [6] that in the case of super-

heavy-tailed waiting time distributions and jump-

length distributions with finite second moments the 

limiting probability density and the corresponding scal-

ing function at t  can be represented as 
  

 ||

2

1
)( yey  (2.6) 

and 

 22 ltVta )(~)( , (2.7) 

 

respectively. Here, )()(
t

pdtV  is the so-called 

survival or exceedance probability, i.e., the probability 

that up to time t the walking particle remains at the 

origin, and )(2
2 xwdxxl  is the second moment of 

the jump density w(x). 

In contrast, if the jump-length distributions are 

heavy-tailed, then, according to [7], 
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with ]2,0( and 
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with )2,0( . At 2  Eq. (2.8) reduces to Eq. (2.6), 

but the scaling function in this case differs from that 

given in Eq. (2.7): 
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It should be noted that the limiting density (2.8) can 

also be represented in the form 
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This representation is more preferable for studying the 

general properties of )(y . In particular, from 

Eq. (2.11) immediately follows [in contrast to Eq. (2.8)] 

that )(y  is positive and unimodal. We note also that 

the symmetry property )()( yy  is a consequence of 

the condition )()( ywyw , which is assumed to hold. 

One more important feature of the limiting density, 

which takes place if )2,0( , is that it is a heavy-

tailed function with the same tail index  characteriz-

ing the asymptotic behavior of w(x). However, although 

the jump-length density w(x) at 2  is still heavy-

tailed, in this case the tails of )(y  are exponential. 

Finally, we stress that, because of the superheavy-

tailed character of p(t), in both cases, when w(x) has 

finite second moment or heavy tails, the scaling func-

tions a(t) vary slowly at infinity. Therefore, in accord-

ance with Eq. (2.5), the long-time evolution of the prob-

ability density P(x,t) occurs very slowly. 

 

3. NUMERICAL SIMULATIONS 
 

3.1 Algorithm 
 

Since we are going to numerically study the long-

time behavior of the walking particle with large wait-

ing times, the observation time interval ],[ T0  should 

be chosen as large as possible. According to the defini-

tion, the particle starts to walk at time t = 0 from the 

position X(0) = 0. After (random) waiting time 1  the 

particle makes a jump of length 1x  and at 1τt  its 

new position becomes 11)( xX . Then, after next wait-

ing time 2  the particle makes a jump of length 2x  

occupying at 21 ττt  the position 2121 )( xxX , 

and so on. Now, let us assume that during the time 

t = T exactly N jumps occurred (i.e., TN
n n1  and 

TN
n n
1
1 ). In this case the particle position at t = T 

is determined as N
n nxTX 1)( . Because we are inter-
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ested in numerical finding the limiting probability den-

sities, it is reasonable to use the scaled particle position 

)()()( TXTaTY  with the scaling function )(Ta  taken 

from Eq. (2.7), (2.9) or (2.10) depending on the charac-

ter of the walk. Calculating the random variable )(TY  

many times, one can evaluate its distribution, which is 

associated with the limiting one.  

Since the waiting times τn and jump magnitudes xn 

are distributed with some probability densities p(τ) and 

w(x), the method of their generation should be intro-

duced. There are many such methods [9], but here we 

employ the inverse one that uses the fact that every 

strictly increasing distribution function has the inverse 

function. This method is based on the theorem, which 

states that if )()( fdF  is a continuous distri-

bution function and )(1 UF  },)(:inf{ 10 UUF ξξ  

is its inverse function, then )(1 UF  with U being a 

uniform random variable on (0,1) has the cumulative 

distribution function )(ξF . Thus, if the probability 

densities p(τ) and w(x) are positive, then the distribu-

tion functions 
τ

τττ
0

)'(')( pd  and 
x

xwdxx )'(')(  

can be inverted, and so the waiting times and jump 

magnitudes can be determined by the inverse method.  

Using the above, we introduce the following algo-

rithm for the numerical simulation of the scaled parti-

cle position )(TY : 
 

The initial position: 0X  

The initial time: 0t  

The walking time: T 

REPEAT 

Generate a random variable U  uniformly dis-

tributed on (0,1) 

Calculate waiting time )(1 U  

Calculate waking time tt  

IF Tt   

THEN 

Generate a random variable *U  uniformly 

distributed on (0,1) 

Calculate jump magnitude )( *1 Ux  

Calculate particle position xXX  

ELSE 

Calculate )(Ta  from Eq. (2.7), (2.9) or 

(2.10) 

RETURN scaling position XTaY )(  

UNTIL Tt  
 

It is important to emphasize that the proposed algo-

rithm can easily be extended to the CTRWs in a multi-

dimensional space and with coupled sets {τn} and {xn}.  
 

3.2 Examples 
 

To apply the above algorithm, we should know the 

probability densities p(τ) and w(x). For the illustrative 

purposes of this paper, it is convenient to choose these 

densities in the simplest form in order to obtain the 

waiting times and jump magnitudes analytically. In 

particular, the superheavy-tailed probability density of 

waiting times can be chosen in the following form:  
 

 
)(ln)(

ln
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τητη

ηγ
τ

γ

γ

1
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( 1 , 0 ). In this case the waiting times are de-

termined as ηητ
γ11 )( nU

n , where nU  are random 

numbers uniformly distributed in the interval (0,1). On 

average, these times strongly increase with decreasing 

the parameter . Therefore, to save the computing 

time and memory, it is reasonable to put 1γ . 

To test the numerical method for the jump-length 

densities with different asymptotic behavior, we con-

sidered two cases. They are represented by the Gaussi-

an density 
 

 
π2

22 /

)(
xe

xw  (3.2) 

 

with the finite second moment and the heavy-tailed 

density 
 

 
r

r

xb

rb
xw

12 |)|(
)(  (3.3) 

 

( 0b , ]2,0(r ) with the tail index rα . The jump 

magnitudes that correspond to the probability densities 

(3.2) and (3.3) are given by )(erf 122 1
nn Ux  

[ )(erf x1  is the inverse error function, nU  are random 

numbers uniformly distributed in the interval (0,1)] 

and ]1)1[()( 1 r
nnn Ubx  [ 1)( n  or 1  with 

probability 21  each], respectively. In Fig. 1 we show 

the limiting probability densities, which correspond to 

the above waiting-time and jump-length densities, cal-

culated by Eqs. (2.6) and (2.11) (solid and dashed lines) 

and by numerical simulations (symbols). 
 

 
 

Fig. 1 – Theoretical and simulated limiting probability densi-

ties in particular cases. In all these cases the waiting-time 

density is given by Eq. (3.1) with 24 ηγ , . The jump-length 

densities are taken from Eq. (3.2)  (red solid lines and trian-

gles) and from Eq. (3.3) with 123 br ,/  (green short-dashed 

lines and diamonds) and 121 br ,/  (blue long-dashed lines 

and squares). The walking time equals 
2510T  and the 

number of particles (runs) equals 
610  
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As clearly seen from this figure, the simulated results 

are in full agreement with the theoretical ones. 

Finally, to demonstrate the efficiency of the pro-

posed method in higher dimensions, we performed 

simulations of trajectories of a walking particle in a 

two-dimensional space. As before, we assume that the 

waiting-time distributions are superheavy-tailed, but 

now the jump-length distributions are considered to be 

two-dimensional and characterized by a joint probabil-

ity density ),( yxw . If the jumps along the axes x and y 

are statistically independent and distributed with the 

same probability density then )()(),( ywxwyxw . For 

illustration, in Figs. 2 and 3 we show the sample trajec-

tories that correspond to two CTRWs with different 

distributions of waiting time and jump magnitude. In 

both cases the jumps are assumed to be independent, 

but in Fig. 2 they are distributed with the Cauchy dis-

tribution and in Fig. 3 with the Gaussian distribution. 

The difference between these trajectories arises from 

that the asymptotic behaviors of p(τ) and w(x) in these 

cases are different. Indeed, at the same other condi-

tions, the slower p(τ) decays as τ , the smaller the 

number of jumps is. Similarly, the slower w(x) decays 

as || x , the larger the trajectory domain is. 
 

 
 

Fig. 2 – Sample trajectory of a walking particle. The waiting-

time density is determined by Eq. (3.1) with 24 ηγ ,  and 

the joint probability density of jump magnitudes is given by 
12122 11 )()(),( yxyxw π . For this illustrative example, 

the particle has made about 700 jumps during the time 
310t  

 

 
 

Fig. 3 – Sample trajectory of a walking particle. The waiting-

time density is determined by Eq. (3.1) with 28 ηγ ,  and 

the joint probability density of jump magnitudes is given by 

21 22

2 /)()(),( yxeyxw π . For this illustrative example, the 

particle has made about 5200 jumps during the time 310t   

 

4. CONCLUSIONS 
 

We have developed a numerical algorithm to study 

the long-time behavior of the continuous-time random 

walks (CTRWs) characterized by superheavy-tailed 

distributions of waiting time. In order to examine the 

proposed method and verify the previously obtained 

analytical results, we have calculated the limiting 

probability densities of the walker position in some 

particular cases and have compared them with the ana-

lytical ones. These cases include examples of CTRWs 

with a certain superheavy-tailed distribution of waiting 

time and three jump-length distributions, one of which 

has a finite second moment and the others heavy tails. 

It is shown that the numerical method correctly repro-

duces analytical results and is an efficient tool for the 

investigation of a given class of CTRWs in a space of 

arbitrary dimension. 
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