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1. INTRODUCTION 
 

Any nanoelectronics device has active conduction 

channel described by the Hamiltonian [H]. Conduction 

channel interacts with the source and drain, and with 

any of the contacts in a given specific device which stay 

in local equilibrium defined by the appropriate electro-

chemical potentials. 
 

 
 

The interaction between the channel and the con-
tacts are described by the self-energy contact matrices 
[Σ1] and [Σ2]. Interaction of an electron in the channel 
with its environment is described by the self-energy 
matrix [Σ0], which in contrast to the matrices [Σ1] and 
[Σ2] is to be calculated self-consistently. The dimension 
of these square matrices is determined by the number 

N of the basis functions used for quantum-mechanical 
description of the conduction channel and contacts. 
Concrete form of the matrices is specified by the meth-
od used to solve the Schrodinger equation – semiempi-
rical, based on the density functional theory or ab ini-
tio, and the choice of the basis functions. Once these 
matrices are composed the further procedure for calcu-

lating the conductivity, current and other electrophysi-
cal properties are straightforward which is the main 
purpose of this publication illustrated with the model 
transport problems of nanoelectronics having not only 
scientific but also pedagogical interest. 

There are usually considered two limiting cases of 
electron transport – diffusional and ballistic. In the 

ballistic limit electron transport is controlled by the 
self-energy matrices [Σ1] and [Σ2], whereas the interac-
tions inside of the channel are negligible. In contrast, 
in the diffusional limit the transport of electrons is con-
trolled by interactions within the channel described by 
the matrix [Σ0], and the role of the contact matrices [Σ1] 

and [Σ2] is negligible. Not surprisingly, to about 1990 

contacts were even not displayed on the charts. There 
is significant difference between Hamiltonian matrix 
[H] and matrices [Σ0,1,2]: Hamiltonian matrix repre-
sents conservative dynamic forces and is Hermitian, 
while the self-energy matrices accounts for entropic 

forces and are not Hermitian.  
Classical description of transport processes is based 

on the Boltzmann transport equation. Non-Equilibrium 
Green's Function method (NEGF) is a quantum ana-
logue of the Boltzmann equation; its foundations were 
laid by Martin and Schwinger [1], Kadanoff and Baym 
[2] and Keldysh [3]. Both approaches – the classical 

Boltzmann equation and quantum NEGF formalism 
are common in a sense that they both are taken into 
account the dynamic and entropic forces. In the ballis-
tic limit, however, dynamic and entropic processes are 
spatially separated. Electrons skip from one contact to 
another one under the influence of only dynamic forces. 
Electrons inside the contacts are happend not be in 

equilibrium, but quickly come to equilibrium under the 
influence of entropic forces. This is the essence of the 
Landauer model for an elastic resistor proposed by Rolf 
Landauer in 1957 [4] long before its triumphal experi-
mental confirmation on nanoresistors. Today it was 
indeed well established that ballistic resistors with-
stand fairly strong currents because Joule heating is 

negligible.  Heat is released at the terminals, which 
due to their relatively massive quickly dissipate the 
heat. This separation of the dynamics from the ther-
modynamics to be one of the primary reasons that 
makes a bottom-up approach [5] starting with ballistic 
devices scientifically and pedagogically attractive. 

 

2. EQUATIONS OF THE NON-EQUILIBRIUM 

GREEN’S FUNCTION METHOD 
 

Our objective is to present the compact NEGF for-

malism with an account of the Landauer model for 

nanodevices. In our presentation we follow the concepts 

of Datta, Meir and Wingreen [5, 6] as the most appro-

priate for our purposes. 

In our bottom-up approach we will start with elastic 

resistors for which energy exchange is confined to the 

contacts, and the problem of resistance can be treated 
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within a one-electron picture by connecting contacts to 

the Schrodinger equation 
 

 [H]{ψ}  E{ψ}  
 

and add two more terms to it representing the outflow 
 

 [Σ]  [Σ1] + [Σ2]  
 

and inflow from the contact  
 

 {s}  {s1} + {s2},  
 

namely:  
 

 E{ψ}  [H]{ψ} + [Σ]{ψ} + {s},  
 

where the Schrodinger equation is written directly in 

the matrix form, bearing in mind that the basis func-

tions have been already chosen, so that the square ma-

trices are shown in square brackets, and the column 

matrices – in curly brackets. Using this modified 

Schrodinger equation, the wave function can now be 

written in terms of the inverse matrix 
 

 {ψ}  [EI – H – Σ] – 1{s}  
 

where I is unit matrix.   

Matrix 
 

 GR  [EI – H – Σ] – 1  (1) 
 

is called Retarded Green's function and its Hermitian 

conjugate matrix 
 

 GA  [GR]+  

 

is called Advanced Green's function.  At the origin of 

these and other terms commonly used in the NEGF 

formalism we will not spend time now. We only note 

that the NEGF formalism applied to problems in nano-

electronics is reduced to four equations, the first of 

which is the expression (1) for the Retarded Green's 

function.  

Then the Schrodinger equation can be rewritten as 
 

 {ψ}  [GR]{s}.  
 

The product of the column {ψ} by Hermitian 

conjugated row {ψ}+ gives 
 

 {ψ}{ψ}+  [GR]{s}{s}+[GA].  
 

Non-equilibrium Green's function is defined as  
 

 Gn  2 {ψ}{ψ}+,  
 

so that the number of electrons is given by 
 

 N  Tr [Gn] / 2. ` 
 

Similarly inflow of electrons is described by 
 

 Σin  2 {s}{s}+,  
 

and now the non-equilibrium Green's function is 
 

 Gn  GR Σin GA (2) 
 

and serves as the second equation in the NEGF 

formalism.  

The third equation is a matrix form of the density of 

states D(E), multiplied by 2, and is called the spectral 

function A 
 

2·D(E)  A  GRΓGA  GAΓGR  i[GR – GA], (3) 
 

where matrix [Γ] is the anti-Hermitian part of the 

corresponding contact matrix 
 

 Γ  i[Σ – Σ+]  
 

and describes the interaction of electrons in the chan-

nel with contacts. 

The fourth equation of the NEGF formalism is the 

equation for the current through the terminal with 

number m 
 

 in n
m m m

q
I Tr A G

h
   
 

, (4a) 

 

which includes only those components of the matrices 

that are relevant to this terminal m. This is a specific 

current (per energy unit), it must still be integrated 

over the full range of energies to get the total current 

through the terminal m.  

Lets transform equation (4a) as follows. Take into 

account (2) and (3), as well as 
 

  , ,in in in
n nn n n

n n

f E         ,  

 

where fn(E) – the Fermi function of contact n. Then  
 

     m mn m n
n

q
I T f E f E

h
  , (4b)  

 

where the transmission coefficient (transparency) be-

tween contacts m and n  
 

 R A
mn m nT Tr G G   

 
.  

 

It is easy to prove a useful property of the transmis-

sion coefficient 
 

 mn nm m
n n

T T Tr A      .  

 

So far only physical contacts [Σ1,2] in the quantum 

model of coherent transport have been considered, in 

which the electrons move coherently from source to 

drain through the channel described by the static Ham- 

iltonian [H] in the absence of interaction of the elec-

trons with the environment [Σ0] along it moves through 

the channel. To account for the interaction [Σ0] from 

the formal point of view does not constitute any prob-

lem. All equations of the NEGF method (1)-(4) remain 

the same, but additional terms will appear in the ma-

trices Σ, Γ, and Σin  
 

 

   

1 2 0

1 2 0

1 1 2 2 0

,

,

.in inf E f E

  

      

                

   

 

  

 

For any transport problem just to write the Hamil-

tonian [H] and the self-energy matrices [Σ]. Once this 

is done, further calculations are performed by the 

NEGF method in standard way. 
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3. MODEL TRANSPORT PROBLEMS 
 

3.1 1D Conductor 
 

Consider the one-dimensional model of an infinite 

homogeneous conductor in the tight-binding approxi-

mation with the interaction t between only neighboring 

atoms in an orthogonal basis.  
 

 
 

This approximation is known in quantum chemistry 

since 1931 as the Huckel molecular orbital method 

[7, 8]. Model parameters are Coulomb ε and resonance t 

integrals as well as the lattice parameter a. Even such 

a simple model correctly describes many properties of 

conjugated polyenes – (СH  СH–)n CH  [9-11], gra-

phene [12], polyacetylenes and cumulenes  (С )nС  

[13], in the last, though, each carbon atom supplies two 

mutually orthogonal electrons y and z, which requires 

only an insignificant modification of the model. 

Homogeneous 1D conductor is described by the 

standard Kronig – Penney theory of one-dimensional 

crystals and obeys the parabolic dispersion relation 

with the effective mass 
 

 
2 2

2
c

k
E E

m
  .  

 

In the low k values for the resonance and Coulomb 

integrals we have 
 

 2cE t  , 
2

0 22
t t

ma
   .  

 

It is straightward now to write down the [Н] matrix 

with ε on the diagonal and t on the upper and lower 

diagonals. What needs discussion are the self-energy 

contact matrices. The basic idea is to replace an infinite 

conductor described by the Hamiltonian [Н] with a fi-

nite conductor described by [H + Σ1 + Σ2] assuming 

open boundary conditions at the ends, which means 

that electron waves escaping from the end surface do 

not give rise to any reflected waves, as a good contact 

should ensure.  

For a one-dimensional lattice the idea is easy to see. 
 

 
 

Let the conductor has a limited length of n atoms, 

numbered from 1 to n. Left contact 1 starts before the 

atom chain  with  the number 1, and the right contact 2 

– after the atomic chain with the number n. Contacts 

have no incoming streams, only outcoming ones. 

In the n-th row 
 

 1 1n n nE t t        

 

of the Schrodinger equation 
 

 n nm m
m

E H     

 

term tψn + 1 already belongs to terminal 2, which 

according to the equation 
 

 1 1n n

n n

E t t  
  

 
 ,  

 

contributes to the energy equal to tψn + 1 / ψn. This 

energy is the self-energy of contact 2. We have 
 

 1
ika

n ne     

 

thus 
 

  1
ika

n n nE t te      ,  

 

in other words the effect of the contact is simply to add 

t·exp(+ ika) to Hnn which amounts to adding the self-

energy 
 

 2

0 0 0

0 0 0

0 0 ikate

 
 
 
 
 
  

   

 

to the Hamiltonian. Note the only non-zero element is 

the (n, n) element. 

The same self-energy has the contact 1, and its 

value in contact matrix is placed as element (1, 1) 
 

 1

0 0

0 0 0

0 0 0

ikate 
 
 
 
 
  

 .  

 

Remaining elements of matrices Σ1 and Σ2 are zero. In 

short, the self-energy function for each contact has a 

single non-zero element corresponding to the point that 

is connected to that contact. 

Energy matrices Н, Σ1, and Σ2 are written down, 

next we calculate the Retarded Green's function GR, 

Advanced function GA, matrices Γ1 и Γ2 and, finally, 

transmission coefficient Т12 and conductivity G(Е)  
 

  
2 2

1 2 12
R Aq q

G E Tr G G T
h h

    
 

.  

 

A good test case for any theory of coherent quantum 

transport is the conductance function for a length of 

uniform ballistic conductor. If we are doing things 

right, the conductance function G(E) should equal the 

quantum of conductance q2 / h times an integer equal to 

the number of modes М(Е) which is one for 1D conduc-

tors neglecting spin. This means that the transmission 

should equal one over the energy  
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 0  E – Ec  4t0,  
 

covered by the dispersion relation  
 

  02 cos 2 1 coscE t ka E t ka     ,  

 

but zero outside this range as shown below with U  0. 
 

 
 

Another good example is that of a conductor with 

just one scatter whose effect is included in the Hamil-

tonian [Н] by changing the diagonal element corre-

sponding to that point to ε + U. Transmission through 

a single point scatter in a 1D wire with U  2t0 is also 

shown above. 

Let’s calculate the density of states D(E) of 1D con-

ductor. The number of states for 1D conductor of length 

L that have a momentum less than a given value р 
 

  
2

/

L
N p

h p
 ,  

 

so that the density of states 
 

  
2dN L dp L

D E
dE h dE  

   ,  

 

where it was taken into account that for the isotropic 

dispersion Е(р) speed v  dE / dp. 

Let’s get the same expression for the density of 

states using the NEGF method. For a homogeneous 1D 

conductor it is sufficient to consider only one atom in 

the chain, as it plays the role of the unit cell. In this 

case the lattice constant a plays the role of the 

conductor length L. For Retarded Green’s function we 

have 
 

 
1

2R ikaG E te


   
  .  

 

Presenting exponent through the sine and cosine 

and considering the dispersion relation above we find 
 

 / 2 sinRG i t ka .  
 

We also have 
 

 2 sin
dE

at ka
dk

    ,  

 

where the first equality follows from the isotropy of the 

1D conductor, and the second follows from the 

dispersion relation. For GR we finally have 

 

 
2 sin /

R i i
G

t ka a


  ,  

 

and Advanced Green’s function 
 

 A ia
G


 .  

 

Spectral function 
 

 
2R A a

A i G G


   
 

,  

 

and density of states 
 

  
2

A a
D E

  
    

 

coincides with the already given above expression. 

 

3.2 2D Conductor 
 

Among the seminal experiments from the 1980’s 

that gave birth to mesoscopic physics was the observa-

tion that the conductance of a ballistic 2D conductor 

went down in integer multiples of 2q2 / h as the width 

of the narrow region was decreased. To understand this 

class of experiments we need a 2D model as simple as 

possible. Two-dimensional model of unlimited homoge-

neous conductor in the Huckel approximation is suffi-

cient. 
 

 
 

The model parameters ε and t are chosen in a way 

as to satisfy the standard dispersion relation with the 

effective mass. Finally 
 

 4cE t  , 
2

0 22
t t

ma
   .  

 

Constructing Huckel Hamiltonian Н is not difficult, 

it is necessary to discuss only the structure of the con-

tact matrices for 2D conductor. Let conductor have р 

atoms across the conductor width and q atoms along 

the conductor length, thus the conductor matrix has 

the form (p  q). Such a 2D conductor can be conven-

tionally represented as р 1D conductors connected in 

parallel, each of length q. Matrix (p  q) is the row ma-

trix of length q with elements as column matrices of 
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length р. The figure above shows a conductor with one 

column of the form (р  1). Each of the q columns is 

described by its own Huckel matrix α of order р. For 

example, for р  3 it looks as 
 

 

0

0

t

t t

t



 



 
 

  
  

.  

 

Columns are connected to each other by resonance 

integrals t in the following way. Consider the connec-

tion between the columns with neighboring numbers n 

and n + 1. This connection is described by the scalar 

matrix   t·I of order р, where I is unit matrix. In our 

model, naturally,   +. For example, for р  3 
 

 

0 0

0 0

0 0

t

t

t



 
 

  
  

.  

 

Hamiltonian Н has a block structure. The same ma-

trices α of order р are located on its main diagonal, and 

next to it above and below the diagonals are filled with 

matrices  of the same order р, the rest of elements are 

zero. If the length of the conductor is, say, q  10 atoms, 

and the width of the conductor is p  5 atoms, the order 

of Н is р  q  50. 

The solution of the eigenvalue problem of the Ham-

iltonian Н is reduced to diagonalization of [α] 
 

 V V 


               ,  

 

where [V] is a matrix whose columns represent the 

eigenvectors of matrix [α], thus 
 

 

1

2

3

0 0

0 0

0 0



 



 
 

  
  

.  

 

Matrix  is not affected by the basis transformation, 

because it is already diagonal. Diagonalisation of 

(р  р) matrix α leads to the vanishing of the resonance 

integrals t, connecting rows of the initial Hamiltonian 

matrix, that is, to transform 2D conductor to p 1D con-

ductors connected in parallel each of q atoms in length 

with energies ε1, ε2, ε3, …, εр equal to eigenvalues of 

matrix α  
 

 02 cosn nt k a   , 
1

n

n
k a

p





.  

 

 

Each of these р parallel 1D conductors has a trans-

mission of one in the energy range  0t t   

 

 0 02 2n nt E t     .  

 

Adding all the individual transmissions for all р 

modes of a conductor we obtain the transmission show-

ing up-steps in the lower part (see next figure) and 

down-steps in the upper part (not shown). Usually 

when modeling n-type conductors we use the lower part 

of the band as shown below, and so we see only the up-

steps occurring at εn – 2t0. The εn are the eigenvalues of 

α which are given by 
 

 0 02 2 1 cos
1

n c

n
t E t

p




 
    

 
.  

 

The results of calculation of the transmission coeffi-

cient by the NEGF method when the number of atoms 

in conductor width p  25 are shown together with the 

step round calculated from the previous formula with 

the same width of the conductor р  25. 
 

 
 

The approach we just described of viewing a 2D/3D 

conductor as a set of 1D conductors in parallel looks to 

us not only physically correct but also as a very power-

ful tool for interpretation of experimental data.  Each of 

these 1D conductors is called a mode (or subband) and 

has a dispersion relation  
 

   02 cosn x n xE k t k a  .  

 

Let us now address the question how do we write 

the self-energy matrices for the contacts. Ideally the 

contact regions allow electrons to exit without any re-

flection from the contact borders and with this in mind 

a simple way to evaluate [Σ] is to assume the contacts 

to be just uniform extensions of the channel region.  

The viewpoint we just discussed allows us to picture 

a 2D conductor as a set of decoupled 1D conductors by 

converting from the usual lattice basis to an abstract 

mode basis through a basis transformation  
 

 X V X V


               

 

with Х being any matrix in the regular lattice basis. A 

unitary transformation  like this can be reversed by 

transforming back 
 

 X V X V


               
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as it was demonstrated above for Hamiltonian Н.  

As a result, for each of the p independent 1D 

conductors we can easily write down the self-energy in 

the mode basis and then connect them together to the 

total Σ matrix.   

In the Huckel  model of 2D conductor each of p 1D 

conductors  is  characterized  by  contact  self-energy 

t·exp(ika), with the appropriate ka for that 1D 

conductor at a given energy Е. For mode n we have 
 

 02 cosn nE t k a  ,  

 

so that overall we could write the contact matrix in the 

mode basis as  
 

 

1

2

3

1

ik a

ik a

ik a

te

te

te

 
 
 

     
 
 
 

,  

 

 
 

and then transform it back to the lattice basis  
 

 1 1V V


               .  

 

The method of basis transformation given above is 

based on a physical picture that is very powerful and ap-

pealing. However, it can not always be used at least not as 

straightforwardly since in general it may not be possible 

to diagonalize both α and  matrices simultaneously. 

Finally, we formulate a general method for con-

structing self-energy contact matrices. Any 2D conduc-

tor with a uniform cross-section along the entire length 

of the conductor can be broken into fragments each 

having an on-site matrix Hamiltonian [α] that mimic 

each other along the length of the conductor and cou-

pled to the next fragment by a matrix [] as shown be-

low for non-uniform graphene ribbon with its two-

atomic  rhombic  unit cell and 12 atoms fragment. Each 
 

 
 

of these matrices is of size (n  n), n being the number 

of basis functions describing each fragment. 

Let’s look at the right border of the conductor with 

the contact. The self-energy matrix is zero except for 

the last (n  n) block at the contact surface  
 

 
 2

2

2 1

0 0

0

n n n

E

g  

 

 
 

   
 
 

.  

 

The non-zero block is given by βg2β+ where g2 is 

called the surface Green’s function for contact 2, and is 

obtained by iteratively solving the equation for g2 

 

  1

2 2g E iO I g  
        ,  

 

where О+ represents a positive infinitesimal being used 

to control the convergence of iteration process and iО+I 

ensures that a numerical iterative solution converges 

on the solution for which Γ has all positive eigenvalues.  

Validity and deviation of the four basic equations of 

the NEGF method in matrix representation in the 

bottom-up approach as well as detailed discussion of 

single- and multilevel resistors in semiclassical and 

quantum models, 1D conductor with one scater, 

graphene, and deviation of the general method given 

above to obtain the self-energy contact matrices is 

supposed to be submitted for publication to the Journal 

of Nano- and Electronic Physics. 
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