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Encapsulaton of poorly soluble crystallizing drug prednisolone (PS) in micellar solutions of PAAm-b-

PEO-b-PAAm triblock copolymer (TBC) based on chemically complementary poly(ethylene oxide) and poly-

acrylamide (MnPEO  6 kDa, MnPAAm  116 kDa) was studied by dynamic light scattering and transmission 

electron microscopy. The equilibrium mechanism of the encapsulation process and the effect of specific ag-

gregation of PS-loaded micelles by their “coronas” that promoted the drug crystallization were established. 

The question about the presence of TBC micelles inside crystalline space was discussed. 
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1. INTRIDUCTION 
 

Encapsulation of toxic and poorly soluble drugs into 
polymeric micelles opens a way to ensure long-term 

circulation and controlled release of drugs in the blood 

stream and to protect living organisms from too much 

poisoning [1-5]. Self-assembly of asymmetric block co-
polymers forming intramolecular polycomplexes (In-

traPCs) is one of the simplest ways to create micellar 

drug carriers, which contain a complex “core”, possess 
high binding capability with respect to toxic or poorly 

soluble drugs of hydrophilic and hydrophobic origin, 

and could not be destructed up to individual polymer 
components in any competitive processes taking place 

in living organisms [6-8]. Earlier, we studied micelliza-

tion of asymmetric IntraPC-forming triblock copoly-

mers (TBCs) based on poly(ethylene oxide) and poly-
acrylamide (PAAm-b-PEO-b-PAAm) and found the 

formation of “hairy-type” polymolecular micelles (PMM) 

and monomolecular ones (MMM), which were in fact 
separate IntraPCs [7,8]. Significant encapsulation of a 

crystalline drug prednisolon (PS) by these micelles led 

to appearance of unusual “snow-flakes-like” structures. 

We represent here additional studies of PS binding 
with TBC micelles performed by dynamic light scatter-

ing and transmission electron microscopy to show the 

nature of “snow-flakes-like” structures and the role of 
TBC micelles in PS crystallization. 

 

2. EXPERIMENTAL SECTION 
 

2.1 Materials 
 

TBC sample with MnPEO  6 kDa and 

MnPAAm  116 kDa was obtained by a matrix free-

radical block copolymerization of acrylamide from 

“Merk” (Germany) with poly(ethylene glycol) from “Al-
drich” (USA). Ammonium cerium (IV) nitrate from the 

last firm was used as initiator. Synthesis scheme and 

mechanism of the template block copolymerization 

were detail discussed earlier [6]. Using 1H NMR spec-
troscopy as in the study [8], we confirmed a chemical 

structure of TBC and determined the molecular 

weights of PAAm blocks and whole macromolecules. A 
sample of commercial crystalline PS from “Sigma Al-

drich” (USA) was used as model drug. 
 

2.2 Composition preparation  
 

We prepared the PS/TBC micelles compositions at 
the constant copolymer content (0.3 and 0.5 kgm-3 in 

TEM and DLS studies consequently) and different con-
centrations of the drug. The selected TBC concentra-
tions were higher than the critical micellization concen-

tration (CMC  0.09 kgm-3) but essentially less than 

that (0.1 kgm-3), which was applied to established the 

drug encapsulation degree [7, 8]. Moreover, the relative 
contents of PS/TBC mixtures in DLS studies 
(  0.065  0.39 molPS/unitTBC) were less than values 

of   0.42 and 0.60, at which a quick formation of the 

“snow-flakes-like” structures took place [7, 8]. A small 
portion of PS ethanol solution (10 v/) we introduced 

into a large volume of TBC solution in a dusty-free de-
ionized water at the blending. All measurements were 
performed in 24 h after mixing. The drug-free aqueous 
solutions of TBC and the copolymer-free aque-

ous/ethanol (90/10 v/v) solutions of PS were studied too. 

 
2.3 Transmission electron microscopy (TEM) 

 

Electronic images of the copolymer micelles and 
their compositions with PS were obtained with a JEM-

1230 instrument (“JEOL”, Japan) operating at an ac-
celerating voltage of 90 kV. A very small drops (110-

4 cm3) of TBC micellar solution or PS/TBC compositions 
with   0.2 or 0.4 molPS/unitTBC were deposited in cop-
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per grids coated with Formvar film and carbon and 
then were dried for 1 min at 20C. TEM images were 

recorded in one day after the sample preparation. 

 
2.4 Dynamic light scattering (DLS) 

 

For DLS experiments, a ZetsSizer 3 instrument 
(“Malvern”, UK) with a He-Ne laser operating at 
  632.8 nm was used. 10-12 parallel measurements of 

the autocorrelation function were carried out in every 
solution at T = 20C. Analysis of the results was carried 

out using the monomodal distribution approach and 

CONTIN algorithm (PCS program: size mode v.1.61). 
The last one allowed obtaining the size distributions 
based on particle volumes that resulted in more precise 
values of the average diameters of scattering particles. 

 
3. RESULTS AND DISCUSSION 

 

It was shown earlier [7, 8] that TBC micellization in 
dilute aqueous solutions developed due to the primary 
formation of IntraPCs in individual TBC macromole-
cules (because of hydrogen bonding PAAm and PEO 
blocks) followed by segregation of hydrophobic bound 

parts of both the blocks in water medium. Taking into 
account highly asymmetric character of TBC blocks, we 
assumed the appearance of the “hairy-type” micelles of 
spherical shape. 

 
3.1 Parameters of TBC micelles in water 

 

Real view of TBC micelles could be observed in TEM 

images represented in Fig. 1 and in the studies [7, 8]. 

They demonstrated mainly spherical structures 

comprised common “core” and developed “corona”, 

which diameters changed in the range from 80 to 240 

nm. It is clear that these micellar structures belong to 

the polymolecular-type micelles (PMMs). 
 

 
 

Fig. 1 – TEM image of polymolecular-type micelles of TBC 

 

The image of TBC micelles represented in the study 

[8] showed additionally numerous dark points (or spots) 

with a size of 15  30 nm and also some aggregates of 

large PMMs, which dimensions were higher than 

240 nm. We attributed dark points in this image to 

separate IntraPCs, which form in fact the 

monomolecular-type micelles (MMMs) [9]. Here, we 

compare TEM results with the data of DLS studies, 

which were carried out in the drug-free TBC solutions 

(Fig. 2, Table 1). 
 

 
a   b 

Fig. 2 – Size distributions based on (a) scattered intensities 

and (b) particle volumes in TBC solution. CTBC  0.3 kgm-3 

 
Table 1 – State of the copolymer micelles in aqueous solutions 

 

System 
dav 

1) 

nm 

dav(i) 
2) 

nm 

X(i) 3) 

 

dav(v) 
2) 

nm 

X(v) 3) 

 

dav(n) 2) 

nm 

TBC 109 218 100 
28 

468 

97.1 

2.9 
18 

 

1) The average particle diameter based on the scattered intensities and 

monomodal distribution approach. 
3) The average diameters based on the scattered intensities, particle volume 

and particle number, consequently (CONTIN). 
4) The contributions of separate modes into the whole size distributions based 

on the scattered intensity and particle size. 

 

A bimodal size distribution based on particle 

volume (Fig. 2 b), which was revealed by CONTIN 

processing, was the most important result. Due to this, 

the existence in TBC solution a large quantity (97.1 

v/%) of small scattering particles (MMMs) with the 

average diameter dav(v) = 28 nm and some quantity 

(2.9 v/%) of large scattering particles (PMMs and their 

aggregates) with dav(v) = 468 nm (Table 1) was fully 

confirmed. 

 

3.2 PS aggregation in water/ethanol solutions 
 

DLS data in Table 2 reflect a state of PS 

molecules in water/ethanol (90/10 v/v) solutions at 

different drug concentrations. The bimodal size 

distributions based not only on particle volume but 

also on the scattered intensity were observed at the 

most concentrations of this poorly soluble drug 

excluding CPS  0.274 and partially 0.366 kgm-3. 

This meant that two kinds of aggregates with 

essentially different size existed in PS solutions. At 

the smallest PS concentration, the majority of drug 

molecules formed small aggregates with the average 

diameter dav(v)  14 nm (Table 2). It could be 

explained by a weak solubility of the drug in water/ 

ethanol 90/10 v/v solutions (0.62 mgcm-3) [10]. At 

the increase in PS content up to 0.366 kgm-3, a size 

of small aggregates rose and their relative quantity 

diminished while the quantity and size of large 

aggregates grew. An opposite tendency was observed 

at further increase in PS content up to 0.55 kgm-3 

(Table 2). Indeed, a size and relative quantity of 

small aggregates correspondingly decreased and 

rose, while both the parameters for large aggregates 
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diminished. We attributed such tendency to a partial 

precipitation of very large PS aggregates at 

CPS  0.366 kgm-3 taking into account a very weak 

turbidity, which appeared in PS solutions with 

CPS  0.458 and 0.55 kgm-3 in 24 hours’ time. Thus, 

the conclusion about existence of a dynamic 

equilibrium between small and large PS aggregates 

in the given solvent has been achieved. 
 

Table 2 – Prednisolon molecules in water/ethanol solutions1) 
 

System С, kgm-3
 dav(i),2), nm X(i),  dav(v), nm X(v),  dav(n), nm 

PS 

0.092 
42 

1575 

27.4 

72.6 

14 

1828 

98.1 

1.9 
10 

0.183 
25 

1002 

5.4 

94.6 

18 

1185 

81.6 

18.4 
15 

0.274 2906 100 5968 99.9 46 

0.366 4076 100 
40 

7741 

1.5 

98.5 
25 

0.458 
41 

4603 

4.1 

95.9 

27 

6166 

20.2 

79.8 
24 

0.550 
26 

1600 

5.4 

94.6 

19 

1923 

79 

21 
16 

1)Ethanol content was equal to 10 v/. 

 

3.3 Encapsulation of PS and its consequences 
 

The driving forces of PS encapsulation by TBC 

micelles such as hydrogen bonds and hydrophobic 

interactions were discussed in the previous works 

[7,8]. In this process, PAAm blocks more actively 

connected the drug molecules by both hydroxyl and 

carbonyl groups unlike PEO blocks. This meant that 

PS encapsulation developed mainly in TBC micellar 

“coronas”, which contained the surplus (unbound 

with PEO) PAAm segments [8]. Such conclusion is 

very important to understand the results of DLS 

investigations of PS/TBC compositions (Fig. 3, 

Table 3). Note that all the compositions were 

transparent in the studied  region in 24 hours’ 

time. 

 

 

 
 

a    b 
 

Fig. 3 – The examples of size distributions based on particle volumes for PS/TBC compositions at   0.065 (a) and 0.550 (b) 

molPS/unitTBC. CTBC  0.3 kgm-3, T  20C. 
 

For the first two compositions with   0.092 and 

0.183, the size distributions based on particle volumes 

comprised three modes corresponded to three types of 

scattering particles (Fig. 3a). Two of them with less 

dav(v) values in Table 3 could be attributed to the drug-

containing MMMs and PMMs. The appearance of third-

type scattering particles, which contribution and 

dimension decreased to zero at the  growth up to 

0.195, we explain by an equilibrium mechanism of the 

encapsulation process (the higher PS content, the 

higher binding with TBC micelles) and the existence of 

a real competition between PS encapsulation and 

aggregation. The values of dav(v) for the third-type 

scattering particles in Table 3, which are 

commensurable with those for large PS aggregates 

(Table 2), confirm this conclusion. When PS content 

had minimum value (  0.065), the aggregation 

process strongly competed with the drug encapsulation. 

Due to this, free large PS aggregates could be identified 

in a solution. At the increasing PS content up to 

  0.195, the drug encapsulation became predominant 

process. This led to a practical disappearance of large 

PS aggregates. Thus, a value of   0.195 would 

correspond to a saturation of micelles by PS molecules. 

In this context, the data of TEM (Fig. 4) are of spe-
cial interest. They showed the presence as small as 
large micelles, which sizes were varied in the regions of 
16  200 and 470  2400 nm (Fig. 4a, c). Also, they re-

vealed the fact of strong aggregation of small and large 
drug-loaded micelles by their “coronas”. Such aggrega-
tion actively developed at the composition drying (be-
cause initial PS/TBC solutions were transparent) and 
led to formation of PS crystals together with micelles 

(Fig. 4a, d).  
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Table 3 – The effect of PS encapsulation on TBC micelles 
 

System СPS, kgm-3
 , mol/unit dav, nm dav(i), nm dav(v), nm X(v),  dav(n), nm 

PS/TBC 

0.092 0.065 254 
309 

5743 

43 

601 

6912 

29.6 

4.7 

65.7 

26 

0.183 0.130 163 443 

39 

567 

1299 

81.0 

12.4 

6.6 

25 

0.274 0.195 85 
30 

496 

16 

670 

96.7 

3.3 
12 

0.366 0.260 232 
181 

5306 

37 

6738 

31.4 

67.6 
25 

0.550 0.390 255 
198 

5485 

40 

442 

6815 

37.0 

1.8 

61.2 

26 

 

 
 

a   b 
 

 
 

c   d 
 

 
 

e   f 
 

Fig. 4 – TEM images of: (a-d) specific aggregation and 

crystallization of PS-loaded micelles, (c) a large PS-loaded TBC 

micelle composed of numerous small ones, (a, d) PS crystals with 

micelles at their surface, and (e, f) unusual crystal morphology in 

PS/TBC compositions. CTBC  0.5 kgm-3;   0.2 (a-e) and 0.4 (f) 

molPS/unitTBC 

This interesting fact could be explained by a prefer-
ential connection of the poorly soluble crystallizing PS 
with PAAm blocks in micellar “coronas”. In this case, 
an important question about the presence of TBC mi-
celles not only on a crystal surface (Fig. 4 a,d) but also 
inside crystal space appears. A strong increase in TEM 

images a, b showed a presence in the large mainly 
spherical micelles numerous small ones, which were 
connected with each other and formed a regulated frac-
tal structure (Fig. 4c). This result allowed assuming 
that PS crystallization developed in the intermicellar 
space of these large aggregates at the composition dry-
ing and led to including small TBC micelles (in fact, the 

drug-loaded IntraPCs) inside crystals. The displaying 
unusual crystal morphology ((Fig. 4 e,f)), which is non-
characteristic for the crystals of pure PS [11], may be a 
certain confirmation for such point of view. Thus, spe-
cific interactions of the PS-loaded TBC micelles pro-
moted the drug crystallization. 

A sharp increase in the scattered intensity of 

PS/TBC compositions and also the appearance of a 

third mode in the size distributions based on particle 

volumes took place at   0.195 (Table 3). Such picture, 

namely, the formation of third-type scattering particles 

of a great size was explained by the strengthening of 

micelle aggregation due to participation of the surplus 

PS molecules non-connected with TBC micelles. 

A separate attention would be focused on the 

changes in dav(v) values versus φ for the small drug-

containing TBC micelles (Table 3). The increase in dav(v) 

from 28 nm (the average diameter of MMMs in water) 

to 43 nm at   0.065 is replaced by a gradual reduction 

in the value up to 16 nm at   0.195 followed by its 

growth to the number 37 – 40 nm at further enhance 

in  to 0.39. At first sight, such alterations could be 

attributed to the changes in the IntraPC state under 

influence of PS encapsulation (to swelling or 

contraction of IntraPCs). At the same time, the fact of 

the enhanced capability of the PS-loaded micelles to 

aggregation does not allow doing this. Moreover, the 

visible changes in morphology of small micelles (from 

spherical shape for MMMs in the solutions of pure TBC 

to preferentially spheroid one for small drug-loaded 

TBC micelles at   0.2) was fixed at a strong 

magnification of images in Fig. 3 a-c. 
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4. CONCLUSION 
 

It was established that TBC macromolecules 

formed the monomolecular-type and polymolecular-

type micelles in dilute aqueous solutions. A strong 

aggregation of poorly soluble drug prednisolon in 

water/ethanol (90/10 v/v) solutions was also revealed. 

The small and large PS aggregates were in a dynam-

ic equilibrium with each other. The micelles of TBC 

encapsulated PS in water/ethanol medium by equi-

librium mechanism because of existence a real com-

petition between the processes of drug encapsulation 

and aggregation. The drug encapsulation led to a 

strong specific aggregation of PS-loaded micelles by 

their “coronas” that was conditioned by the connec-

tion of drug molecules mainly with the “corona”-

forming PAAm blocks. Two interesting phenomena 

such as the appearance of the large spherical PS-

loaded copolymer micelles with fractal structure and 

also PS crystallization together with TBC micelles 

were considered as the results of this aggregation. 
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