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The changes in the local structure of the fullerenes C60 are studied after high-temperature annealing. 

Based on the model of atomic configurations obtained by reverse Monte Carlo, the quantitative character-

istics of the topological order are founded for the C60 in initial state and after annealing. It is shown that 

the critical temperature of the beginning of the destruction of the structure of molecular lattice of fuller-

enes is 900° C (30 min). At this temperature, a partial breakage of the fullerene molecules occurs.  At tem-

perature of 1600° C, fully breakage of fullerene molecules and formation of amorphous carbon takes place.   
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1. INTRODUCTION 
 

Carbon nanomaterials are very promising for prac-

tical application. So, a positive effect of fullerene C60 

additives to industrial lubricants on wear and tribolog-

ical properties of friction units is found in a wide range 

of pressures and loads [1-3]. Under these conditions 

carbon nanomaterials undergo to impact of elevated 

temperatures. Therefore, the investigation of a stability 

of fullerenes at high temperatures is of great interest. 

The impact of high temperature annealing in different 

environments on structure states of fullerenes C60, C70 

and their mixes was investigated in a number of works 

[4-6]. 

In this paper, we studied the structural changes in 

local atomic arrangement in the fullerenes C60 occur-

ring after high temperature annealing. To investigate 

the evolution of their structure state experimental (X-

ray diffraction, Raman spectroscopy) and modeling 

(Reverse Monte Carlo) methods were used. Fullerenes 

C60 were produced in Physico-Technical Institute of 

Ural Branch of RAS by the traditional arc evaporation 

of graphite electrodes method with following extraction 

by toluene in a Soxhlet apparatus. Thermal treatment 

of fullerite C60 was carried out in covered graphite cru-

cibles in CO atmosphere in the Tamman furnace at the 

different temperatures – 900, 950 and 1600 C during 

30 min and at 1600 C during 120 min. 
 

2. TRANSFORMATION OF STRUCTURE OF 

FULLERENES C60 AT ANNEALING 
 

2.1 Exeperimental results  
 

X-ray study of the structure of fullerenes С60 in the 

initial state and after high-temperature treatment was 

conducted in Mo Kα-radiation. Structure factors (SF) of 

fullerenes C60 after annealing were calculated using X-

ray diagrams (Fig. 1) by procedure described in [7, 8]. 

The structure factor of the initial sample is character-

ized by the presence of three strong peaks in positions 

of s1  0.75 Å-1, s2  1.25 Å-1 and s3  1.44 Å-1 which are 

typical for the fullerite C60. After high temperature 

treatment at 900 C, lines s1, s2 and s3 are beginning to 

expand. At the temperature of 950 C, line s1 complete-

ly disappears and the lines s2 and s3 combine into very 

broad one with the maximum at s'2  1.5 Å-1. The ap-

pearance of peak s'2 indicates that a process of break-

age of crystal lattice of fullerite C60 is practically com-

pleted. Raising the temperature to 1600 ºC leads to the 

formation of amorphous material with graphite-like 

type of short-range order.  
 

 
 

Fig. 1 – Structure factors (-- experimental, ─ calculated) of fuller-

ene C60 in the initial state and after high-temperature treatment 
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Structural changes in fullerenes C60 at the high-
temperature annealing were studied by Raman spec-

troscopy (Fig. 2). This method reproduces the most es-

tablished information about the structural state of the 
fullerene molecules [9]. After annealing at the temper-

ature of 900 C during 30 min Raman spectrum of full-

erenes significantly varies from initial one: peaks of 
fullerenes get broadened and shift from their positions. 

It indicates a partial breakage of the molecules of full-

erenes. Two broad asymmetric peaks on the Raman 
spectra present with increasing annealing temperature 

to 950 C, what testifies to complete destruction of in-

dividual bucky-balls. At the temperature of 1600° C, 

two bands with maxima at  1345 cm-1 and 1600 cm-1 

which are closed to the positions of the D- and G–

 bands of disordered graphite, dominate in the spectra 
(Fig. 2). 

 

 
 

Fig. 2 – Raman spectra (   514 nm) of the graphite and fuller-

ene C60 in the initial state and after high-temperature treat-

ment  

 

2.2 Results of modeling 
 

On the basis of the experimental SF, model configura-

tions of atoms corresponding to the real structure of full-

erenes С60 in the initial and annealed states were gener-

ated using the Reverse Monte Carlo method (RMC) [10]. 

The cubic simulation box has a half length L  21.39 Å 

and contains 6696 carbon atoms. Periodic boundary con-

ditions are used. To eliminate the imminent overlap of 

atoms the intersection of the left slope of the first peak of 

radial distribution function (RDF) curve g(r) with the 

abscissa was found. So, the minimal approach of carbon 

atoms in the model was chosen as r(C-C)  1.2 Å. Calculat-

ed by RMC procedure model structure factors are plotted 

at the Fig. 1. Accordance of the calculated structure fac-

tors (solid lines) to experimental ones (dashed lines) indi-

cates the correspondence of model atomic configuration to 

real structure of the investigated objects. 

Model configurations of carbon atoms in initial C60 

and annealed at 900 C (30 min) and 1600 C (120 min) 

ones are shown on Fig. 3. It can be seen that process of 

destruction of molecules C60 starts at 900 C (Fig. 3, b). 

At a temperature of 1600 C (Fig. 3, c) molecules of 

fullerene C60 break down into small fragments of de-

formed graphene planes. 
 

 

 

 
 

Fig. 3 – The configuration of carbon atoms generated for fuller-

enes C60: а) initial state; b) 900 C, 30 min; c) 1600 C, 120 min 
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Bond angles distributions were calculated for ob-

tained model atomic configurations of fullerene C60 

(Fig. 4). It is characterized by a broad maximum which 

decomposes into two components with the positions of 

110° and 117° (the table values for fullerene C60 are 

108  and 120°) for molecules of fullerenes in the initial 

state. After high temperature treatment at 900 C for 30 

minutes, the typical for fullerene C60 peak stays in place, 

but low intensive broad asymmetric maximum with po-

sition of 60° appears. It indicates that displacements of 

carbon atoms from balanced position take place in the 

structure of molecules C60 at the annealing process. With 

increasing temperature to 950 C, peak peculiar to full-

erene C60 becomes essentially lower with simultaneous 

raising the peak at 60 , what suggests the complete de-

struction of molecules C60 and formation of amorphous 

state in the carbon material. 
 

 
 

Fig. 4 – The bond angles distribution in carbon atoms config-

urations in the fullerene C60 generated by Reverse Monte Car-

lo method in the initial state and after high-temperature 

treatment 
 

Rings distributions (Fig. 5) for the all studied mate-

rials were calculated using the criterion of S. King [11]. 

Rings are formed by connection of atoms within the 

maximum length of a chemical bond. They define the 

intermediate range order, which extends not only to 

the first coordination sphere as it is assumed in defini-

tion of short-range order, but to following coordination 

spheres at a distance of 1-2 nm [12]. Ring size n is de-

termined by the number of angles in it. 
It is clearly seen, that structure of fullerenes C60 in 

the initial state is characterized by 5- and 6-fold rings 
which constructed their molecules (Fig. 5). At a tem-

perature of 900 C, an essential amount of 3-fold rings 

appears with simultaneous decrease of the percentage 
of 5- and 6-fold ones. Enhancing the annealing temper-

ature to 950 C results in increasing the percentage of 
3- fold rings what indicates the destruction of the full-

erene molecules and formation of amorphous structure. 

At the 1600 C reverse changes start to be realized: the 
percentage of 3-fold rings decreases with simultaneous 

rising of 5-and 6-fold ones. The amount of 5- and 6-fold 
rings is growing with extension of expose at this tem-

perature to 120 min, what pointed to partial graphiti-

zation process of amorphous material. 
 

 
 

Fig. 5 – Rings size distribution n (n - number of edges) in the 

structure of fullerenes in the initial state and after high-

temperature treatment 

 

3. CONCLUSIONS 
 

Structure transition in fullerene C60 from the crys-

talline state to amorphous during annealing was recon-

structed using Reverse Monte Carlo procedure. Quanti-

tative characteristics of topological order in the distri-

bution of carbon atoms were established. It was found 

that in the early stages of heat treatment (T  900 C 

for 30 min) the partial destruction of C60 molecules and 

disordering the crystal lattice of fullerite C60 take 

place. The annealing  at 950 C for 30 min results in 

the total breakage of the fullerene molecules followed 

by the formation of amorphous structure of carbon with 

graphite-like type of short-range order with increasing 

temperature to 1600 C. 
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