
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE  

NANOMATERIALS: APPLICATIONS AND PROPERTIES 

Vol. 2 No 2, 02FNC27(3pp) (2013) 

 

 

2304-1862/2013/2(2)02FNC27(3) 02FNC27-1  2013 Sumy State University 

Obtaining of TiN/MoN Nanocomposite Coatings and Their Research 
 

A.D. Pogrebnjak1, G. Abadias2, O.V. Bondar1, B.O. Postolnyi1,*, A.A. Andreev3, V.M. Beresnev4, 

P. Chartier2, O.V. Sobol5, O. Maksakova1 
 

1 Sumy State University, 2, Rymskogo-Korsakova st., Sumy, 40007, Ukraine 
2 Institute Pprime, University of Poitiers, 15, Rue de l'Hôtel Dieu, Poitiers Cedex, Poitiers, 86022, France 

3 National Science Center «KIPT», 1, Akademicheskaya St., Kharkiv, 61108, Ukraine 
4 V.N. Karazin Kharkiv National University, 6, Svobody sq., Kharkiv, 61022, Ukraine 

5 National Technical University «Kharkiv Polytechnic Institute», 21, Frunze str., Kharkiv, 61002, Ukraine 
 

(Received 06 August 2013; published online 01 September 2013) 

 
At the nanometer scale multilayer nanostructured coatings show special properties due to the deposi-

tions conditions. This paper presents results of TiN/MoN nanocomposites obtaining and their research. 

Multilayer coatings based on TiN/MoN were deposited using vacuum arc evaporation cathode method (C-

PVD). Total thickness range of obtained coatings was 2, 10, 20 and 40 nm. We used vacuum-arc device 

“Bulat-6” for coatings deposition. Structure and properties of multilayer coatings were analyzed using XRD 

(Bruker D-8 Advance) in Cu-Kα radiation, high resolution transmission electron microscopy (HRTEM sys-

tem) with diffraction CFEI EO Techai F200, SEM with EDX (JEOL-7001F). Scratch tests were carried out 

using Rockwell-C diamond indenter (CSM Revetest Instruments) with a tip radius of 200 μm. Besides this, 

ball-on-plate sliding test on UMT-3MT tribometer  (CETR, USA) was used for additional investigation of 

friction and wear. 

This research allowed to reveal structural and properties depending on deposition conditions of 

TiN/MoN multilayer coatings. The nanocomposite hardness value increases when monolayer thickness de-

creases. This also reduced nanograins size. Measurement of the friction coefficient demonstrates smaller 

values for multilayer system in comparison with TiN or MoN nanostructured coatings. Formation of a (Ti, 

Mo)N solid solution and nanocrystals growing were observed during annealing. 
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1. INTRODUCTION 
 

Nowadays, the study of nanocomposite materials 

causes a great interest of academics and industry. This 
is due to the special properties which materials demon-

strate at nanosize level because of small grains size 

(less than 10 nm) and greater importance of the bound-
ary zones [1-3]. It is known that hardness of Mo coat-

ings is 32  55 GPa and their deposition on cutting 

tools greatly increases wear resistance [4]. At the same 
time, TiN coatings have hardness 32 GPa and in indi-

vidual cases hardness rises up to 40 GPa or higher [2, 

5]. It’s also known that Ti-Mo-N multilayer coatings 

show 2-4 times durability increasing in comparison 
with conventional coatings based on TiN [6-8]. 

Structure and properties of TiN/MoN nanocompo-

sites, their dependence on the monolayer thickness 
were investigated in this article. 

 

2. DESCRIPTION OF NANOCOMPOSITE DEPO-

SITION AND INVESTIGATION 
 

Multilayer nanostructured TiN/MoN coatings were 

obtained using vacuum-arc device “Bulat-6”. A scheme 
of this device showed on Fig. 1. Thickness of deposited 

nanosized monolayers (TiN and MoN) was about 2, 10, 

20, 40 nm and total thickness was in the range from 6.8 

to 8.2 m. 
Deposition of titanium and molybdenum nitrides 

starts after the nitrogen injection into the chamber. 
When first layers have been finished, deposition stops 

and substrates turn over on the angle of 180. Then 

deposition starts again. 
 

 
 

Fig. 1 – Scheme of “Bulat-6” device: 1 – vacuum cham-

ber; 2 – automatic control system of the nitrogen pres-

sure; 3 – molybdenum evaporator; 4 – titanium evapora-

tor; 5 – substrate holder; 6 – substrate; 7 – DC voltage 

source; 8 – high voltage impulse generator 
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Rutherford backscattering (RBS) on He ions with 
energy 1.7 MeV was used to obtain information about 

elemental structure (scattering angle   170 at nor-
mal probing ions falling, detector energy resolution was 

16 keV, helium ions dose was 5 m). 

Investigation of coatings microstructure and ele-
ment composition was carried out using JEOL-7001F 

with microanalysis EDX (Japan) and other  scanning 

electron-ion microscopes. Coatings structure and phase 
composition were analyzed using XRD (Bruker Ad-

vanced 8) in Cu-K radiation. 

Hardness and elastic modulus measurement were 
carried out with CSM company device (Switzerland). 

Phase composition analysis was performed using 

ASTM catalogs. 

 
3. RESULTS AND DISCUSSION 
 

There is only one phase with FCC lattice (structural 

type NaCl) formed in coating at a low substrate poten-
tial 40 V at monolayer thickness nearby 2 nm. Diffrac-

tion patterns showed on Fig. 2. When substrate poten-

tial increased to -230 V it causes formation of two-

phase TiN system and high-temperature -Mo2N with 
phase ratio TiN/MoN equal to 90/10 respectively. The 

appearance of a two-phase condition is an intensive ion 

bombardment which promotes nanograins grinding and 
interfaces formation. This is accompanied by separate 

Mo2N layers with cubic lattice and interface formation. 

In turn, it leads to stress growing in the TiN phase and 
period increasing in tense cross-section. In this case 

layers structure is columnar. 
 

 
 

Fig. 2 – Fragments of the diffraction patterns (XRD), obtained 

for coating samples with monolayer thickness 10, 20, 40 nm 
 

Formation of the two-phase structural state with an 

average TiN and -Mo2N cubic phase grade 60 vol. 

and 40 vol. occurs when monolayers thickness in-
crease to 10 nm. These values are close to Ti and Mo 

concentrations (62.3 at. and 36.8 at. respectively, 
see Fig. 3), which were obtained by EDX. 

 

 
 

Fig. 3 – The energy-dispersive spectrum, obtained on multi-

layer nanocomposite coating with monolayer thickness 20 nm 
 

The full cross-section of nanostructured coatings is 

presented on the next figure (Fig. 4). Fig. 5 shows 

striped TiN nanosized layers – dark areas and MoN – 
light areas which are well recognizable at this zoom. 

 

 
 

Fig. 4 – The microphotograph of cross-sections of nanostuc-

tured multilayer Ti-Mo-N coating. The general view. The coat-

ing thickness is 8.2 m 

 

The appearance of interface specific volume caused 

by high γ-Mo2N phase level is accompanied by high -
Mo2N phase level is accompanied by high compressive 

stress growth in titanium nitride, it achieved maxi-

mum hardness 32 GPa (Fig. 6). 

Noteworthy that only -Mo2N phase presents in mo-

lybdenum nitride and no -Mo2N phase is formed, alt-
hough both of them can be formed in case of vacuum-

arc deposition. This can be explained by two-stage 

phase composition of multilayered nanostructured coat-
ing. At the initial growth of Mo2N the determining fac-

tor is TiN lattice atomic sequence. 
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Fig. 5 – The microphotograph of cross-sections of nanostuc-

tured multilayer Ti-Mo-N coating. The cross-section frag-

ment, 50 000 zoom. The monolayer thickness is 20 nm 
 

 
 

Fig. 6 – The micro-hardness characteristics: a) The depend-

ence on the indenter penetration depth of microhardness H at 

monolayers thickness 20 and 40 nm 

 

Therefore, there is a -Mo2N cubic modification sta-

bilization with molybdenum nitride layer growing. This 
is accompanied by a macrodeformation resetting and 

interface formation caused by structured macrostress 
when relatively high thickness. Volume content of the 

phases accurately corresponds to the expected in ac-

cording to the EDX analysis (70 at. TiN and 30 at.) 
for samples with coating thickness nearby 20 nm. Mon-

olayer thickness increasing up to 40 nm leads to Mo2N 

fraction increasing up to 40 At the same time hard-
ness has the lowest value (not greater than 26 GPa). 

 

4. CONCLUSIONS 
 

The tribological properties analysis shows that sur-

face roughness Ra reaches the value 0.3 m, friction 

coefficient varies from 0.09 to 0.12. Critical load (when 
coating starts to break) ranges from 425 N at monolay-

er thickness 40 nm, and reaches (610  648) N at 

thickness 10 and 2 nm. Thus, the less monolayer thick-
ness, the higher load. This shows that one nitride mon-

olayer envelops nanograins in the last case. Therefore, 

nanocomposite strength increases by grains shift pre-
vention (slipping). According to Koehler's model [8] the 

possible mechanism of hardness increasing is transfer 

of valence charge, reduction nanograins size and mix-

ing entropy. 
The smallest wear was observed under deposition 

conditions for monolayers thickness 2 and 10 nm, 

equals 0.148 for counterbody and 

2.327  10 5 [mm3N 1mm-1] for coating. Samples an-

nealing during 2 hours at temperature 800 C in an 
oven under vacuum 10 – 2 Pa causes reducing of com-

pressive stress and small nanograins growth to 

10  15  (no more). 
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