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Molecular dynamics simulations have been performed to study the mechanical properties of two-

dimensional titanium carbide under tensile deformation. Young modulus was calculated from the linear 

part of strain-stress curve. From the radial distribution function it is found that the structure of the simu-

lated samples is preserved during the deformation process. Calculated values of the elastic constants are in 

good agreement with the DFT data. 
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A new, large family of two-dimensional transition 

metal carbides and nitrides, known as MXenes has 

recently been discovered [1, 2]. Their unique properties 

suggest large area of potential applications [3, 4]. Since 

the discovery, MXenes are intensively studied by dif-

ferent methods and techniques [5-7] with computation-

al studies making a large part of these efforts. Here we 

report the results of an atomistic simulation of the two-

dimensional titanium carbide Ti2C.  

Atomistic simulations were carried out within clas-

sical molecular dynamic techniques. To describe the 

different types of bonding in the Ti2C monolayer we use 

the embedded atom model (EAM) [8], Axilrod-Teller 

(AT) [9] and Lennard-Jones [10] potentials.  

During the simulations potential energy of the par-

ticles, system temperature and the velocities were rec-

orded. The system temperature was maintained at 300 

K, using Berendsen thermostat [11]. 

Mechanical properties of the samples were studied 

under the tensile deformation with different strain 

rates. Strain was applied to the Ti2C monolayer by 

pulling one edge of the sheet while the opposite edge 

was fixed. Tension was applied to the system up to the 

destruction of the samples. To detect the changes in the 

Ti2C structure the radial distribution functions (RDF) 

were calculated. 

In the process of tensile load the overall stress in 

the material was calculated by the virial theorem [12], 

and the strain-stress curves were obtained.  

Obtained strain-stress curves have a similar form 

with a linear region, related to elastic deformation. At 

a higher strain, stress continues to increase up to the 

threshold point of a yield stress, followed by a sharp 

drop related to the sample destruction. Tensile defor-

mation was applied to the system at different strain 

rates. All the strain-stress curves demonstrate the lin-

ear region of elastic deformation, with the slope being 

independent from the strain rate.  

The Young’s modulus values were obtained from the 

strain-stress curves with the strain 0.01%  by linear 

regression with the average value 597 55E GPa . 

These results are in good agreement with the DFT cal-

culations [5].  

Our simulations have shown that the classical mo-

lecular dynamics approach correctly describes mechan-

ical behavior of the two-dimensional titanium carbide 

and may be used in further investigations of the struc-

tural and mechanical properties of the MXenes termi-

nated by oxygen containing functional groups produced 

experimentally. 
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