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This paper examines the formation of multi-surface layers of a material with shape memory effect 

characteristics, using high-speed flame spraying of TiNi. The control parameters of the process were ana-

lysed and optimized spraying regimes applied in order to ensure the formation of a structure with grain 

size 30 - 170 nm and adhesion strength greater than 60 MPa. 
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1. INTRODUCTION 
 

Functional coating materials for various purposes are 

today widely used in both the microelectronics and engi-

neering tool industries. Analysis of existing processes of 

creating such functional coatings has shown that, par-

ticularly in engineering, an increasingly prominent role 

is being played by high deposition processes and surfac-

ing, combining the advantages of using concentrated 

sources of energy and the ability to surface alloying ma-

terial of a given composition [1]. Significant interest re-

garding surface alloying is currently focused on materi-

als possessing a shape memory effect (SME); because of 

their versatility and unique combination of strength 

properties, wear and corrosion resistance, and high 

damping capacity, these materials are already widely 

employed in medicine [2] and the aerospace industry [3]. 

Surface layers made of SME materials are prepared 

via a high-impact method involving TIG and laser weld-

ing, plasma spray deposition and melting of the fusible 

metal along a temperature gradient [4]. Recent research 

has led to the development of more efficient high-speed 

spraying technology which can ensure the strength of 

adhesion of the coating to the substrate at more than 

100 MPa and a porosity of 0.5% [1,5,6]. A comparison of 

existing high-speed coating techniques, such as cold gas 

dynamics, detonation, plasma and gas flame, has indi-

cated that although coating quality in terms of adhesion, 

porosity and degree of oxidation is of approximately the 

same level, high-speed flame spraying coating is more 

manufacturable, has a higher performance and reduced 

unit costs [5-7]. However, very little is currently known 

about the process of forming high-speed flame-spraying 

coatings. Although the method of forming surface layers 

of TiNi has been analysed, the functional properties of 

the applied coating were not studied. [8] 

The purpose of the present work was therefore to 

study the possibilities of forming surface layers composed 

of nickel-titanium alloys possessing the shape memory 

effect using the high-speed flame spraying method, as well 

as to study the structural features of these layers. 

 

2. APPARATUS AND METHODS 
 

The experiments were conducted on structural 

steels (steels 45, 40X), with high-speed flame spraying 

of TiNi manufactured via GLC applied to cylindrical 

samples. In order to improve coating adhesion to the 

substrate, provisional blasting of the steel surface was 

carried out followed by the application of 15% nitric 

acid etching solution. The combustible gas mixture 

used was comprised of methane and oxygen, with argon 

employed as the powder carrier gas. High-speed flame 

spraying was carried out using a burner angle of incli-

nation of 40-90 °. The experimental setup for the coat-

ing process is shown in Fig. 1. 
 

 
 

Fig. 1 – Installation scheme for the high strength coating process: 1 - compressor, 2 – receiver, 3 - Governors device TSZP-GLC-

720, 4 - feeder, 5 - carrier gas cylinder (argon), 6 - fuel gas cylinder (methane), 7 - oxidant cylinder (oxygen) 8 - electric shield, 9 - 

electrical cable, 10 - hose, 11-gun, 12 - electrodes, 13 - gearbox, 14 - attritor 
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The material selected for surface modification was 

the PN55T45 TiNi powder, with the following chemical 

composition (wt.%): 44% Ni, 56% Ti, 0.01% Fe, 0.06% C, 

0.10% Ca, 0.06% N and 0.06% H. Diffraction analysis of 

the PN55T45 powder (Fig. 2) revealed its structure to 

consist primarily of an austenite phase (~ 95%), with 

small amounts of a martensitic phase (~ 5%). 

A number of studies [9,10] have shown that the ini-

tial size of the powder particles has a significant influ-

ence on the structure and properties of the formed lay-

er. Analysis of the particle size of the PN55T45 powder 

revealed that the particles have a warped form of per-

forated scales (Fig. 2a) which is most pronounced in 

larger particles (Fig. 2b). As a result of these features, 

the TiNi powder possesses a bipolar structure charac-

terised by very small intra-particle and large inter-

particle pores (Fig. 2c). To optimise both the size distri-

bution of the TiNi powder and its mechanical activa-

tion, the powder was pre-processed in a Hephaestus - 2 

ball mill (AGO-2U) prior to spraying, before being dried 

in a vacuum oven for 3-6 hours at 120-180ºC. 
 

 

 
 

Fig. 2 – The morphology of the PN55T45 powder particles: × 

100 (a); × 300 (b); × 1000 (c); powder diffraction PN55T45 (d) 
 

Investigation of the microstructure formed by the 

surface layers was carried out under a JSM-7500F 

high-resolution scanning electron microscope, an MZI 

100 measuring microscope, an MIM-8 optical micro-

scope and an NU-2E (Carl Zeiss Jena) with planochro-

matic lenses. X-ray analysis was performed on a Shi-

madzu XRD - 7000 with Cu-Kα radiation, while micro-

hardness was analysed in a PMT-3 device with an in-

denter load of 100g. 

 

3. TECHNOLOGY OF NANOSTRUCTURED TINI 

SURFACE LAYERS  
 

The main properties of functional coating materials 

possessing shape memory, in addition to their strength, 

hardness and porosity, are their chemical and phase 

compositions which determine specific shape memory 

properties, such as pseudoelasticity and shape memory 

damping. Improved multi-functional coatings can be 

produced by controlling the speed, temperature and 

enthalpy of the particles and substrate at the moment 

of contact and interaction, which is in turn is deter-

mined by the composition of the powder foundation, the 

activation energy of the sprayed material, surface 

preparation, as well as the carrier composition of the 

process gas and technological features of the equip-

ment. Accounting for the variety of factors that affect 

the performance and operational characteristics of the 

surface layers is therefore a complex task. 

One method of producing high-quality coatings in-

volves surface preparation. In conducting this research, 

several activation techniques were compared, including 

sandblasting, cutting, ‘torn’ thread sublayer deposition 

of pure nickel (a component of the applied coating and 

with an unlimited solubility of substrate), plasma acti-

vation and chemical etching. Although all of these 

methods produce a positive effect, for reasons of quality 

(adhesion to the substrate of more than 60 MPa) and 

economic expediency, a combined method comprising 

sandblasting followed by chemical etching was selected 

as optimal. 

Preliminary analysis indicated that the main high-

speed flame spraying parameters affecting coating 

structure and quality were the selected combustible 

fuel gas (methane, oxygen), the powder and carrier gas 

(argon) spraying distance, spray angle, moving speed, 

feed burner flame and the speed of the covered parts. 

In developing the flame-spraying technology, certain 

parameters were taken from the literature (angle of the 

nozzle, spraying distance), depending on the main 

technological parameters of the test such as the com-

bustible gas and the speed of the powder particles in 

the gas stream. 
 

 
 

 
 

Fig. 3 – Specimen surface after high-speed flame spraying of 

TiNi (a) × 200; coating microstructure (b) × 20 000 
 

The high-speed flame spraying of material in a dis-

persed state took place at a certain velocity, with the 

a b 

c d 

a 
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surface produced after the material’s subsequent colli-

sion with the coated surface-forming layer shown in 

Fig. 3a. Metallographic analysis of the coatings re-

vealed that after the particles are heated by passing 

through the flame jet, they strike the substrate as so-

lidified deformed discs with diameter 5-10 microns and 

thickness 0.5-1 microns. The resulting coating was 

found to be laminate in form (Fig. 3b), consisting of 

highly deformed particles interconnected by contact 

surfaces. 

The ultimate structure and properties of the pro-

duced coating is determined by a range of factors, in-

cluding delivery process shock, deformation hardening, 

cooling and the interaction of the particles in motion in 

the gas stream. Since the formation of coatings in the 

present study involved a consistent stacking of the de-

formed particles, pores were also formed on the bound-

aries of the compounds. Obviously, the structure of 

such a coating depends on the particle size distribution 

of the deposited material; the finer the powder sprayed, 

the less likely the formation of pores. Although a size of 

around 40-70 microns is typically recommended for 

spraying powders, in recent years an increasing num-

ber of studies have utilized finer powders of around 10-

20 nm [5]. Experience has shown that the use of such 

fine powders for spraying may cause certain technical 

difficulties, associated with individual components in 

the burnout material sprayed in the gas stream. There-

fore, optimization of the powder particle size distribu-

tion represents a crucial stage in the development of 

coating formation technology. Research carried out us-

ing statistical analysis has revealed that for high-

quality coatings produced via flame spraying of TiNi, 

the optimum particle size distribution of the powder is 

a mechanically activated 0.9-7.5 microns (Fig. 4a). 

When employing a finer powder fraction (less than 0.9 

microns), adhesion occurs between the particles, result-

ing in clumping and process interruption (due to pow-

der sticking in the dispenser channel). 

The main functional parameters characterizing the 

properties of gas-flame coatings are adhesion, porosity, 

structure and phase composition. Studies have shown 

that for surface layers comprised of shape memory Ti-

Ni, optimum coating quality is achieved using a com-

bustible gas flow rate of 70-75 l / min for methane and 

150-160 l / min for oxygen (Figure 4 b, c).  

Statistical analysis of the experimental data was 

carried out in order to estimate the influence of the 

particle size distribution of the sprayed powder and the 

subsequent pore size of the produced coating on the 

latter’s adhesion strength, as follows: (1) 
 

 Dc  345,4843 + 116,6433·sp – 855,9937 · dt +  

+ 15,4867·sp
2 – 218,1472·sp · dt + 769,7443·dt

2 (1) 
 

where dt - pore diameter in microns; sp - powder parti-

cle size in microns; Dc - adhesion strength in MPa. 

In order to improve the adhesion strength and phys-

ical-mechanical properties of the sprayed coatings, a 

variety of different heat treatment methods are em-

ployed [3,9]. For the specific functional properties of 

surface layers composed of shape memory TiNi alloys, 

thermomechanical processing techniques are typically 

 

  
 

 
 

Fig. 4 – The influence of technological factors on the strength of coating adhesion to the TiNi substrate (a), (b), (c)  

a b 
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used, including vacuum annealing and plastic defor-

mation of the surface [9,10]. A complete cycle of TiNi 

coating formation thus comprises the following steps: 

high-speed flame spraying using the optimum mode; 

annealing at 1223K in a protective atmosphere; surface 

plastic deformation (PPD) of a TiNi layer (initially 

formed at room temperature) at 293 K [10]. Run-

cylindrical steel 45 specimens with TiNi coatings were 

here passed through three roller devices at a tempera-

ture of Ms-Mf (Ms  302K; Mf  285K, As  321K, 

Af  336K), with the following running parameters em-

ployed: roller load F  5.5-5.7 kN; roll diameter d  50 

mm; roller width b  8 mm; running speed V  110-120 

rev / min; traverse S  0.055-0.06 mm/rev. Such treat-

ment reduces coating porosity, increases adhesion and 

improves corrosion resistance[10]. 

 

4. DISCUSSION 
 

Macroanalysis of the TiNi alloy surface layers re-

vealed the coating to have both a sufficiently dense 

structure and the minimum pore size (Fig. 5), while the 

interface between the coating and the TiNi substrate 

exhibited an absence of cracks. At room temperature, 

the major constituents of the surface layer of the TiNi 

were a B2 austenitic phase with a cubic lattice, a B19' 

martensitic phase with a monoclinic lattice and a Ni3Ti 

intermetallic phase in the presence of a small amount 

of TiO. 

As shown by metallographic analysis, the structure 

formed by high-speed flame spraying of TiNi alloy lay-

ers was weakly etched by conventional reagents due to 

the strong grinding grain, which exhibited high corro-

sion resistance. Examination of the microstructure of 

the TiNi surface layer under a high-resolution scanning 

electron microscope revealed the TiNi coating to be 60-

70% nano-sized in structure, with a grain size of 30-

170 nm (Fig. 5). In contrast, the grain size of the inter-

metallic Ni3Ti phase was 20-60 nm. In many ways, the 

formation of the coating reflects the characteristics of 

high-speed flame spraying (i.e. high-speed collision of 

particles with the substrate, high rate of cooling and 

rapid quenching of the alloy). The milling of the grains 

in turn led to a decrease in pore volume concentration 

of 18-24%, with the formation of more dense grain 

boundaries (Fig.6). 

For all samples, the micro-hardness of the sprayed 

NiTi layer was higher than that of the base metal, with 

values for the former ranging at around Hμ = 8.5-12.1 

GPa. Such an increase in micro-hardness reflects the 

formation of a high-strength, meta-stable structure due 

to high cooling rate and rapid quenching of the alloy. 

 

5. CONCLUSIONS 
 

The present study investigated the main control pa-

rameters in the surface modification of steel material 

using shape memory TiNi alloy, including the structural 

state of the material. Analysis of the structural for-

mation of the TiNi surface layers in terms of the optimi-

sation of deposition conditions enabled the production of 

nanoscale structures with a grain size of 30-170 nm; 

After analysis of existing technologies, the surface 

layers of the shape memory materials were processed 

using surface activation, based on the quality of the 

produced surface layer and the economic feasibility of 
 

  
 

Fig. 5 – Nano-sized TiNi coating obtained via high flame spraying: × 40 000 (a),   × 150000 (b) 
 

  
 

Fig. 6 – Quantitative grain size distribution and percentage of the TiNi coating (a); percentage of pore size to size (b) 
 

a b 

a b 
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the process. An increase in TiNi coating adhesion to the 

substrate to above 60 MPa was observed following the 

application of surface activation shot treatment fol-

lowed by chemical etching; 

Experimental examination of the effect of thermo-

mechanical processing (comprised of heat-treating in a 

protective environment and plastic deformation of the 

surface) on the functional properties of the surface lay-

ers obtained via high-speed flame spraying revealed an 

installation effect of increasing microhardness and a 

reduction in the average pore content of 20%. 
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