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The Landauer-Datta-Lundstrom generalized transport model is applied to heat transfer by phonons. In 

both cases of electrons and phonons the Landauer approach generalized and extended by Datta and 

Lundstom gives correct quantitative description of transport processes for resistors of any dimension and 

size in ballistic, quasi-ballistic, and diffusive linear response regimes when there are differences in both 

voltage and temperature across the device. It is shown that the lattice thermal  conductivity can be written 

in a form that is very similar to the electrical conductivity. Important differences between electrons and 

phonons are discussed. 
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1. INTRODUCTION 
 

Electrons transfer both charge and heat. Electrons 

carry most of the heat in metals. In semiconductors 

electrons carry only a part of the heat but most of the 

heat is carried by phonons. 

The objectives for this short report is to give a con-

densed summary of Landauer-Datta-Lundstrom (LDL) 

transport model [1-4] to describe the phonon heat flux 

which works at the nanoscale as well as at macroscale 

for 1D, 2D, and 3D resistors in ballistic and diffusive 

linear response regimes.  

The phonon heat flux is proportional to the temper-

ature gradient 
 

 
ph

Qx L

dT
J к

dx
  [W/m2] (1) 

 

with coefficient 
L
к known as the specific lattice thermal 

conductivity. Such an exceptional thermal conductor 

like diamond has 
3

2 10 /
L
к W m K    while such a poor 

thermal conductor like glass has 1 /
L
к W m K  . Note 

that electrical conductivities of solids vary over more 

than 20 orders of magnitude, but thermal conductivi-

ties of solids vary over a range of only 3-4 orders of 

magnitude. We will see that the same methodology 

used to describe electron transport can be also used for 

phonon transport. We will also discuss the differences 

between electron and phonon transport. For a thorough 

introduction to phonons use classical books [5-8]. 

 

2. HEAT TRANSFER BY PHONONS 
 

To describe the phonon current we need an expres-

sion like for the electron current 
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For electrons the states in the contacts were filled 

according to the equilibrium Fermi functions, but 

phonons obey Bose statistics, thus the phonon states in 

the contacts are filled according to the equilibrium 

Bose – Einstein distribution 
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Let temperature for the left and the right contacts 

are Т1 and Т2. As for the electrons, both contacts are 

assumed ideal. Thus the phonons that enter a contact 

are not able to reflect back, and transmission 

coefficient Tph(E) describes the phonon transmission 

across the entire channel. 

It is easy now to rewrite eqn. (2) to the phonon heat 

current. Electron energy E we replace to the phonon 

energy ћ. In the electron current we have charge q 

moving in the channel, in case of the phonon current 

the quantum of energy ћ is moving instead; thus, we 

replace q in (2) with ћ and move it inside the integral. 

The coefficient 2 in (2) reflects the spin degeneracy of 

an electron. In case of the phonons we remove this 

coefficient, and instead the number of the phonon 

polarization states that contribute to the heat flow let 

us include to the number of the phonon modes Mph(ћ). 

Finally, the heat current due to phonons is 
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In the linear response regime 
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where the derivative according (3) 
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with  
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Now eqn (4) for small differences in temperature 

becomes 
 

 
L

Q K T   , (8) 

 

where the thermal conductance 
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Equation (8) is simply the Fourier’s law stating that 

heat flows down to a temperature gradient. It is also 

useful to note that the thermal conductance (9) 

displays certain similarities with the electrical 

conductance 
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The derivative 
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known as the Fermi window function that cutting out 

those conduction modes which only contribute to the 

electric current. The electron windows function is 

normalized: 
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In case of phonons the term in square brackets of 

eqn (9) acts as a window function to specify which 

modes carry the heat current. After normalization 
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thus finally 
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with 
 

 
2 2 13 2
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   , (15) 

 

known as the quantum of thermal conductance 

experimentally observed first in 2000 [9].  

Comparing eqns (10) and (14) one can see that the 

electrical and thermal conductances are similar in 

structure: both are proportional to corresponding 

quantum of conductance times an integral over the 

transmission times the number of modes times a 

window function. 

The thermal broadening functions for electrons and 

phonons have similar shapes and each has a width of a 

few kT. In case of electrons this function is 
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with ( ) /x E kT  . This function for phonons is giv-

en by eqn (13) or 
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with /x kT . Both functions are normalized to a 

unity and shown together on fig. 1. 

Along with the number of modes determined by the 

dispersion relation, these two window functions play a 

key role in determining the electrical and thermal 

conductances. 
 

 
 

Fig. 1 – Broadening function for phonons compared to that of 

electrons 

 

2.1 Thermal Conductivity of the Bulk 

Conductors 
 

The thermal conductivity of a large diffusive 

resistor is a key material property that controls 

performance of any electronic devices. By analogy with 

the transmission coefficient for electron transport the 

phonon transmission 
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It is also obvious that for large 3D conductors the 

number of phonon modes is proportional to the cross-

sectional area of the sample: 
 

 ( )
ph

M A  , (19) 

 

Now let us return to eqn (8) dividing and 

multiplying it by A/L, which immediately gives eqn (1) 

for the phonon heat flux postulated above 
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with specific lattice thermal conductivity 
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or substituting (18) to (14) one for the lattice thermal 

conductivity finally obtains 
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It is useful now to define the average number of 

phonon modes per cross-sectional area of the conductor 

that participate in the heat transport 
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Then 
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where the average mean-free-path is defined now as 
 

 

( )
( ) ( ) ( )

( )
( ) ( )

ph

ph ph

ph

ph

ph

M
W d

A

M
W d

A


   




 







. (25) 

 

Thus, the couple of the phonon transport equations 

(20) and (24) corresponds to similar electron transport 

equations: 
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The thermal conductivity (24) and the electrical 

conductivity (27) have the same structure. It is always 

a product of the corresponding quantum of conductance 

times the number of modes that participate in 

transport, times the average mean-free-path. These 

three quantities for phonons will be discussed later. 

 

2.2 Specific Heat Versus Thermal Conductivity 
 

The connection between the lattice specific thermal 

conductivity and the lattice specific heat at constant 

volume is well known [5-8]. We will show now that cor-

responding proportionality coefficient is a product of an 

appropriately-defined mean-free-path 
ph

  and an 

average phonon velocity
ph

v , namely: 
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The total phonon energy per unit volume 
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where ( )
ph

D   is the phonon density of states. By 

definition, 
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where eqns (6) and (13) were used. Next, multiply and 

divide (22) by (30) and obtain proportionality we are 

looking for: 
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To obtain final expression (28) and correct interpre-

tation of the proportionality coefficient we need to re-

turn to eqn (18). This expression can be easily derived 

for 1D conductor with several simplifying assumptions. 

Nevertheless it works very well in practice for a con-

ductor of any dimension. Derivation of eqn (18) is based 

on the interpretation of the mean-free-path (E) or 

(ћ) as that its inverse is the probability per unit 

length that a positive flux is converted to a negative 

flux. This is why λ is often called a mean-free-path for 

backscattering. Let us relate it to the scattering time τ. 

The distinction between mean-free-path and mean-

free-path for backscattering is easiest to see for 1D 

conductor. Let electron undergoes a scattering event. 

For isotropic scattering the electron can forward scat-

ter or back scatter. Only backscattering is relevant for 

the mean-free-path for scattering, so the time between 

backscattering events is 2τ. Thus the mean-free-path 

for backscattering is twice the mean-free-path for scat-

tering 
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D

E E v E E    . (32a) 

 

It was shown that the proper definition of the 

mean-free-path for backscattering for a conductor of 

any dimension [10] 
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where averaging is performed over angles. For isotropic 

bands 
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The scattering time is often approximately written 

as the power law scattering 
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where exponent s describes the specific scattering 

mechanism: for acoustic phonon scattering in 3D con-

ductor with parabolic dispersion s  – 1/2, and for ion-

ized impurity scattering s  + 3/2 [11].  

Analogous power law is often used for mean-free-

path: 
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For parabolic zone structure 
1/2

( )v E E , thus 

r  s + 1/2 with r  0 for acoustic phonon scattering, and 

r = 2  for ionized impurity scattering.  

Coming back to our initial task to derive (28) from 

(31) for 3D conductor according (32c) we have 
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where according to (32a), 
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and finally 
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It is known that the density of states and number of 

modes for electrons in 3D: 
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Let us rewrite this formulae for phonons. Note that 

the spin degeneracy for electrons gs  2 is included to 

the density of states 
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and for spherical bands in 3D conductor 
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Collecting (38) up to (40) all together in case of phonons 

we have 
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Substituting (37) and (41) to (31) we obtain 
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Multiplying and dividing (42) by 
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we finally get eqn (28) with proportionality coefficient 

between 
L
к  and 

V
C as the product of  an average mean-

free-path as 
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and an average velocity as 
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with the appropriate averaging. 

Equation (28) is often used to estimate the average 

mean-free-path from the measured 
L
к  and 

V
C , if we 

know the average velocity, which is frequently assumed to 

be the longitudinal sound velocity. The derivation above 

has identified the precise definitions of the 
ph

  and 

ph
v . If a phonon dispersion is chosen one can always 

compute the average velocity according to (45), and it is 

typically very different from the longitudinal sound 

velocity. Thus, estimates of the average mean-free-path 

can be quite wrong if one assumes the longitudinal sound 

velocity [12]. 
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