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This short review describes recent results in the field of carbon nanotube (CNT) – Si hybrid photovolta-

ics (PV) focusing on advantages of semiconducting carbon nanotubes over other organic materials used in 

organic- Si composite photosensing materials. Possible mechanisms of charge phogeneration at CNT- Si in-

terface and chargte transport are discussed. Perspectives and future trends in research of this novel class 

of PV nanohybrids are presented as well. 
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1. INTRODUCTION 
 

Silicon remains the dominant material in photovol-

taic industry due to excellent optoelectronic properties, 

stability and its sufficient supply in the environment. 

Today, silicon based solar cells occupy more than 80 % 

of the commercial photovoltaic market. However, the 

further broad dissemination of Si PVs is partially lim-

ited by an expensive price of high quality crystalline Si 

wafers as well as the complicated fabrication process. 

The use of nanotechnology and employment of novel 

organic materials in combination with inexpensive pol-

ycrystalline, amorphous Si either nanostructurred Si 

such as porous Si (PSi) or Si nanowires (SiNW) opens 

an opportunity to develop a new generation of hybrid 

organic/Si solar cells with a conversion efficiency high-

er than 10% and a fabrication cost lower than for con-

ventional Si PV technologies. For the past several 

years, there was a surge of research dealing with the 

investigation of photosensitive hybrid materials com-

prising Si nanostructures (SiNW array [1-3], free 

standing Si NW[4-6], porous Si [7-10]) interfaced with 

polymers, oligomers and small molecules. Also, there 

have been substantial research efforts devoted to the 

investigation of organic/crystalline Si heterojunctions 

[11]. Nevertheless, in terms of PV performance, conju-

gated polymers have serious drawback as compared to 

their silicon counterpart due to gradual degradation, 

photobleaching and low charge mobility making the 

further progress challenging, firstly because of poor 

long term stability.  

In this context, carbon nanotubes (CNTs) present 

an almost ideal organic compound to be interfaced with 

Si to create an efficient light harvesting nanohybrid 

structure. Specifically for CNT/Si hybrid solar cells, 

several advantages over other organic materials may 

include: high charge mobility, size dependent band-gap, 

efficient absorbance in NIR spectral range for semicon-

ducting single walled carbon nanotubes (s-SWNT) ; 

simple doping by acid treatment allowing significantly 

reduced film resistance thin CNT film can simultane-

ously work not only as a photoactive material, but also 

as a transparent conductive electrode, replacing con-

ventional metal grids or metal oxide coatings (for other 

organic materials a deposition of the top metal/metal 

oxide electrode is required); Fermi level of s-SWNTs 

can be shifted through either the electrical or chemical 

doping and functionalization resulting in a favorable 

position to increase built-in electric field at the inter-

face with silicon.  

 

2. SWNT – CRYSTALLINE SI SOLARS  
 

Recently a photoconversion efficiency record of 

13.8% has been reported for SWNT/Si solar cells [12] 

exceeding the best PCEs for any organic (8-10%) and 

DSSC (10-12%) devices. Such remarkable results were 

achieved for a relatively short term (about five year 

since first report in 2007 with PCE of ~ 1% for similar 

device [13]) suggesting further progress in the nearest 

future. Such high efficiency can be associated with sev-

eral factors. First, the use of high quality p-type semi-

conducting SWNT forming p-n heterojunction with n-

type Si. It means that s-SWNTs contribute to not only 

charge separation and transport, but also to NIR light 

absorbance; Second, SWNT doping by dilute HNO3 re-

duces SWNT film resistance (and consequently device 

serial resistance) resulting in an increase of fill factor 

and short circuit current; Third, SWNT infiltration 

with the acid results in formation of Si-acid-CNT mi-

cro-units working as phoroelectrochemical solar cells 

with acid as an aqueous electrolyte. Thus, two photo-

sensitive mechanisms act in parallel: electrochemical 

and charge separation at p-n heterojunction. Also, 

SWNT film was encapsulated by polydimethylsiloxane 

(PMDS) to provide anti-reflection properties.  

The doping of SWNT film by thionyl chloride also 

enhanced conversion efficiency more than 50% (PCE ~ 

4% was achieved after doping) [14]. Using Hall-effect 

measurements, the change of the 2D carrier density 

and effective mobilities have been determined for un-

doped and doped SWNT film: 3.1x1015 vs 4.6 x1017cm-2 , 

and 2.1 vs 17.2 cm2V-1s-1
, respectively. If increase of the 

carrier density after doping is expectable (an increase 

of hole concentration owing to oxidation), the mobility 

enhancement is not a trivial outcome and can be relat-
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ed to resistivity reduction at junctions between nano-

tube bundles and the lowering of barriers between s-

SWNTs and m-SWNTs [14]. In spite of impressive pro-

gress in the study of optoelectronic properties of inter-

face between carbon nanotubes and silicon, a lot of 

fundamental aspects of photoconversion at CNT/Si het-

erojunction require further investigation. For example, 

what is the role of the interface in dissociation of exci-

tons generated in carbon nanotubes and photocarrier 

recombination process?; What junction type (Schottky 

diode or p-n diode) is formed between Si and SWNT 

film, where 1/3 of nanotubes are metallic and other 2/3 

are semiconducting ? ; How Anderson model should be 

adjusted to quasi-1D nanotubes and their inhomogene-

ous density in the contact area with silicon (because of 

the high film porosity); What is the mechanism of the 

hole transport trough the nanotube bundles and their 

junctions in the depletion region?  

Ural et al [15] fabricated CNT/Si/Me planar struc-

ture to investigate the nature of contact between car-

bon nanotubes and silicon. It was found that thin CNT 

film forms Shottky contact with Si (both n- and p-type) 

and thermionic emission is a dominant transport 

mechanism above 240K, while for lower temperatures 

the major mechanism is tunneling. These results were 

consistent with metallic behavior of CNT film obtained 

from temperature dependency of resistivity, that could 

be associated with prevailing metallic nanotubes over 

semiconducting in the CNT network. While, other re-

ports [14, 16,17] indicate p-n heterojunction between 

semiconducting SWNTs and n-type Si. An effect of elec-

trical gating on photoconversion process of SWNT/n-Si 

device has been exploited by Rinzler’s group in recent 

reports [18,19]. The gating of SWNT film was per-

formed in lateral geometry through electrolyte and 

SWNT film (gate electrode) insulated from the other 

SWNT film forming the Schottky contact with n-type 

Si. Upon negative bias of -0.75 V, PCE = 10.9% has 

been attained that demonstrated significant improve-

ment compared to zero bias (PCE = 8.4%). Authors be-

lieve that such gate voltage- induced behavior can be 

explained by several mechanisms including (i) the en-

hancement of built-in potential owing to the shift of 

Fermi level, (ii) reduction of SWNT film resistivity; (iii) 

existence of the interface dipoles ; and (iv) an appear-

ance of additional electric field across the depletion 

layer in the n-Si [18].  

So far, in all aforementioned studies, CNT/n- Si in-

terface was considered as a Scottky photodiode 

[15,18,19] or as a p-n heterojunction [12-14]; however, 

without direct evidence of SWNTs (or DWNTs) contri-

bution in light absorption, especially in the NIR range. 

Recent reports [16,17] clearly indicated the importance 

of semiconducting SWNTs as NIR light absorbing ma-

terial with energies below Si bang gap (1.1eV). Ong et 

al. [16] observed matching of the S11 band (correspond-

ing to the first interband transition for s-SWNTs with 

7,6 and 8,6 chirality) with the photocurrent band located 

at ~1150 nm (Fig. 1, left). Thus, semiconducting SWNT 

network contributes to the photo conversion process not 

only as a charge separator/transporter/collector but also 

as a light absorber. This is an important fact, 
 

 

400 600 800 1000 1200 1400 1600 1800

0.01

0.1

1

 

 

 
N

or
m

al
iz

ed
 P

ho
to

cu
rr

en
t (

a.
 u

.)

Wavelength (nm)

 Sediment

 Supernatant

Si + SWNT

SWNT

400 600 800 1000 1200 1400 1600 1800
0.00

0.04

0.08

0.12

0.16

 

 

 

8,6

7,6

8,6

A
bs

or
ba

nc
e 

(o
pt

ic
al

 d
en

si
ty

)

 Sediment

 Supernatant

7,6
M11 S22 S11 (a)

(b)

Sediment
Supernatant

Sediment
Supernatant

 
 

 

(a) 

 
 

Fig. 1 – Left (a) UV-Vis-NIR spectrum of sediment and supernatant fraction from centrifugation process of SWNT films on glass. 

M11, S22, and S11 represents the band-gap transitions in metallic and semiconducting SWNTs; (b) Normalized photocurrent spectra 

of the SWNT/n-Si solar cell devices (supernatant and sediment) showing a current band matching the S11 absorbance band. Right 

(a) Schematic energy band diagram of SWNT/n-Si heterojunction based on the Anderson model. Electron affinity,  , and conduc-

tion band offset, ΔEc , for SWNT and n-Si are shown in the energy band diagram; (b) SEM images of cross-sectional view of 

SWNT/n-Si interface [16] 
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distinguishing between a p-n heterojunction solar cell 

with two active light absorbing components and a 

Schottky cell, where the metal component is not capa-

ble of absorbing photons. It was suggested that photo-

generated excitons in SWNT dissociate to holes and 

electrons at the heterojunction followed by hole 

transport and collection through the SWNT network 

(Fig.1, right, a). In parallel, photoelectrons generated 

at the Si side diffuse from the depletion region to the 

external electrode. Also, photoholes from Si and photoe-

lectrons from SWNT can be involved in charge separa-

tion process; however, with lower efficiency [16]. 

Hatakeyama et al. [17] also demonstrated a critical 

role of SWNTs as NIR photon absorbers for the en-

hancement of PV performance in the infrared spectral 

range. They compared conversion efficiency of 

SWNT/Si cell with the control sample (Ag/Si Schottky 

cell) observing a significantly higher PCE of SWNT 

based device for wavelengths longer than 850 nm. Ad-

ditionally, they found that the encapsulation of C60 in-

side nanotubes improve the device PV performance 

through adjusting the Fermi level of SWNTs. A similar 

contribution of carbon nanotubes in external conver-

sion efficiency, however, for UV spectral range owing to 

π-π plasmon band has been observed in study [20]. 

 

3. SWNT- AMORPHOUS AND NANOSTRUC-

TURED SI 
 

Another recent trend in the development of 

CNT/semiconductor light harvesting devices is the em-

ployment of amorphous Si [21-22] and nanostructured 

Si [23-25]. Hydrogenated amorphous silicon (a-Si) have 

advantageous over crystalline Si because of the lower 

cost and opportunity to fabricate thin film flexible 

structures comprising p-i-n junction ; however, the ma-

jor drawback of a-Si is the low charge mobility. Never-

theless, today a-Si solars attract growing interest as a 

light weigh, thin film, flexible and cost effective alter-

native to crystalline silicon photovoltaics. The research 

of CNT/a-Si hybrids is now in the beginning stage; 

however, recent studies already see that there is prom-

ising potential for future PV applications. Schriver et 

al. [21] examined the photoactive properties of MWNT 

networks in junction with a-Si undoped thin film. The 

heterojunction demonstrated rectifying behavior and 

PV action with small short circuit current (~ 0.25 

mA/cm2) that can be associated with the use of MWNTs 

(instead of s-SWNTs) and undoped a-Si (instead of n-

doped Si). Interestingly, a similar device (with graph-

eme layer instead of MWNTs) results in worse PV per-

formance. A sophisticated design of coaxial solar cells 

has been reported by Zhou et al. [23] where heterojunc-

tion was constructed from a metallic inner core 

(MWNTs) contacting with the outer shell (a-Si). This 

strategy was based on coating vertically aligned 

MWNT nanowire (NW) array grown on the flat sub-

strate with amorphous silicon shells followed by ITO 

deposition as a top contact. The short circuit current of 

coaxial MWNT/a-Si array showed a 25% increase in 

short circuit current without a noticeable change of the 

open circuit as compared with control sample – similar 

device with planar MWNT/a-Si heterojunction. These 

results suggested that coaxial solar cell works as a 

manifold of individual freestanding photovoltaic nan-

owires (Schottky photodiodes) connected in parallel. An 

enhancement in PV performance has been explained 

not only by an increase of the interfacial area through 

the use MWNT NW array but also by the light trapping 

which is typical for many photovoltaics with 

nano/microstructured surfaces. Because MWNTs exhib-

it a low Vis-NIR extinction coefficient, the primary ab-

sorber was only a-Si, and thus potential of carbon 

nanotubes as Vis/NIR absorbers (such as s-SWNTs) 

was not utilized in this design [23]. The above circum-

stance gives a hint to employ semiconducting SWNTs 

interfaced with nanostructured silicon to further en-

hance light harvesting for such hybrid structures. 

When s-SWNTs serve as effective light absorbers, 

an existence of nanostructured heterojunction with Si 

becomes critically important. Generally, the concept of 

nanostructured heterojunction is very beneficial for 

organic/inorganic interfaces with photoactive organic 

material, first of all, because of the relatively short ex-

citon diffusion lengths in the organic component (e.g. 

100-300 nm for SWNT and ~ 10 nm for many conjugat-

ed polymers). 

 

4. OUTLOOK AND FUTURE PROSPECTS  
 

In spite of high expectations, CNT/SiNW array 

structure probably cannot satisfy the growing demand 

of PV community to thin film, flexibility and light 

weight features because crystalline Si is required for 

SiNW array preparation. In this context, it could be 

very beneficial to create a thin film, flexible solar de-

vice comprising amorphous Si forming nanostructured 

heterojunction (Fig.2) with semiconducting SWNTs. 

Such a solution can be realized through the direct 

growth of s-SWNTs inside the nanopores of etched a-Si 

film. Figure 2 shows the design of such a hypothetical 

solar cell that has a good chance to outperform existing 

thin film photovoltaics based on amorphous Si. Here, 

nanostructured heterojunction between p-type s-

SWNTs and intrinsic nanoporous a-Si should provide 

important advantages over traditional p-i-n a-Si device: 

(i) The replacement of p-type a-Si by s-SWNTs will 

extend the device absorption range up to 2 μm (instead 

of 0.73 μm, limited by a-Si band gap) owing to s-SWNT 

absorbance of NIR light; (ii) Enhanced interfacial area 

between nanoporous intrinsic a-Si and s-SWNTs (200-

800 m2/cm3) compared to the planar junction between 

p-type, intrinsic, and n-type a-Si; (iii) Higher carrier 

mobility for quasi- aligned nanotubes (up to 105 

cm2V−1s−1 for individual nanotubes and ~ 60 cm2V−1s−1 

for SWNT films) as compared with a-Si (hole mobility 

is ~ 0.2 cm2V−1s−1 and electron mobility is ~ 2 

cm2V−1s−1. Furthermore, because of controllable s-

SWNT growth hole mobility can be even enhanced as 

compared with disordered nanotube network; (iv) Pos-

sibility to increase charge concentration and Fermi 

level tuning for s-SWNT by simple acidic doping or var-

ious functionalization; (v) A special graded index anti-

reflection (GIAR) porous structure can be integrated 

with the porous layer to minimize the reflection from 

the surface. The concept of GIAR coating is very attrac-

tive because such structures should provide a broad-

band (from UV to NIR) diminishing reflection of 1%-5%  
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Fig. 2 – Schematic of s-SWNT/porous a-Si thin film solar cell. SWNTs are grown directly inside nanoporous a-Si layer with GIAR 

structure. GIAR structure is fabricated by electrochemical etching with gradually changing porosity from high (top) to low (bottom) 
 

for angles up to 60°-80°, as followed from theoretical 

models [26]; (vi) Because s-SWNT will be utilized in-

stead of p-type a-Si layer it should reduce the total de-

vice degradation upon light exposure. This process is 

called the Staebler-Wronski effect when the defect density of 

a-Si increases with light exposure, causing an increase 

in the recombination current and consequently reduc-

ing the conversion efficiency. 

It is known that similar to crystalline Si , amor-

phous Si can be electrochemically etched (either to be 

treated by simple wet etching) to produce straight na-

nopores or micropores with lengths in the range from 

submicron to several tens micron. Then the semicon-

ducting enriched SWNTs can be reliably grown inside 

pores (individual or bundles depending on pore diame-

ter) applying CVD methods. Today, CNT growth by 

CVD is a highly controlled process when desired char-

acteristic of CNTs are determined by CVD parameters 

and can be even optimized with computer simulations 

and predictive modeling [27].  

The current level of stabilized PCE for conventional 

thin film a-Si solar cells is in the range of 7-9% [28]; 

therefore, there is a strong demand to increase their 

efficiency maintaining the same low production cost. 

The permanent progress in nanostructuring of Si and 

other group IV, III-V, IV-VI semiconductors in conjunc-

tion with novel techniques for CNT growth, sorting, 

deposition and interface optimization promise further 

advances in the near future to develop a new genera-

tion of hybrid CNT/semiconductor thin, flexible, robust 

and inexpensive photovoltaics with conversion efficien-

cy exceeding 15%.  
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