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The Landauer – Datta – Lundstrom generalized transport model is briefly summarized. If a band 

structure is given, the number of conduction modes can be evaluated and, if a model for a mean-free-path 

for backscattering can be established, then the near-equilibrium thermoelectric transport coefficients can 
be calculated using the final expressions listed below for 1D, 2D, and 3D resistors in ballistic, quasi-

ballistic, and diffusive linear response regimes through Fermi – Dirac integrals when there are differ-

ences in both voltage and temperature across the device. 
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1. INTRODUCTION 
 

The objectives for this short report is to give a con-

densed summary of Landauer – Datta – Lundstrom  

(LDL) electron transport model [1 – 4] which works at 

the nanoscale as well as at macroscale for 1D, 2D, and 

3D resistors in ballistic, quasi-ballistic, and diffusive 

linear response regimes when there are differences in 

both voltage and temperature across the device. 
 

2. GENERALIZED LDL MODEL FOR CURRENT 
 

The generalized model for current can be written in 

two equivalent forms: 
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where “broadening” γ(E) relates to transit time for elec-

trons to cross the resistor channel  
 

 ( ) ( )E E  , (2) 
 

density of states D(E) with the spin degeneracy factor 

gs = 2 included, M(E) is the integer number of modes of 

conductivity at energy E,  the transmission 
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where λ(E) is the mean-free-path for backscattering 

and L is the length of the conductor, Fermi function 
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is indexed with the resistor contact numbers 1 and 

2, EF is the Fermi energy which as well as temperature 

T may be different at both contacts. 

Equation (3) can be derived with relatively few as-

sumptions and it is valid not only in the ballistic and 

diffusion limits, but in between as well: 
 

Diffusive: L >> λ;  T = λ/L << 1, 

Ballistic: L << λ;  T → 1, 

Quasi-ballistic: L ≈ λ;  T < 1. 

The LDL transport model can be used to describe all 

three regimes. 

It is now clearly established that the resistance of a 

ballistic conductor can be written in the form 
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where h/q2 is fundamental Klitzing constant and num-

ber of modes M(E) represents the number of effective 

parallel channels available for conduction.  

This result is now fairly well known, but the com-

mon belief is that it applies only to short resistors and 

belongs to a course on special topics like mesoscopic 

physics or nanoelectronics. What is not well known is 

that the resistance for both long and short conductors 

can be written in the form 
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Ballistic and diffusive conductors are not two differ-

ent worlds, but rather a continuum as the length L is 

increased. Ballistic limit is obvious for L << λ, while for 

L >> λ it reduces into standard Ohm’s law 
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Indeed we could rewrite R(E) above as 
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with a new expression for specific resistivity 
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which provides a different view of resistivity in terms of 

the number of modes per unit area and the mean-free-

path. 

Number of modes  
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is proportional to the width W of the resistor in 2D and 

to the cross-sectional area A in 3D, ( )xv E  is the average 

velocity in the +x direction from contact 1 to contact 2. 

For parabolic energy bands 
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the 1D, 2D, and 3D densities of states are given by 
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where A is the area of the 2D resistor, Ω is the vol-

ume of the 3D resistor, H(E – Ec) is the Heaviside step 

function. Then number of modes 
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where gv  is the valley degeneracy.  

For linear dispersion in graphene  
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where  +sign  corresponds  to  conductivity band with 

EF > 0 (n-type graphene), and –sign corresponds to va-

lence band with EF < 0  (p-type graphene),  
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Density of states in graphene 
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and number of modes 
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Two equivalent expressions for specific conductivity 

deserve attention, one as a product of D(E) and the 

diffusion coefficient ( )D E  
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where  
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with τ(E) being the mean free time after which an elec-

tron gets scattered and the other as a product of M(E) 

and λ(E)  
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where the three items in parenthesis correspond to 1D, 

2D, and 3D resistors. 

Although Eq. (13b) is not well known, the equiva-

lent version in (13a) is a standard result that is derived 

in textbooks. Both eqs (13) are far more generally ap-

plicable compared with traditional Drude model. For 

example, these equations give sensible answers even 

for materials like graphene whose non-parabolic bands 

make the meaning of electron mass somewhat unclear, 

causing considerable confusion when using Drude 

model. In general we must really use eqs (13) and not 

Drude model to shape our thinking about conductivity.  

These conceptual equations are generally applicable 

even to amorphous materials and molecular resistors. 

Irrespective of the specific E(p) relation at any energy 

the density of states D(E), velocity v(E), and momen-

tum p(E) are related to the total number of states N(E) 

with energy less than E by the fundamental relation 
 

         D E E p E N E d   , (14) 
 

where d  is the number of dimensions. Being combined 

with (13a) it gives one more fundamental equation for 

conductivity 
 

  
2
( ) ( ) ( ) ( )

( ) , ,

( )

q E N E N E N E
E

m E L LW L A


  , (13c) 

 

where electron mass is defined as 
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For parabolic E(p) relations, the mass is independent 

of energy, but in general it could be energy-dependent as 

for example in graphene the effective mass 
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2.1 Linear response regime 

Near-equilibrium transport or low field linear re-

sponse regime corresponds to 
0

lim( / )
V

dI dV


. There are 

several reasons to develop low field transport model. 

First, near-equilibrium transport is the foundation for 

understanding transport in general. Concepts intro-

duced in the study of near-equilibrium regime are often 

extended to treat more complicated situations, and 

near-equilibrium regime provides a reference point 

when we analyze transport in more complex conditions. 

Second, near-equilibrium transport measurements are 

widely used to characterize electronic materials and to 

understand the properties of new materials. And final-

ly, near-equilibrium transport strongly influences and 

controls the performance of most electronic devices. 

Under the low field condition let 
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where f0(E) is the equilibrium Fermi function, and an 

applied bias  
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is small enough. Using Taylor expansion under con-

stant temperature condition   
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and property of the Fermi function 
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one finds 
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The derivative of the Fermi function multiplied by 

kT to make it dimensionless 
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is known as thermal broadening function.   

If one integrates FT over all energy range the total 

area  
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so that we can approximately visualize FT as a rectan-

gular pulse centered around E = EF with a peak value 

of ¼ and a width of ~ 4kT.  

The derivative
0

( / )f E  is known as the Fermi con-

duction window function. Whether a conductor is good 

or bad is determined by the availability of the conduc-

tor energy states in an energy window ~  2kT around 

the electrochemical potential EF0, which can vary wide-

ly from one material to another. Current is driven by 

the difference f1 – f2  in the “agenda” of the two contacts 

which for low bias is proportional to the derivative of 

the equilibrium Fermi function (21). With this near-

equilibrium assumption for current (1) we have   
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with conductivity  
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known as the Landauer expression which is valid in 

1D, 2D, and 3D resistors, if we use the appropriate ex-

pressions for M(E). 

For ballistic limit T(E) = 1. For diffusive transport 

T(E) is given by equation (3). For a conductor much 

longer than a mean-free-pass the current density equa-

tion for diffusive transport is 
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where the electrochemical potential EF is also known as 

the quasi-Fermi level.  

For a 2D conductor the surface specific conductivity 

is  
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or in a different form  
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where differential specific conductivity   
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Similar expressions can be written for 1D and 3D resis-

tors. 

Another way to write the conductance is the product 

of the quantum of conductance, times the average 

transmission, times the number of modes in the Fermi 

windows: 
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Yet another way to write the conductance is in 

terms of the differential conductance ( )G E  as 
 

 ( )G G E dE  , [S] (30a) 
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3. THERMOCURRENT AND THERMOELEC-

TRIC COEFFICIENTS  
 

Electrons carry both charge and heat. The charge 

current is given by Eqn. (1). To get the equation for the 

heat current, one notes that electrons in the contacts 

flow at an energy E ≈ EF. To enter a mode M(E) in the 

resistor  electrons  must  absorb  (if E > EF)  or  emit  (if 

E < EF) a thermal energy E – EF. We conclude that to 

get the heat current equation we should insert (Е – 

EF)/q inside the integral. The resulting thermocurrent  
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When there are differences in both voltage and 

temperature across the resistor, then we must the 

Fermi difference (f1 – f2) expand to Taylor series in both 

voltage and temperature and get  
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where ∆V = V2 – V1, ∆Т = Т2 – Т1, and Т = (Т1 + Т2)/2.  
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Deriving a general near-equilibrium current equa-

tion is now straightforward. The total current is the 

sum of the contributions from each energy mode 

 ( )I I E dE  , (33a) 
 

where the differential current is  
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Using eqn. (32) we obtain 
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is the differential conductance and   
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is the Soret coefficient for electro-thermal diffusion in 

differential form. Note that ( )
T
S E  is negative for modes 

with energy above EF (n-resistors) and positive for 

modes with energy below EF (p-resistors).  

Now we integrate eqn. (34a) over all energy modes 

and find  
 

  
T

I G V S T    ,  [A] (35a) 
 

 
0Q T

I T S V K T     ,  [W] (35b) 
 

with three transport coefficients – conductivity given 

by eqs. (30) , the Soret electro-thermal diffusion coeffi-

cient  
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and the electronic heat conductance under the short 

circuit conditions (∆V = 0) 
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where current I is defined to be positive when it flows 

into contact 2 with electrons flowing towards. The heat 

current IQ  is positive when it flows in the +x direction 

out of contact 2.  

Equations (35) for long diffusive resistors can be 

written in the common form used to describe bulk 

transport as 
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with three specific transport coefficients  
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These equations have the same form for 1D and 2D 

resistors, but the units of the various terms differ.  

The inverted form of eqs (35) is often preferred 

in practice, namely:  
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In this form of the equations, the contributions from 

each energy mode are not added, e.g. ( )R R E dE  .  

Similarly, the inverted form of the bulk transport 

equations (36) become  
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with transport coefficients 
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In summary, when a band structure is given, number 

of modes can be evaluated from eqs (5) and, if a model for 

the mean-free-pass for backscattering λ(E) can be chosen, 

then the near-equilibrium transport coefficients can be 

evaluated using the expressions listed above.  
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