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The paper describes a new numerical method for solving of one-dimensional stationary Schrödinger 

equation. The method is based on the Fourier transformation of the wave equation. Wave function is ob-

tained by using a reverse Fourier transformation. Discrete energy levels are split and form the forbidden 

and allowed zones for a one-dimensional finite crystal. 
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1. INTRODUCTION 
 

Quantum wells are often studied since their 

physical effects can be seen at room temperature and 

can be exploited in real devices [1, 2]. An analysis of 

devices based on quantum wells requires the solution 

of the Schrödinger stationary equation. Precise 

solutions of one-dimensional stationary Schrödinger 

equation have been obtained only for a small number of 

functional dependencies of the potential well [3]. The 

search solutions of one-dimensional Schrödinger 

stationary equation continues for this reason [4]. It 

should be noted that the known methods of searching 

the discrete levels of energy are based on the solution 

of the wave equation in the coordinate’s area. The 

relevant wave functions and the primary derivatives of 

coordinate x  to   are equal to zero for discrete levels 

of energy. Therefore, there is a Fourier image [5] for 

the wave function and the relevant wave equation can 

be translated into the frequency domain by means of a 

Fourier transformation.  

The objective of this study is to develop a new nu-

merical method to solve the Schrödinger one-

dimensional stationary equation using the Fourier 

transformation 
 

2. RESULTS AND DISCUSSIONS 
 

2.1 Schrödinger Wave Equation and its Fourier 

Transform 
 

The one-dimensional stationary Schrödinger equa-

tion is: 
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Dimensionless equation frequently in quantum 

mechanics, which is obtained by replacing the 

variables. The dimensionless equation (1) can be 

presented as follows: 
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Function  x  is a solution of the stationary Schröding-

er equation, which corresponds to discrete levels of energy, 

and their primary derivatives tend to zero if x . 

Therefore, a Fourier transformation exists for these 

functions as well as for their primary and secondary 

derivatives. Let us write the appropriate proportions 

for  xψ . Thus, the Fourier transformation of  xψ  and 

their primary and secondary derivatives  xψ is equal 

to [5] and can be written as follows: 
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In addition, functions for which a Fourier 

transformation exists satisfied by following relations:  
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where  ...F  denotes the Fourier transformation. 

Eq. (6) describes the contents of the convolution 

theorem. 

Let us execute the Fourier transformation of the left 

and right parts of Eqs. (2), by using (3), (5) and (6). As a 

result we obtain: 
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Therefore, we proceed from the differential equation 

(2) for eigenfunctions and eigenvalues toward the 

integral one (7). We can replace the integral with the 

sum, while the continuous u and v can be replaced with 

discrete variables, as follows: 
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where ,/max Nu  , sus
  pvp ,   sN  2/1 , 

  2/1 Np , s , p  are integers; 2/maxuu  ; values of 

 x  are almost equal to zero. N  must be large and preferably 

have an odd value. 
Let us write the equation for all discrete spatial frequencies 

, su
s

 where s  are changes between   2/1 N  and 

  2/1N  then a set of equations in the amount of N can be 

written in the form of a matrix equation, where E is common 

for all s : 
 

    EUP , (9) 
 

where P  is a diagonal matrix with elements equal to 

 24 s , U  is a square symmetric matrix with elements 

equal to   ksU ,   is a vector with elements equal 

to  s . 

Therefore, in the latter case the problem has been reduced 
to the eigenvalues (energy) and eigenvectors (a discrete 

Fourier image  x ) problem, which corresponds to the given 

value of energy. We can have multiple eigenvalues and corre-

sponding eigenvectors. Having made an inverse discrete Fouri-

er transformation of eigenvector, we can obtain the eigenfunc-

tion  x . All eigenvalues (discrete levels of energy) are 

determined inside the potential well for quantum-

mechanical problems. If the potential well of finite depth then 

the precision is determined by N and .  If the potential energy 

varies from zero to infinity (for example 2xU  ) then in this 

method is limit the potential energy, i.e. it serves up to a cer-

tain value as  xU , and further acquires a constant value. Ob-

viously, in this case, the lowest levels of energy can be deter-

mined with the highest level of accuracy.  
 

2.2 Numerical Simulation of One-dimensional 

Crystal 
 

One-dimensional crystal consists of periodic placement of 

potential wells, which are described by the following analytical 

function: 
 

    2exp xaaxU  , (10) 
 

where a  is a certain positive number determining the depth of 

a potential well.  

If we have a 
1N  number of periodically placed (

1N -odd) 

potential wells at a distance   from each other, we will re-

ceive a one-dimensional crystal, whose potential energy 

will be described as following expression: 
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Following simple mathematical transformations we 

obtain the Fourier image of the function (12): 
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Figure 1 demonstrates the potential energies and 

energy levels for a singular potential well and the one-

dimensional crystal. The scales of figure 2 and 2b are 

vertically the same; the starting point of the coordi-

nates for both pictures is combined. The lowest level 

splits to the least degree, while 533261.1610,0 E . Level 

3E  splits the most: 157709.870,3 E , 704412.9310,3 E .
 

 

 
 

Fig. 1 – Dependence of potential energy of the coordinates and ener-

gy level (horizontal line): (a) single potential pit; (b) one-

dimensional crystal. 
 

3. CONCLUSION 
 

The new numerical method for solving stationary 

Schrödinger equation, based on a Fourier transfor-

mation has been developed. The integral equation is 

obtained as a result of mathematical manipulation. 

The method has been tested in a number of examples 

and shows high accuracy of the energy levels for a sin-

gular potential energy. The method is characterized by 

numerical stability. 
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