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The Basic Idea of Bootstrap Methods 
Jana Kubanová1  

Abstract  
Two methods of bootstrap simulation – parametric and nonparametric – are described in 

this article. Parametric simulation assumes that distribution of random variable X is known. Non-
parametric simulation doesn’t require this assumption. Concrete examples demonstrate both ways 
of simulation.  

 
Key words: Parametric and nonparametric bootstrap simulations, resampling, bias, vari-

ance estimates. 

1. Introduction 
The case when the frequency of random sample is very small is very often in research in 

economics, sciences and technical sciences. Then it is very difficult and untrustworthy to express 
any conclusions about standard errors, hypotheses testing or confidence intervals. We can use the 
bootstrap method based on resampled data in this case. 

The substantial and frequent problem of statistical data analysis is to determine theoretical 
properties of some statistics Θ̂ . In simple cases it is possible to use classical statistical methods. 

But when it is difficult to determine theoretical properties of Θ̂  estimate by exact way then it is 
possible to use the bootstrap method. 

 The bootstrap method was elaborated by Bradley Efron in 1977. This method makes use 
advantage of the high-speed power and number-crunching power of computers. The principle is to 
resample new samples from the original data set with the same rate. This approach involves repeating 
the original data analysis procedure with many replicated datasets. Very important advantage of this 
method is that it allows to construct artificial data sets without making any assumptions about bell 
shaped curves. Problems that can be solved with the help of bootstrap method can be divided into 
two groups that are later called parametric and nonparametric bootstrap (Efron, Tibshirani,1993). 

 2. Theoretical assumptions  
We assume that X = (X1, X2, … , Xn) is random sample from distribution F(x,ψ), belong-

ing to some family of distribution functions ℱdifferentiated with parameter ψ.  

Frequent object in view is to determine the properties if statistics Θ̂  = Θ̂ (X1, …, Xn). 
When the data are obtained from distribution F, we indicate the distribution function of statistics 
Θ̂  Gn(x,F) = P( Θ̂  < x). Indication Gn(x,F) expresses that distribution function G of statistics Θ̂  

is determined from n randomly selected values of random variable X with distribution function F. 
Generally function Gn(x,F) depends on parameters of distribution F. In case of pivot statistics Θ̂  
the distribution function isn’t dependent on these parameters.  

Asymptotic theory is one of common classical methods of distribution function Gn(x,F) 
estimate. The asymptotic approximation enables to substitute the unknown distribution function Gn 
with known function G∞. The estimates in econometric applications aren’t in principle piv-
otal. Distribution of them usually depends on one or more unknown parameters. Bootstrap method 
provides one alternative approximation of distribution of statistics Θ̂ (X1, …, Xn). Unknown dis-

tribution function F is replaced by known estimate that is indicated F̂ . 
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When bootstrap methods are applied, two estimates of distribution function are differenti-
ated and similarly two bootstrap simulation techniques are used. Following paragraph describes 
how the distribution function was obtained, we use special signification for it. 

2.1. The parametric estimate of distribution function F 

Let’s suppose that for distribution function F of random variable X holds true 
F(x) = F(x,ψ) for some unknown parameter ψ, that is consistently estimated by statistics ψ̂ . If the 

function F(x,ψ) is the continuous function of parameter ψ, then F(x, ψ̂ ) → F(x,ψ) for n→ ∞. The 

distribution function F̂  = F(x, ψ̂ ) obtained in this way is signified ψ̂F  and called the parametric 
estimate of distribution function F.  

2.2. The nonparametric estimate of distribution function F 

When the distribution function F is unknown we estimate this distribution with empirical 
distribution function F̂  that is indicated Fn. It holds: 
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Function Fn is called nonparametric estimate of distribution function F.  
No matter how the estimate F̂ of distribution function F was obtained, the bootstrap esti-

mate of distribution function Gn(x,F) is the function Gn(x, F̂ ). But we often fail to find the function 
Gn(x, F̂ ) by analytical way. Bootstrap method enables to perform the approximation of distribution 
function F with function F̂  and consequently to estimate the distribution Gn(x,F) of the statistics Θ̂  
with function Gn(x, F̂ ). As the functions F̂  and F aren’t identical then the functions Gn(x, F̂ ) and 
Gn(x,F) are different except for the case when Θ̂  is the pivotal statistics. That is why the bootstrap 

estimate Gn(x, F̂ ) is only approximation of distribution function Gn(x,F) of the statistics Θ̂ . 

 3. Parametric bootstrap simulations  
3.1. Principle of parametric simulations 

Let’s assume that X is a random variable with known distribution function F, X = (X1, X2, … , Xn) 
random sample from this distribution with distribution function F and ψ is some parameter of distribution of 
random variable X. ψ̂  is the estimate of parameter ψ that was obtained from random sample X1, X2, ... Xn.. 

Parametric estimate of distribution function F is its parametric estimate F̂  = ψ̂F . New random samples are 

obtained when values of random variable with ψ̂F  distribution are generated. This way of new samples 

generation is called parametric simulation. The model based on function ψ̂F is called parametric model. 
Technique of parametric simulations: 
• Simulate random sample X*= (X1

*, X2
*, ... Xn

*) of rate n from distribution ψ̂F .  

• Calculate statistics Θ̂ * ≡ Θ̂ *(X1
*, X2

*, ... Xn
*). 

• Repeat first and second items and use results for next calculations.  
Indication * is used to express the reality that relevant variable relates to the model ψ̂F . 

For example X* means that distribution of this random variable is equivalent with model ψ̂F .  
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3.2. Moments estimates 

When the statistic of interest Θ̂ is calculated from a simulated dataset, we denote it Θ̂ *. 

From R repetitions of the data simulation we obtain Θ̂ 1
*, …, Θ̂ R

* statistics. Properties of Θ̂  are 

then estimated from Θ̂ 1
*, … , Θ̂ R

*.  
The moment estimates will be realized in following way: 
The estimator of bias of Θ̂   

 b(F) = E( Θ̂ ⎥F) - Θ, 
is statistics 

B = b( ψ̂F ) = E( Θ̂ ⎥ ψ̂F ) – t = E* ( Θ̂ *) – t 
(Peracchi, 2000) 

Distribution function F is estimated with function ψ̂F , and then estimate of bias is  
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 (Peracchi,2000) 
where t is the concrete value of statistics Θ̂ , calculated from original dataset. Θ̂ - t is the 

simulation analogy of Θ̂  - Θ. 

Variance σ2 = D( Θ̂ ⎥F) of random variable Θ̂  is estimated with statistics 
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(Peracchi,2000) 
Similar estimators can be derived for other moments. These empirical approximations are 

justified by the law of large numbers.  

3.3. Example – simulation from normal distribution 

Let’s assume that x1, x2, …, xn is some realization of random sample from N(μ, σ) distribu-
tion. When parameter μ is estimated with sample average x  and parameter σ – with sample stan-

dard deviation ∑
=
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n

i
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n
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2)(1
, then the parametric bootstrap replication of sample x1, x2, …, 

xn is random sample **
2

*
1 ,...,, nxxx , that comes from N( x ,s) distribution. We obtain R realizations 

of bootstrap samples after R bootstrap replications.  

Let’s indicate bootstrap average *X = ∑
=

n

i
iXn 1

*1
, where **

2
*
1 ,...,, nXXX  is random sample 

from N( x ,s) distribution. Random variable *X  is normally distributed with mean x  and standard 

deviation 
n
s

. Bootstrap estimate of bias of sample average *X  is the statistics BR = ∑ −
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(Davison, Hinkley,1997). 
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Random variable ∑
=

R

r
rXR 1

*1
 is approximately normally distributed with mean x  and 

standard deviation Rn
s2

. Then the bootstrap bias ∑
=

R

r
rXR 1

*1
- x  is approximately normally dis-

tributed with mean 0 and standard deviation Rn
s2

 as well. 

We are interested in bootstrap bias distribution and mean of bias E*(BR) distribution, 
also BR - E*(BR) in the following step. This bootstrap bias is obtained from R bootstrap replica-

tions. But E*(BR) = 0 in our case. Therefore BR -E*(BR) = BR = xXR
R

r
r −∑

=1

*1
. 

Random variable BR is approximately normally distributed with mean 0 and standard deviation 

Rn
s2

. Then random variable BR - E*(BR) is also approximately normally distributed with mean 0 and stan-

dard deviation Rn
s2

. This random variable exactly expresses the estimation of an error that is made after 

finite number of bootstrap replications. After normal transformation Rns
BR  we obtain normally distrib-

uted random variable with mean 0 and standard deviation 1. Interval estimate of variable E*(BR) is then  

<+ α Rn
szBR  E*(BR) < 

Rn
szBR α−+ 1 , 

where zα is quantile of N(0,1) distribution; zα = ⎟
⎠
⎞

⎜
⎝
⎛ α

Φ −

2
1 . We can estimate by means of 

this relation extent of the error that we can cause at given number R of bootstrap replications, at 
given extent of n of original random sample and at chosen value of α. 

To be able to compare the results of simulations with real values we assumed, that X1, X2, 

…, Xn is random sample from N(μ, σ) distribution. At fulfilled presumption of normal distribution 
of variables Xi, i = 1, …, n, it is possible to calculate in the exact way the theoretical value of bias 

and variance of average . These values are 0 and 
n

2σ
 by turns.  

Table 1 shows the method of parametric simulations at the example of data from 
N(100,10) distribution. The concrete values of random sample realization are 109, 80, 97, 115, 
113, 83, 89, 110, 98, 114, 95, 100, 105, 112, 99. These values are introduced in the first column of 
the table. Following nine columns show simulated values of random sample, rate of each of these 
samples is identical to rate of original random sample. These simulated samples come again from 
normal distribution with estimated parameter x =101,267 and s = 10,847. These simulated sam-
ples enable us to estimate parameters and results can be used for next calculations. 

To compare results of parametric simulations, we used two normally distributed random 
samples: the first one with mean 100, standard deviation 10 and size 15 and the second one with 
mean 0, standard deviation 1 and size 15 to illustrate solved problem. 10 000 bootstrap replications 
were made for each of above samples and basic statistical characteristics were computed. 

These characteristics are presented in Table 2. It is visible that results obtained after 10 000 
bootstrap parametric replications are “closer” to the real parameters μ and σ of original normal dis-
tribution than results obtained on the base of random sample from this normal distribution. 
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Table 1 
Parametric simulation 

Original 
data 

1 
simulation 

2 
simulation 

3 
simulation 

4 
simulation 

5 
simulation 

6 
simulation 

7 
simulation 

8 
simulation 

9 
simulation 

109 116,552 111,248 101,449 92,454 102,736 84,239 120,159 104,762 91,297 
80 107,456 93,269 112,719 95,816 118,465 86,591 115,768 98,795 84,646 
97 97,026 90,843 101,826 100,452 65,183 93,034 93,477 96,981 98,727 

115 95,409 99,438 99,603 98,760 63,181 100,595 80,231 100,052 110,125 
113 97,782 103,790 95,423 98,941 108,665 100,431 101,741 117,758 77,064 
83 96,492 107,183 115,801 94,384 111,088 122,378 112,977 116,095 84,694 
89 89,235 98,433 108,453 116,890 82,395 101,000 111,804 105,073 103,552 

110 112,429 114,113 117,733 90,943 92,132 97,753 102,115 100,862 92,745 
98 99,070 101,942 103,745 88,700 103,963 92,489 104,074 77,667 76,697 

114 104,879 104,497 92,209 99,492 91,969 99,681 107,494 119,469 102,898 
95 111,479 85,621 103,537 99,726 89,840 103,731 88,210 107,638 100,003 

100 120,649 97,936 93,525 102,964 102,539 109,414 101,412 89,768 103,873 
105 76,794 97,471 111,277 108,909 111,856 88,535 91,839 103,767 111,609 
112 111,465 95,953 115,436 77,358 94,297 100,911 101,214 92,962 107,961 
99 126,222 84,854 105,237 93,610 93,622 97,758 80,513 102,767 121,045 

 

Table 2  
 Estimated parameters – parametric bootstrap 

Parameter N(100, 10) distribution N(0, 1) distribution 

x  101,267 0,1007 

s2 117,662 1,0614 

*
Rx  101,238 0,0982 

*2
Rs  109,947 0,9971 

 
Figures 1 and 2 show the results of several simulations, changes of bias with increasing 

number of bootstrap replications at sampling from N(101,267; 10,847) and N(0,1007; 1,030) dis-
tributions. The problem is demonstrated at 5 repetitions of 2000 replications. Empirical biases 
were calculated for each value of R. We can note how the variability decreases as the simulation 
size increases and how the simulated values converge to the exact value. To answer the question, 
how many bootstrap replications are needed, Figures 1 and 2 suggest that R = 400 bootstrap repli-
cations could be adequate. Values of bias don’t markedly change for larger values of R.  

 
 

 

 Fig. 1. Sampling from N(101,267; 10,847)   Fig. 2. Sampling from N(0,1007; 1,030) 
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4. Nonparametric bootstrap simulations 
4.1. Principle of nonparametric simulations 

In case of nonparametric simulation we assume, that X = (X1, X2, … , Xn) is random sam-
ple from distribution with unknown distribution function F. Empirical distribution function Fn is 
used for estimate of unknown distribution function F. Application of this distribution function is 
analogical to parametric model.  

Realization of further samples are obtained from digital data (originally measured) 
x1, x2,…, xn that way that we apply random sample with replacement of rate n. That is why random 
variables Xi

* have really distribution Fn. We use indication Xi
* for simulated variable Xi, n-tuple 

X1
*, …, Xn

* is random sample from Fn distribution. New concrete samples rise from original data 
by original data resampling (random reordering and confusion). This technique is called nonpara-
metric simulation (nonparametric bootstrap).  

4.2. Moments estimates 

Following consideration can be used in connection with theoretical calculation:  
The estimate of parameter Θ is random variable Θ̂ . We obtain the concrete value t of 

random variable Θ̂  from concrete realization of random sample. Both value t of statistics 

Θ̂ and empirical distribution function depend on values of random sample x1, x2,…, xn. The value t 
can be considered as function of empirical distribution function Fn. This relation can be expressed 
t = g(Fn), where g is the relevant function. Relation t = g(Fn) expresses the way how to determine 
the value of t on base of empirical distribution function Fn. The elementary examples of such func-
tions are terms for mean and variance calculation, that are generally defined in the following way:  

EX = g(F) = ∫
∞

∞−

x dF(x) and DX = g(F) = ∫
∞

∞−
− 2)( EXx  dF(x) . 

If we substitute the distribution function F in relation EX = g(F) = ∫
∞

∞−
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cal distribution function Fn, we obtain estimate for mean  
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(because generally holds true ∫
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The similar relation can be found for variance estimate.  
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4.3. Example 

To verify theoretical results, we assume, that x1, x2, …, xn is some concrete realization of 
random sample from N(μ, σ) distribution and F̂  is the empirical distribution function of this 
sample. The random sample from distribution F̂  is marked **

2
*
1 ,...,, nXXX . The average of this 

sample is marked ∑=
=

n

i
iX

n
X

1

** 1
. For its mean holds true: 
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because all values in random sample have the same probability n
1

.  

Analogous to variance 
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When we realize R nonparametric bootstrap replications of random sample from distribu-
tion F̂ , we indicate relevant averages niX i ,...,2,1,* = . 

The bootstrap estimate of bias of average X is the statistics ∑ −=
=

R

r
rR xX

R
B

1

*1
 (Davi-

son Hinkley,1997). 
In case of nonparametric bootstrap we are able to calculate mean and variance. While us-

ing terms (1) and (2) we obtain for these variables terms: 
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The term 4 can be used for standard error estimation at given size of random sample and 
number of bootstrap replications R.  

The concrete example of nonparametric simulations is shown in Table 3. The original re-
alization of random sample is in the first column of the table. The same probability n-1 of each 
value is assumed. It is 0,0667 in our concrete case. These values are stated in the second column of 
the table. Next nine columns show simulated samples with rate n =15 as well. Seeing that sam-
pling with replacement is realized, individual values can repeat in the random sample or they can’t 
be in this sample at all. On the base of samples obtained in a described way we can estimate pa-
rameters or express further statistical conclusions. 
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Table 3 

Nonparametric simulation 

Original 
data n

1
 

1 
simulation 

2 
simulation 

3 
simulation 

4 
simulation 

5 
simulation 

6 
simulation 

7 
simulation 

8 
simulation 

9 
simulation 

109 0,0667 98 95 100 115 89 97 98 113 109 
80 0,0667 89 83 112 99 114 97 110 89 113 
97 0,0667 113 109 89 89 110 113 89 89 113 
115 0,0667 105 112 97 114 114 100 109 110 100 
113 0,0667 114 109 98 100 114 95 99 105 115 
83 0,0667 113 114 83 112 97 97 105 89 89 
89 0,0667 98 100 97 115 112 83 115 89 112 
110 0,0667 99 98 98 105 83 83 112 80 113 
98 0,0667 80 97 97 105 97 115 113 83 115 
114 0,0667 114 114 95 83 80 115 97 110 113 
95 0,0667 115 115 95 98 98 89 80 98 115 
100 0,0667 110 99 100 98 83 112 95 95 98 
105 0,0667 109 99 114 89 80 105 114 109 112 
112 0,0667 89 89 105 83 113 113 110 95 99 
99 0,0667 83 83 109 110 114 89 112 105 113 

 
To compare results of nonparametric simulations and to verify the features of bootstrap 

bias estimate, we used two samples of 15 data, where the original samples were generated from 
normal distribution. The first original sample was generated from N(100,10) distribution and the 
second one from N(0,1) distribution. The sample average x  and sample variance s2 are presented 
in Table 4. We continued in calculation as though we have never known the distribution of original 
dataset. Bootstrap estimates of these sample statistics were calculated on base of 10 000 replica-
tions of random sample and they are stated in Table 4 as well. We can see similarly to parametric 
bootstrap that estimated statistics from 10 000 bootstrap replication are “closer” to values of origi-
nal distribution than values estimated from original sample. 

Table 4 

 Estimated parameters – nonparametric bootstrap 

Parameter N(100, 10) distribution N(0, 1) distribution 

x  101,267 0,1007 

s2 117,662 1,0614 

*
Rx  101,233 0,0977 

*2
Rs  110,156 0,9908 

 
Figures 3 and 4 show relation between nonparametric bootstrap bias estimate and number 

of R simulated samples. Five repetitions each at 2000 replications [original samples were from 
N(100,10) distribution and from N(0,1) distribution respectively] were generated. Figures 3 and 4 
suggest, if R >600 replications then the values of bias estimate differ in a minimal way. 
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Fig. 3. Nonparametric bootstrap – bias   Fig. 4. Nonparametric bootstrap – bias 

5. Conclusion 
The basic differences of described approaches are as follows: 
At parametric bootstrap we know probability model and thereby exact distribution of 

some important statistics. This knowledge can be used at confidence intervals construction, hy-
pothesis testing and in further statistical analyses.  

At nonparametric bootstrap any assumptions about distribution model aren’t determined. 
It is possible to realize a lot of simulations that help to determine the properties of random variable 
Θ̂  and even to estimate its distribution.  

The difference in parameters estimates is the following: 
Mean estimate in case of normal distribution – the difference between parametric and 

nonparametric approach is 0,005 in both cases. It can be considered as insignificant. 
Variance estimate in case of normal distribution – the difference between parametric and 

nonparametric approach is 0,2090 at N(100, 10) distribution and 0,0063 at N(0,1) distribution. 
It is possible to state, that estimates of parameters obtained after 10 000 bootstrap replica-

tions were in all cases “closer” to values of original parameters than estimates obtained only from 
15 values of original sample. 

Number of bootstrap replications necessary for bias estimate: 
It was found out in presented examples that it is necessary to make 400 parametric boot-

strap replications and 600 nonparametric replications to obtain relevant results. The values of es-
timated bias didn’t improve, when more replications were made. 

References  
1. Davison A.C., D.V Hinkley. Bootstrap Methods and their Application. – Cambridge: 

Cambridge University Press,1997. – 575 pp. 
2. Efron B., R.J. Tibshirani. An Introduction to the Bootstrap. New York: Chapman & Hall, 

1993.- 436 pp. 
3. EFRON B. More efficient bootstrap computations //Journal of the American Statistical 

Association, 1990. – No 409. – pp. 79-89. 
4. EFRON,B. Bootstrap methods: Another look at the jackknife //Annals of Statistics, 1979. 

No. 7, pp. 1-26. 
5. LINDA B. The Error in Bootstrap Methods //Proceedings of 3rd Scientific Colloqium, 

Prague, 2001. Institute of Chemical Technology, Prague, pp. 180-185.  
6. LUNNEBORG C.E. Data Analysis by Resampling and Applications. – Duxbury: Dux-

bury Press, 2000. – 568 pp. 
7. PERACCHI F. Econometrics. – Chichester: John Wiley & Sons, Ltd, 2000. – 679 pp. 


