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CHAPTER 3  
GENERAL ISSUES IN MANAGEMENT 

Real Options Valuation in Energy Investment Projects: 
Modeling Hedging Strategies Using Genetic Algorithm 

Software 
Marco Antônio Guimarães Dias1, Mario Antonio Rivera2  

Abstract: Complex real options models for project economics simulation and modeling 
must contend with several sources of uncertainty, and the arrays of options to be considered typi-
cally include several options to invest in information generation and evaluation. Monte Carlo 
simulation is considered a good way to address these modeling challenges, but it does not lend 
itself well to optimization problems. This paper presents a model of dynamic hedging aimed at 
optimization and using genetic algorithms and Monte Carlo simulation. This approach offers new 
possibilities for energy investment applications of dynamic hedging based on real options theory.  

The modeling summarized in this study relied on the Excel-based commercial software 
RiskOptimizer for a simple case (with known values) and for a more complex real options case 
involving investment in information. The results from several experimental runs are presented, 
with suggestions for improvement of the software – the strengths and weaknesses of RiskOpti-
mizer are pointed out in this context – and for new directions for research. 

  
Keywords: real options, genetic algorithms, Monte Carlo simulation, optimization under 

uncertainty, economic valuation of projects.  

1. Introduction 
The practical problems associated with the complex dimensionality3 of decisional model-

ing4 incorporating the evaluation of options have directed some recent real options research5 to the 
Monte Carlo simulation approach, due to its modeling flexibility. The major problem is the diffi-
culty of performing optimization analysis together with simulation projections, which is necessary 
for American-type6 options. Among the papers that use new optimization techniques in an effort to 
tackle these difficulties are Cortazar & Schwartz (1998) and, Longstaff & Schwartz (1998), 
Broadie, Glasserman & Jain (1997), and Ibáñez & Zapatero (1999).  

                                                           
1 Ph.D., Pontifical Catholic University, Brazil 
2 Ph.D., University of New Mexico, USA 
3 The so-called “curse of dimensionality” is the exponential computational time explosion associated with the growth of 
problem dimensionality. Some real options papers, such as Dias (1997), consider several sources of uncertainty (economic, 
technical and strategic), but use simplified models to get practical results. 
4 The so-called “curse of modeling” is associated with problem formulation with an explicit system. Changing some as-
pects of the model makes it necessary to change all of the optimization procedure. The use of a simulator to avoid the traps 
of complex modeling is one goal of this paper, accounting for its use of genetic algorithms together with Monte Carlo 
simulation. 
5 See Dias (1999) for a real options literature review and a consideration of recent trends. See Dixit & Pindyck (1994) and 
Trigeorgis (1996) for the general theory of real options and applications. 
6 American options can be exercised before expiration, so there is the problem of finding the optimal earlier. European 
options can only be exercised at the expiration date. 
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This study presents another possibility for a Monte Carlo simulation of real options prob-
lems: the use of an evolutionary computing approach, specifically the use of genetic algorithms 
(GA) as the optimizing tool. The expectation is that initial estimated values with high “fitness” 
will transfer their genetic characteristics to their offspring. It is assumed that high fitness means 
high real options value.  

The use of computational intelligence techniques in real options applications is rare. A 
working paper by Taudes & Natter & Trcka (1996) used neural networks for the purpose of real 
options valuation of a flexible manufacturing system. These authors settled on dynamic program-
ming under uncertainty, with simulated annealing determining the network weights of the neural 
net, which are taken to approximate the real option value function. The authors addressed uncer-
tainty through a Monte Carlo simulation. Such combinations of Bellman’s dynamic programming 
and neural networks have been termed neuro-dynamic programming (for the underlying theory, 
see Bertsekas & Tsitsiklis, 1996). 

The cases examined in this study involve a real option to invest in petroleum field devel-
opment. The case analysis is informed by several papers applying computational intelligence to 
petroleum production problems, for example Rocha & Morooka & Alegre (1996, which applies 
fuzzy logic to the drilling, pumping, and processing of offshore oil, in a project designed to cut 
costs). Bittencourt & Home (1997) applied genetic algorithms to the dynamic valuation of petro-
leum reservoirs. Two cases are explored in the present study, one without information investment 
and a more complex one with such investment.  

The study is divided as follows. Section 2 presents the real options case studies. Section 3 
presents the strength and weakness of the software product RiskOptimizer from a genetic algo-
rithms perspective. Section 4 presents simulations using RiskOptimizer, while Section 5 provides 
the results of the simulation. Section 6 presents conclusions and suggestions based on the forego-
ing.  

2. The Real Options Case: Petroleum Field Development  
An oilfield that has been discovered and delineated remains undeveloped. The estimated 

reserve is 120 million barrels. The investment required to develop1 the oilfield is estimated at US$ 
480 million (all present values). The investment is not obligatory but optional, and this option ex-
pires in two years. Two variants are considered, expiration in ten years and expiration in two years. 
Standard value estimation for the petroleum field is given by the static net present value (NPV). 
The NPV expression can be written as follows: 

 DqPBNVP −= , (1) 

where    q = economic quality of the reserve2, estimated in this instance at 20%; 
P = petroleum price, supposing that the current value is US$ 20/bbl;  
B = reserve size, estimated at 120 million barrels3; and  
D = development costs, assumed to be US$ 480 million. 
(Note that for the base case value given above, the NPV is zero [= 0.2 x 20 x 120 – 480]). 
One may first consider oil prices as the only source of uncertainty, with probability distri-

butions over time as stochastic price fluctuations. For the sake of simplicity, it may be assumed 

                                                           
1 In order to develop the oilfield is necessary to drill development wells, to build/buy/rent a production platform and its 
processes facilities, to launch pipelines, etc.  
2 Introduced by Dias in Stavanger’s Workshop on Real Options, May 1998. The reserve is more valuable as higher its q. 
The value of q depends of several factors: the permo-porosity properties of the reservoir-rock; the quality and properties of 
the oil and/or gas; reservoir inflow mechanism; operational cost; country taxes; cost of capital; etc. For details about q see: 
http://www.puc-rio.br/marco.ind/quality.html 
3 All the oil reserves have associated gas. Consider the 120 million barrels as total equivalent barrels. 
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that oil prices follow Geometric Brownian Motion1 in the form of a risk-neutralized stochastic 
process2 

    ( ) PdzPdtrdP σσδ +−−= 25.0 , (2)  
where r = interest rate, assumed to be 8% per annum (hereafter p.a.); 

δ = convenience yield of the oil, also assumed to be 8% p.a.;  
= volatility rate for oil prices, assumed to be 25% p.a.; and  
dz = Wiener increment =  dt ε  , where ε ~ N(0, 1). 
Given the aforementioned market uncertainty and assuming that the option will take ten 

years to expire (so that there is a large timing flexibility to invest), how much value can be as-
signed to real option rights? What is the decision rule?  

An investment threshold gives the decision rule. The threshold is the critical oil price 
level that renders immediate investment optimal. The threshold level maximizes the real options 
value, i.e., threshold value determines the optimal exercise of the real option. The option exercise 
strategy involves hedging, such that one exercises the option only at or above this threshold level, 
thereby maximizing the real options value. The threshold curve will be estimated by GAs; it is a 
theoretical curve calculated by finite differences, as shown in Figure 1 below (projected using the 
“Extendible” software product [Dias & Rocha, 1998]). 

 
Fig. 1. The Theoretical Threshold Curve Calculated with Finite Differences 

There are at least two ways to use GA to get the threshold optimal level. One is letting 
GA work freely. Another is to approximate the threshold with one or more functions, with or 
without free points at the extremes. By changing the time variable (using time to expiration instead 
of chronological time), several GA experiments modeled the threshold curve with two free points 
and two logarithm functions3. This is illustrated by Figure 2 immediately following: 

                                                           
1 The simulation of a more realistic model is also possible and straightforward. For example the mean-reversion with 
jumps, as in Dias & Rocha (1998). The idea here is the simplicity for comparison purpose.   
2 For a discussion and the discretization of this equation in order to perform the Monte Carlo simulation, see for example 
Clewlow and Stickland (1998, mainly the chapter on Monte Carlo simulation). 
3 For American put, Ju (1998) uses a multipiece exponential function to approximate the early exercise boundary (threshold 
curve). For an American call, exponential approximation is the analogue. 
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Fig. 2. Threshold Approximation with Two Logarithm Functions 

The second variant analyzed is very similar to the first one, but with earlier expiration at 
two years. Reducing the time horizon allowed experimental simulation with greater precision. 

A distinct second case was developed that was rendered significantly more complex by 
incorporating investment in information and revealing the uncertainties associated with two tech-
nical parameters, reserve size (B) and quality (q). The case therefore presents three sources of un-
certainty in all: information costs, reserve size, and quality. 

The information in this case is assumed to cost US$10 million (cost of an information- 
acquisition well1). After the investment in information, there are several possible scenarios for B 
and q (though expected values remain the same as with the previous variations). The information 
acquired is assumed to reveal these scenarios with the following triangular probability distribu-
tions (minimum, probable, maximum):   

B ~ Triang (90, 120, 150) [million barrels]  
q ~ Triang (15%, 20%, 25%) 
These distributions are sufficiently large so that a given investment in information is con-

sidered essential in this particular case. Comparing cases with and without investment in informa-
tion confirms the expectation that investment in information is by far the best course of action. A 
yet more complex case could entail choosing both the optimal time for investment in information 
and the optimal timing of the petroleum field development investment as such.  

3. RiskOptimizer and the Genetic Algorithms  
As previously indicated, this study uses genetic algorithms (GA) in order to optimize the 

real option value. Genetic algorithm computational modeling was developed by John Holland (see 
Holland, 1975); excellent descriptions of GA are found in Goldberg (1989), Davis (1991), and 
Michalewicz (1996). 

There are several applications of evolutionary computation in financial options pricing 
which can be adapted to real options applications. One powerful tool involves the application of 
symbolic regression, which is considered a branch of genetic programming (see Koza, 1992, chap-
ter 10). The work of Keber (1999) is another good example, using symbolic regression to get an 
analytical approximation for an American put option value. Another alternative that could be ap-
plied to options valuation entails solving a stochastic partial differential equation with analytical 
approximations to both threshold value and the option value itself. 

                                                           
1 Lower-cost wells drilled with lower diameter to gain requisite information while preserving the option of identifying 
producer wells. 
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The present study applies GA to the task of estimating the threshold curve of a real option 
application. Customarily, the threshold curve is determined together with the real options value by 
solving a stochastic partial differential equation (PDE). In this study, the GA application projects 
possible threshold curves. For each trial, a Monte Carlo simulation is performed in order to evalu-
ate “fitness.” In GA terms, each trial is equivalent to an organism (or chromosome), and the “fit-
ness” function is the real options value (also called dynamic net present value1). The total number 
of simulations is equal to the number of valid2 “organisms.” For a run using one thousand such 
organisms, with one thousand iterations for each simulation, the equivalence is to a simulation 
with one million iterations, with an associated computational time cost.  

The way selected to set the initial threshold projection (tantamount to an informed guess) 
as well as to run the Monte Carlo simulation was informed in part by Winston (1999), who devel-
oped a case of dynamic hedging using options to make investment decisions in the expansion of a 
gold mine. 

The software utilized was the Excel-based add-in RiskOptimizer, from Palisade. RiskOp-
timizer incorporates and integrates two popular Palisade software packages: @Risk, which per-
forms Monte Carlo simulation, and Evolver, which performs complex optimization using genetic 
algorithms. This section focuses on both the simulation and optimization aspects of RiskOpti-
mizer.  

RiskOptimizer, as Evolver, uses steady state reproduction with parameter one. In other 
words, after the creation of the initial “population” of GA trials, each new solution created in the 
reproduction phase using the genetic operators replaces the worst solution (lower real option 
value).  

Consideration of whether steady-state reproduction is better or worse than generational 
replacement3 is beyond the scope of this paper, but the practical insight given by Davis (1991) is 
very pertinent to an analysis of RiskOptimizer’s performance potential. Davis pointed out that 
steady-state reproduction has been used with success for cases without duplicates. It is a “repro-
duction technique that discards children that are duplicates of current chromosomes in the popula-
tion rather than inserting them into the population” (Davis, 1991, p. 37).  

Unfortunately, RiskOptimizer does not permit the elimination of duplicates, weakening 
the steady state reproduction technique. Without the elimination of duplicates, the user may be 
faced with a premature convergence problem, due the loss of diversification in the population, 
before reaching the optimal solution. Introducing more diversity into the population can reduce the 
GA problem of premature convergence behavior, though still without guarantee of optimality. The 
elimination of duplicates is intended to increase diversification.  

The Figure below illustrates the problem of premature convergence due to the loss of di-
versification. The genes panel (right bottom chart) and the panel of gene values (left bottom chart) 
show that the population retains the same genes. The performance panel (left upper chart) and the 
organisms-in-population panel (right upper chart) indicate that the few remaining organisms are 
“evolving” to become identical genes. 

The obvious recommendation is that the software developer (Palisade) includes, at least 
as a user option, the capability of eliminating duplicates. Even greater flexibility could be attained 
with the capability of setting the maximum duplicates percentage, so that a limited number of du-
plicates would be permitted, with the limit defined by the user.  

 

                                                           
1 The NPV is calculated under uncertainty by running a Monte Carlo simulation, given the optimal exercise of the options 
available ( by exercising the option at or above the threshold line). Therefore, this is a dynamic NPV estimation, in contrast 
with static NPV calculations that fail to consider (a) decisional uncertainty and (b) the timing option. 
2 Valid means “satisfies the restrictions.” For the not-valid organisms, no simulation is performed in the program, saving 
time; therefore, the generation of non-valid organisms is not critical in practice.  
3 Generational replacement means that all the population will be replaced with the new organisms created by the evolu-
tionary process. Some of them could be identical inter-generationally, since in most cases the previous best is preserved. 
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Fig. 3. Premature Convergence by Lost Diversification (case 10 years expiration, two functions) 

As noted by Bittencourt & Home (1997, p.547), some researchers prevent premature con-
vergence in GA simulations by using strategies such as niching (niche-creation), increasing the 
mutation rate, and incest-prevention (limiting endogamous interactions among similar elements). 
RiskOptimizer permits increases in the mutation rate during the optimization process. However, in 
general this device was insufficient if population diversification was insufficient. 

Hybridization or combination of genetic algorithms with other optimization algorithms is 
another suggestion for improvement in the GA simulation performance. One variant is the hybridi-
zation of GA with simulated annealing (SA). The performance of SA is often frustrated by slow 
convergence, but in combination with GA it introduces more diversity into the population, avoid-
ing premature GA convergence1, as well as avoiding the long computation time required by SA 
(see Sait & Youssef, 1999, pp.164, 349-350).  

Another hybrid GA is applied in Bittencourt & Home (1997) to petroleum reservoir opti-
mization; GA is hybridized with the optimization algorithms tabu search (TS) and polytope 
search. Tabu search is a generalization of local search that considers, in addition to an objective 
function value, the given search history, the region being searched, and similar factors (Sait & 
Youssef, 1999, pp. 240-241).  

This approach precludes revisiting the current search region for some finite number of it-
erations, as it provides a mechanism that forces the search into other regions of the domain (Bit-
tencourt & Home, 1997, p.548). Polytope2 search is intended to accelerate search convergence, 
reducing computation time, but it has the drawback of excessive sensitivity to the initial size and 
location of the polytope.  

Another interesting GA hybrid involves both simulated annealing and tabu search, which 
is described as a reasonable combination of local search and global search, with TS incorporated to 
prevent local optima convergence. Here the search domain is globally searched with GA, the GA 
offspring are introduced in the population using as criteria the acceptance probability of a SA, and 
the neighborhood of the accepted chromosome is searched by TS. In a maintenance-scheduling 
problem, the hybrid GA + SA + TS found better results than the pure GA or the hybrid GA + SA 
(see Sait & Youssef, 1999, p.350).  

                                                           
1 An instance might entail improving the convergence of a GA by using the acceptance probability of SA as the acceptance 
criterion of GA’s new chromosomes trials (see Sait & Youssef, 1999, p.349-350).  
2 Polytope is a geometric figure bounded by hyperplanes. In this algorithm, the polytope flips about the centroid towards 
the optimum (see Bittencourt & Home, 1997, pp.547-548). 
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The second problem with steady-state reproduction is the case when the evaluation func-
tion is noisy, as pointed out by Davis (1991). Noisy evaluation means that the fitness function 
(here the simulated real option) returns different values each time the organism is evaluated. Davis 
indicates that, in steady-state reproduction, “a lucky good evaluation for a chromosome will be 
forever associated with it, and, since a good chromosome won’t be deleted from the population 
using this technique, the spurious evaluation will cause the bad genetic material to disseminate 
throughout the population” (Davis, 1991, p.40).  

In the present case, which is less complex than Davis’, the evaluation function is only 
somewhat noisy, due specifically to the precision level specified for the Monte Carlo simulation. 
Simulation takes up most of the computation time in the present study, and increasing precision by 
way of additional iterations can become a very time-consuming process. The Figure 4 suggests one 
of RiskOptimizer’s relative strengths: the comparatively short time spent for each trial1. 

 

 
Fig. 4. Risk Optimizer’s relative strength 

Another GA problem faced with some experiments is the problem of epistasis. This oc-
curs when there are interactions between genes (one gene value affects other gene values), bring-
ing additional difficulties to the search for optimal or near-optimal solutions. Some authors suggest 
a means toward the reduction of the epistasis problem, namely the use of inversion operators, 
which consist of a position-switch for two randomly chosen genes (see Pacheco, 2000, p.3). The 
approach best suited for strong epistasis problems may be the use of so-called “messy” GA, which 
permits the given gene to change its position inside the chromosome, for a more convenient posi-
tion for purposes of crossover operations, tending to preserve good schemata.  

The next Figure presents the problem of evolution to the best solution using RiskOpti-
mizer. The table shows only trials which became a “new best.” Note that after the last “new best,” 
in the 277th trial, more than 300 new trials were performed (for more than 7 hours) without any 
new successes, even with an increase in the mutation ratio (from 1% up to 30%) during the last 

                                                           
1 If 1,000 iterations were not sufficient and more precision were necessary, the required computation time would be expo-
nentially higher and computationally intractable. The evaluation of every alternative in this example with investment in 
information, even with a computer eighty times faster than the one used in the case, would take about 1.5 billion years for 
all alternatives in the search space! GA can be viewed as a global search technique that intends to reduce the search time 
using an evolutionary approach to get a proximate, near- optimal solution.  
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100 trials. This could be an indication of global optimum or could be a “lucky” simulation that put 
iteration number 277 at the top, so that even stronger alternatives did not match the result obtained 
in the 277th case.  

 
Fig. 5. RiskOptimizer Watcher Showing the New Best Occurrence (case with information) 

Even with the limitations of the GA method used by RiskOptimizer, this flexible software 
tool allowed for new approaches to decisional modeling not previously found in the real options 
literature. This point will be revisited in sections 5 and 6. 

4. RiskOptimizer and Monte Carlo Simulation  
In the previous section it was suggested that one problem associated with the steady-state 

reproduction device used by RiskOptimizer is the noisy evaluation of fitness. This section exam-
ines an extension of the noise problem by considering the precision of Monte Carlo simulation in 
combination with RiskOptimizer for the purposes of options valuation.  

Wayne Winston, who has published several books on decision analysis, and who has car-
ried out simulations using Palisade’s products (both @Risk and RiskOptimizer), raised the follow-
ing question in the process of evaluating an European put option: “After 10,000 iterations why [are 
we no closer] to the price of the put? The reason is that this put only pays off on very extreme re-
sults [author’s emphasis]. It takes many iterations to accurately represent extreme values of a Log-
normal variable” (Winston, 1998, p.335). 

 RiskOptimizer, as @Risk, uses a variance reduction1 technique named Latin hypercubic 
sampling. This increases precision as compared with the pure Monte Carlo sampling. Press et al. 
(1992) provide the algorithm for this sampling application, while Moro (1995) undertakes com-
parison of the computational efficiency of Latin hypercubic sampling and the efficiency levels 
characteristic of other techniques. Latin hypercubic is a special type of stratified sampling for 
higher dimensions (see the discussion in Boyle et. al. [1997]). Another variance-reduction tech-
nique that can be combined with stratified sampling is importance sampling, which concentrates 
samples in the area where they are most effective by incorporating a priori information. It is thus 
possible to generate uniformly distributed samples with Latin hypercubic. 

                                                           
1 Variance reduction techniques are tools that use known information about the problem in order to estimate parameters of 
simulated distribution with lower variance (therefore resulting in an improved estimator). Among the best-established tech-
niques are stratified sampling, importance sampling, conditional Monte Carlo, moment-matching, correlated sampling; and 
the reduction of dimensionality. 
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Number Theory can help reduce variance with low-discrepancy sequences1, in so-called 
quasi-random simulation. In this vein, Birge (1995), among others, proposes Quasi Monte Carlo 
(QMC) methods for options pricing valuation with complex contingencies. This alternative relies 
on the numerical properties of special sequences, namely quasi-random numbers or low-
discrepancy sequences2 based purely on numerical (not statistical) analysis.  

Clewlow & Strickland (1998, pp.129-133) present charts with plots comparing random 
and quasi-random numbers. They show clearly that the first one leaves “several ‘clumps’ of points 
close together and empty spaces,” whereas the quasi-random plots “are much more evenly distrib-
uted but still appear somewhat random.” They present the quasi-random Faure3 numbers approach, 
which requires very few iterations for near-zero error rates. Press et al. (1992) present an algorithm 
that generates Sobol’s sequences, while Moro (1995) provides an efficient method to obtain stan-
dard normal sequences from uniform sequences, which permits a more efficient use of Quasi 
Monte Carlo approaches.  

While the anticipated Monte Carlo simulation error is )1(
N

O , in quasi-random se-

quences error generally reduces to O(1/N), with N being the number of observations. This means 
that pure Monte Carlo requires the square of the number of iterations demanded by Quasi Monte 
Carlo to obtain the same error rate. While there are still difficulties attendant to high-
dimensionality cases,4 there is promise in recent research applications of QMC in such instances. 
Willard (1997) demonstrates that in some cases effective dimensionality can be reduced5. Paskov 
& Traub (1995) present an efficient QMC simulation for a 360-dimension valuation of a financial 
derivative (mortgage valuation—cf. Galanti & Jung [1997]). In general, variance-reduction tech-
niques can improve simulation performance (in importance sampling, for example); however, 
some reduction-variance techniques are not suited for use with Quasi Monte Carlo6. 

5. Results: Theoretical versus Genetic Algorithms  
The next Figure presents the problem of optimization in terms of projected levels of pos-

sible threshold curves in relation to the theoretical threshold curve (finite differences). Different 
threshold curves (above and under the theoretical level, with distance from 0% to +or - 30%) were 
simulated and the values plotted in the chart. It should be noted that there is a near-plane region 

                                                           
1“Discrepancy” measures the extent to which the plot points are uniformly dispersed inside a region. With low-discrepancy 
sequences, the given sequence of points remains fairly evenly dispersed throughout the region as points are added (Boyle et 
al., 1997). 
2 The main type is called “Sobol’s quasi-random sequence.” There are many ways of producing quasi-random numbers—
see Clewlow & Strickland (1998, pp.129-133) for a discussion. Birge (1995) prefers Sobol rather than Faure’s quasi-
random numbers, arguing that the second is not as apt for high- dimensionality problems. Brotherton-Ratcliffe (1995) de-
scribes a new technique to generate Sobol’s sequences, claiming that it is faster and more precise. 
3 Willard (1997), however, indicates that Faure sequences are not as accurate and require significantly more computation 
time than Sobol and Halton ones. 
4 Bouleau & Lépingle (1994), Aragão & de La Roque (2000, pp. 4-5) among others, point out that Sobol’s sequence has 
problems with high dimensions. Papageorgiou (1999) indicates that although QMC’s worst-case convergence is (log n)d/n, 
this can be improved with some special integral approximations, with the worst case becoming (log n)1/2/n (both conver-
gence and error). Ökten (1999) used a hybrid Monte Carlo sequence (or mixed sequence) in an application to options pric-
ing, with low-discrepancy sequences for the “low dimensional part” and random vectors for the “high-dimension part.” 
5 Willard (1997) uses the technique of “Brownian bridge,” from a stochastic calculus toolkit. He argues that it substantially 
reduces errors and improves the convergence of price estimates for high-dimensional pricing problems. Morokoff (1997) 
presents two techniques for a 360-dimensional case, generalized Brownian bridge and particle reordering. Acworth et al. 
(1996) uses a technique called principal components analysis with Sobol’s sequences, claiming better results than 
Brownian-bridge. 
6 Galanti & Jung (1997) report studies indicating that antithetic variables and stratified sampling alter the order of low-
discrepancy sequences, and so may not help in simulation performance. 
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close to the optimum value (in red)1. This region is here called an optima region because (given 
the simulation’s degree of precision) every point could be considered an optimum. 

  
Fig. 6. Optima Region for the Real Options Problem (two–year case) 

An interesting feature of this particular chart is found in the regions neighboring the op-
tima region. Considering that there is always some imprecision in the model parameters, and look-
ing at the inclination of the curve plotted here, the higher neighboring region (adjacent to the right) 
is less risky than the lower neighboring region (adjacent to the left) in relation to possible loss of 
value.   

Some results of GA experiments for the ten-year case are presented in the Figure that fol-
lows. There are some cases below and others above the theoretical optimum. Some simulations 

showed GA solutions that are under the theoretical level for a time horizon interval and above the 
theoretical level in the rest of the time horizon (see the f6a case in the figure). Even crossing the 
theoretical optimum curve, the solution was evidently within the just-discussed “optima region.” 

 

 
Fig. 7. Threshold Curves: Theoretical x GAs (ten-year case) 

                                                           
1 This (red) value was simulated (50,000 iterations; ∆t = 0.01 y.) using the theoretical threshold. The correct value (60.17) 
is very close of the simulated (60.23). Due to the range of simulation error, two lower levels (2.5% and 5% below the theo-
retical level) attained slightly better values (60.26, 0.05% higher). 
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The optima region makes the close competition problem even more complicated due the 
noisy evaluation function that derives from simulation precision. This factor changes the fitness 
order of the trials during optimization.  

For the ten-year case, the theoretical real options value is estimated in US$ 96.68 million, 
using the finite differences method1 (and “Extendible” software, see Dias & Rocha, 1998). Several 
GA trials got fitness results in the precision range of the simulation, between US$ 95 million and 
US$ 97 million. The creation of simulation noise in the course of steady-state reproduction in 
RiskOptimizer becomes a practical problem when there is reliance on a low number of iterations 
due to computational time restrictions. 

The more complex case with investment in information uses two years as time to the op-
tion’s expiration. In this case, instead the threshold being tied to the oil price P level, it refers to 
the whole operating project value V (= q P B), a sufficiently high value for exercise of the option. 
For more general modeling, the threshold is normalized as the ratio V/D. The traditional NPV rule 
directs one to invest if this ratio is above 1, whereas the real options threshold will demand a 
higher V/D level in order to proceed.  In the present instance, the threshold curve is not known a 
priori. The Figure below presents the RiskOptimizer summary for the case with investment in in-
formation. The window shows the range of values for all the inputs, and some highlights of the 
optimization operation performed up to that point.  

 
Fig. 8. Summary for the GA Modeling – Case with Information Investment 

Note that the maximum real options value here (US$ 143.566 million) is much higher 
than the comparison value without investment in information about the reserve size and the quality 
of the reserve (US$ 60.17 million). The information in this case is much more valuable than the 
US$ 10 million that it costs to acquire it.  

                                                           
1 Using the analytic approximation considered one of most precise for American options, Bjerksund & Stensland, the value 
is very close: US$ 96.38 million. 
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The Figure below shows the GA results for the case with investment in information (red 
line) and the normalized threshold (in terms of V/D instead of P) of the previous case (i.e., the one 
without investment in information). 

 

 

Fig. 9. The Thresholds Curves with and without Option to Buy Information 

Note that, in light of the information acquired, the petroleum concession owner should be 
more willing to invest in development of the oilfield (due to a lower threshold) than otherwise. 

6. Conclusions and Suggestions  
The foregoing analysis resulted from a genetic algorithm application as an optimization 

tool for dynamic investment decisions under uncertainty, and it afforded new insights about real 
options evaluation not previously addressed in the literature. The close competition of several 
threshold alternative curves drove the search to the “optima region,” within which any one solution 
is indistinguishably close to an absolute-optimum solution. These findings have implications for 
real options evaluations and in general for dynamic hedging and the management of real options 
portfolios. 

Several strengths and weakness of RiskOptimizer software were noted in this paper. The 
most crucial suggestion is the inclusion of an option for the elimination of duplicates, in order to 
preserve population diversification, thereby preventing premature convergence of the GA. Another 
RiskOptimizer limitation concerned the problems associated with efforts to increase simulation 
precision by increasing the number of iterations. Increasing the number of iterations was found to 
bring noise to the evaluation function, making the problem of close competition critical1.  

These caveats notwithstanding, modeling flexibility, an informative and helpful windows 
interface, and other user-friendly features make RiskOptimizer a very good tool for a first-cut 
analysis of complex optimization problems. It would be valuable to continue development of this 
research, using RiskOptimizer but moving to a faster environment (such as C+ programming, for 
instance), and using Quasi Monte Carlo simulation together with variance-reduction techniques, in 
order to get faster and more reliable solutions. In this context, a more specific GA could be devel-
oped, allowing for the use of hybrid genetic algorithms for the modeling of a wide range of dy-
namic optimization problems under conditions of uncertainty.  

                                                           
1 The software review of Bergey & Ragsdale (1999) does not mention the steady-state feature, and so also fails to mention 
the problems associated with duplicates and with noisy functions, even though the review uses Davis (1991) as reference. 
The lead author (Dias) tested Evolver 4.0 (the same optimization tool incorporated in RiskOptimizer) with the De Jong 
functions and with the traveling salesman problem, with good results  
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