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Abstract 

Are R&D firms more efficient than non-R&D firms? This study employs a two-step switching stochastic frontier 
approach to examine the RD-efficiency nexus. Different from previous studies, this approach corrects the endogenous 
R&D choice effect in erecting R&D and non-R&D firms’ production frontiers and then estimates their technical 
efficiency and determinants of inefficiency. Using a sample of 7,590 Taiwanese electronics firms, our empirical works 
show R&D firms, on average, have a higher technical efficiency than non-R&D firms under the conventional setting. 
While this result reverses as the endogenous R&D choice effect is considered, pointing out the importance of 
endogenous R&D choice in examining the RD-efficiency link. Moreover, R&D firms are found to have a higher 
technology frontier than non-R&D firms, indicating the importance of R&D in promoting technological competence. 
Finally, the positive contribution of R&D activity to production is mainly sourced from accumulated R&D capital 
rather than current R&D outlay.  

Keywords: efficiency, R&D, stochastic frontier analysis, switching regression. 
JEL Classification: L23, O33. 
 

Introduction© 

Over the past decades, endogenous growth literature 
has stressed the role played by innovation in 
promoting economic growth. From micro-level 
perspective, R&D investment is one of the 
important strategies to raise a firm’s technological 
capability and productivity. While the positive 
impact of R&D on productivity is widely 
recognized in existing literature1, the R&D-
efficiency connection is less well understood.  

How does R&D affect a firm’s technical efficiency? 
It depends on the relative strength of two effects: 
efficiency might be raised through “productivity 
enhancement effect” and lowered through 
“technology enhancement effect”. Firms engaging 
in R&D to develop new products or new process 
can increase their sales or lower production costs, 
resulting in a higher productivity. From the static 
viewpoint that technological frontier is fixed, the 
positive linkage of R&D to productivity 
accompanies the interchangeable notion that R&D 
has a positive contribution to technical efficiency. 
This is the so-called productivity enhancement 
effect. On the other hand, R&D is the main source 
of technical progress, suggesting R&D can increase 
the production frontier curve facing the R&D firm, 
that is, an upward shift in production frontier. 
Although R&D can increase firms’ productivity, 
their technical efficiency may even lower if the level 
of productivity increase is lower than the frontier 
improvement. Therefore, the technology 
enhancement effect may have a negative efficiency 

                                                      
© Chih-Hai Yang, Ku-Hsieh Chen, Yi-Ju Huang, 2009. 
1 The firm-level evidence on the relationship between R&D and 
productivity, please refer to Wieser (2005) for a comprehensive survey. 

effect on R&D. The two effects discussed above 
provide some guidance on the empirical R&D-
efficiency nexus: when the R&D activity becomes 
more productivity enhancement oriented, a 
positive R&D-efficiency nexus would be 
revealed. Once the R&D activity inclines to be 
more technology enhancement oriented and a firm 
cannot apply the newly developed technologies to 
production in a timely manner, the efficiency 
measured as the relative position from actual 
production point to the frontier would be lower. 

Empirical studies on the R&D-efficiency nexus 
are limited but growing. Dilling-Hansen et al. 
(2003) adopted the stochastic frontier approach 
(SFA) model to examine the effect of R&D on 
technical efficiency in Danish firms and found 
R&D-active firms (R&D firms) are significantly 
more efficient than non-R&D active firms (non-
R&D firms). However, the linkage might be 
insignificant in some cases, since the short-term 
effect of current investment in R&D is hard to 
prove. This positive association between R&D and 
efficiency is also found in Aw and Batra (1998) and 
Wu et al. (2007). Alternatively, some studies 
suggest R&D activity would not necessarily 
positively relate to firms’ efficiency (Ferrantino, 
1992; Perelman, 1995; Kim, 2003) using the same 
estimation approach.  

Although the real effect of R&D on technical 
efficiency has attracted increasing empirical 
studies, many ambiguities and uncertainties 
remain in the literature, suggesting the need for 
future empirical works. More importantly, there 
are several failings that are not well dealt with in 
previous works. First, the irrelevance of R&D 
activity and efficiency remains ill-interpreted, 
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because the relative importance of productivity 
enhancement effect and technology enhancement 
effect is not clarified clearly. Second, the apparent 
problem of endogenous R&D choice was not well 
considered in previous studies, suggesting the 
inference in the relation between R&D and 
efficiency is biased. Third, in virtue of the fact that 
R&D and non-R&D firms are assumed to operate 
under the same production frontier, once the 
identical frontier is enhanced by R&D firms, all the 
non-R&D firms’ efficiency measures should be 
lowered immediately. However, whether R&D and 
non-R&D firms can be strongly assumed to act 
under the same production frontier is problematic. 
Lau and Yotopoulos (1989) pointed out, when 
certain distinct objective conditions are imposed on 
different groups of firms, the firms in different 
groups would not operate under an identical frontier. 
Those conditions depend on specific circumstances, 
such as the technological environment. Faria et al. 
(2005) have highlighted that technological 
flexibility is important in explaining differences in 
efficiency, implying that the technological frontier a 
firm faces might be the result of endogenous choice 
on technology adoptions. 

To tackle these perplexities, this study attempts to 
research the R&D-efficiency connection, starting 
from three distinct perspectives. First, the decision 
on R&D activity should be made according to their 
own comparative advantage for the rational and 
profit-maximizing firms. That is, a firm will engage 
in R&D when the expected benefit is expected to be 
larger than the cost. For the non-R&D firms, R&D 
activity may be considered their comparative 
disadvantage, while other strategies would be the 
more preferred alternatives for preserving 
efficiency. Therefore, the decision to undertake 
R&D activity for a firm would refer to an issue of 
endogenous selection. R&D activity might improve 
firms’ efficiency, while it should be presumed that 
R&D firms would be not necessarily more efficient 
than non-R&D firms, after considering the 
endogenous effect of the R&D decision.  

Second, previous empirical literature regresses the 
technical efficiency (or inefficiency) on R&D 
variables (that is: R&D dummy or R&D intensity) 
to explore the RD-efficiency nexus. Such a 
specification implies R&D investment is regarded as 
one of firm-specific characteristics and this variable 
captures only the short-term effect of R&D 
investment. Recently, the endogenous growth theory 
stresses knowledge accumulation as a vital source of 
economic growth; the R&D activity is also 
commonly recognized as one of most critical 
mechanisms in forming new knowledge. Based on 

the properties of accumulation and lag inherently in 
R&D activity, it becomes more popular in empirical 
studies to regard R&D as one type of capital in 
production function (for example, Adams, 1999; 
Hall and Mairesse, 1995). Thus, different from 
previous studies, it is preferred to consider the R&D 
capital in constructing the production function and 
the R&D intensity in the inefficiency regression in 
our empirical works. This consideration would be 
helpful to clarify the long- and short-term effects of 
R&D activity on technical efficiency. 

Third, it is reasonable to believe the R&D and non-
R&D firms do not operate under an identical 
technological frontier and use the same production 
technology. Beside the possible differences in 
economic circumstances between the two firm 
groups1, the argument for the separate frontier is 
quite obvious because the factors comprising the 
production functions include the intangible R&D 
capital for R&D firms, but do not for non-R&D 
firms. R&D activity involves the processes of trial 
and the basis for creating new know-how in using 
inputs or innovation. It inherently implies the cost 
structures and output elasticities of factors (such as 
capital and input) for R&D firms would differ from 
non-R&D firms2. Thus, the latent risk might be 
embedded in econometric methods of an empirical 
study if the separate frontiers are not considered in 
constructing production functions (Orea and 
Kumbhakar, 2003). Therefore, a set of econometric 
methods which carefully and properly consider the 
endogeneity of the R&D decision and the separate 
estimations of production functions are particularly 
desired.  

Based on these considerations, this paper aims to 
provide new empirical evidence on the R&D-
efficiency link using a cross-sectional plant-level 
data of Taiwan’s electronics firms. Different from 
the conventional approach, this study employs a 
two-step switching stochastic frontier approach 
which enables us to correct the latent endogenous 
R&D effect in building R&D and non-R&D firms’ 
production frontiers to estimate their technical 
efficiency, while inspecting the determinants of 
technical efficiency simultaneously. Further, in view 
of the separate frontiers, comparing firms’ 
efficiency across frontiers is limited but emerging. 

                                                      
1 In Lau and Yotopoulos (1989, p. 242), it was pointed out that when 
certain distinct economic circumstances are imposed on different groups 
of firms, the firms in different groups would not operate under an 
identical frontier.   
2 Li et al. (2002) also argued that both the firms’ capital elasticity and 
labor elasticity should be affected by R&D activity and specified the 
technological parameters of the input factors in their stochastic 
production function model are functions of R&D expenditure.   
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An ‘adjustment factor’ is thus introduced for 
disentangling the constraint1. The empirical results 
find: (i) R&D firms overall tend to show a higher 
technical efficiency than their non-R&D 
counterparts without considering the endogenous 
R&D choice, while this result reverses after 
controlling for the endogenous R&D effect. It 
implies R&D firms are not necessarily more 
efficient, depending on the relative strength of 
productivity enhancement effect and technology 
enhancement effect. (ii) Even though R&D firms are 
not more efficient, they are actually found to have a 
higher frontier than non-R&D firms, supporting the 
importance of R&D in promoting technological 
progress; and (iii) the positive contribution of R&D 
activity to technical efficiency is mainly soured by 
R&D capital accumulation, but the effect of current 
R&D investment is the reverse. 

The rest of this paper is organized as follows: the 
econometric specifications and the data source and 
variables constructions, including the variables in 
production function and the possible influences of 
technical efficiency are introduced in section 1. 
Section 2 presents the analyses of the empirical 
results. Conclusions are presented in the final 
section. 

1. Empirical specifications, data and variables 

1.1. Specifications of empirical models. Based on 
the original idea of Farrell (1957), the technical 
efficiency of firms can be measured by a radial 
distance function represented as the ratio of actual 
output relative to the output level on the production 
frontier. In this study, we employ the SFA model 
developed by Aigner et al. (1977) and Meeusen and 
van den Broeck (1977) with a translog form. 
Following the conventional approach that treats 
R&D and non-R&D firms using the same 
technology and operating under an identical frontier, 
the natural logarithmic form of production frontier 
and efficiency measures can be specified as: 

0
1ln ln ln ln
2i j ij jk ij ik i ij j k

Y X X X U Vα α α= + + − +∑ ∑∑ .   (1) 

In equation (1), Yi represents the output of firm i; Xi 
denotes the input vector, while the subscripts j and k 
index input factors (that is: capital, labor or R&D 
inputs). These variables are all taken in the 
logarithmic form. Moreover, Vi is assumed to be a 
stochastic variable and be independent and 
identically distributed as N (0, σv

2). Using the setting 

                                                      
1 The stochastic metafrontier model developed by Battese et al. (2004) 
recently provides an alternative approach by which comparable 
technical efficiencies can be estimated. 

of Battese and Coelli (1995), Ui represents the 
technical inefficiency of firms. It is assumed to be 
independent of Vi and be a non-negative random 
variable that is independently distributed as 
truncations at zero of N (mi, σu

2) distribution. 

i im Zψ= ,                                                                (2) 

where2 term Zi represents a vector of possible 
determinants of technical efficiency and ψ denotes 
the coefficient vector. Equation (2) is the so-called 
inefficiency regression and we can calculate a firm’s 
technical efficiency (TE) as TEi = exp (-Ui). 

As discussed above, it is inappropriate to estimate 
an identical frontier function encompassing every 
firm when firms use different technologies within an 
industry. Due to the differences in technological 
regimes that originate from the nature of relevant 
knowledge bases, R&D and non-R&D firms use 
different technologies and operate under distinct 
frontiers. To reduce the risk of misspecification, the 
common procedure is to first sort the firms into 
certain groups and then estimate the frontier 
functions for the groups separately. However, it is 
also problematic as this procedure does not use 
information contained in one class to estimate the 
technology of firms that belong to other classes, if 
these firms are coming from the same industry and 
share some common features (Orea and Kumbhakar, 
2003). To correct the problem, a two-step approach 
combining the switching regression with the 
stochastic frontier production model is introduced in 
this study3. The first step is to estimate the 
endogenous choice on R&D and the second step is 
to estimate technical efficiency for R&D and non-
R&D firms, controlling for the potential influence of 
R&D choice. 

Considering a random sample of N firms that contains 
M R&D firms and N-M (N>M) non-R&D firms, we 
define the R&D choice undertaken by firm i to be a 
dichotomous outcome C that is given by: 

⎩
⎨
⎧

=
otherwise 0,

firm D & R a is i firm if 
Ci

,1
                       (3) 

where Ci signifies the firm categories: R&D and 
non-R&D firms. Suppose the decision of engaging 
in R&D activity is determined by a series of firm- 

                                                      
2 Such a specification which estimates the production function and the 
inefficiency regression simultaneously refers to the single-stage 
estimation procedure proposed by Battese and Coelli (1995).  
3 There is also literature developing a single-stage approach combining 
the latent class structure and the stochastic frontier approach, without 
the need for the a priori sample separation information (see Kumbhakar 
and Tsionas, 2006; Orea and Kumbhakar, 2003; Greene, 2002). 
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and industry-specific characteristics (Wh), Ci can be 
specified as: 

2,   ~ (0, )i h ih i ih
C w W and Nξ ξ σ= +∑ .               (4) 

According to Heckman (1979), after estimating the 
equation (4) with the probit model, the selectivity 
terms (inverse Mill’s ratio) for R&D and non-R&D 
firms can be respectively calculated as: 

^ ^
( ) ( )RD

i i iS C Cφ= Φ ,                                               (5) 

and ^ ^
( ) 1 ( )NRD

i i iS C Cφ ⎡ ⎤= − Φ⎢ ⎥⎣ ⎦
,                              (6) 

where terms Φ and φ are cumulative and the 
density functions of the standard normal 
distribution, respectively.  

In the second step, the stochastic frontier 
production models for groups of R&D and non-
R&D firms can be specified as: 
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Equations (7) and (8) are the separate production 
frontier for R&D and non-R&D firms, which also 
considers the selectivity terms of the two firms 
groups in the production functions to correct the 
effect of endogenous R&D choice on technical 
efficiency. In this specification, one important point 
is such a specification implies the operational 
decisive stages of firms associated with R&D choice 
and efficiency are not simultaneous but recursive. In 
other words, it is assumed firms first make R&D 
choices according to their comparative advantage 
and the production activities are operated under the 
determined R&D choice. Therefore, the firms’ R&D 
choice is regarded as one predetermined variable of 
technical efficiency in this study.  

More importantly, the direct comparison of 
efficiency measures for firms using different 
technologies and producing under different frontiers 
is inappropriate. For disentangling the constraint, we 
introduce an adjustment factor (AF) from Aw and 
Batra (1998) as follows: 

NRD RD
NRD i i

i NRD NRD
i i

xAF
x

α
α

×
=

×
.                                        (9) 

Clearly, the adjustment factor represented as 
equation (9) is for considering the position of the 
production frontier of R&D firms relative to non-
R&D firms. The idea is to calculate the extra value 
added that can be generated by non-R&D firms if 
they combine the R&D firm’s technologies with their 
own inputs in production. Then, this predicted value 
added is compared with that generated by the non-
R&D firms using their own technologies and 
inputs. We can therefore calculate the adjusted 

technical efficiency (ATE) for non-R&D firms as 
follows: 

NRD NRD NRD
i i iATE TE AF= × .                               (10) 

1.2. Data and variable constructions. The 
stochastic production frontiers for all electronics 
firms in Taiwan are estimated using cross-sectional 
data for all firms in the year 2001. The data are 
mainly sourced from the Industry, Commerce and 
Service (ICS) Census conducted by the 
Directorate-General of Budget, Accounting and 
Statistics in Taiwan. This survey provides 
elaborate information on the volume or value of 
raw data on economic activities, enabling us to 
construct the variables for the production function 
and the firm- and industry- specific 
characteristics. The electronics industry 
designated in this study is aggregated from the 
four-digit Standard Industrial Classification (SIC) 
industries, as listed in Table A.1 in the appendix, 
and comprises 7,590 firms. 

For the variable constructions, the output variable 
is value-added that is measured as the sum of 
operating income minus the sum of expenses of 
raw materials, energy, and electricity. The input 
factors include physical capital (K), labor 
employment (L) and R&D capital (R). K is 
measured as the net amount of operating fixed 
assets, L is measured as the yearly total wage 
payment, and R is computed from the R&D 
investment of firms1. These variables for the 
production functions are all taken in the form of a 
natural logarithm. As for the internal and external 
environmental conditions faced by firms, five firm-
specific and three industry-specific characteristics 
are considered in this paper. The firm-specific 
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characteristics include firm age (F-Age), firm size 
(F-size), the ratio of capital to labor (F-KL), 
subcontractor intensity (F-SubI), and R&D intensity 
(F-RDI). On the other hand, the industry-specific 
characteristics include four-firm concentration ratio 

(I-CR4), industry scale (I-Scale), and industry R&D 
intensity (I-RD) of the 4-digit industries where the 
firms are located. The definitions, constructions and 
summary statistics for these variables are provided 
in Table 1. 

Table 1. Definitions and constructions of variables, and summary statistics 

Variables Definition, and construction of the variables Mean (Std. dev.) 
NRDa: 8.3009   (1.6690) 

Y Value added; measured as the sum of operating income minus the sum of expenses on raw materials, 
energy, and electricity taken in natural logarithmic form. RDb: 11.2420  (2.0515) 

NRD: 9.1487   (1.5571) 
K Capital input; measured as the net amount of operating fixed assets taken in natural logarithmic form. 

RD: 11.8537  (2.0254) 
NRD: 7.5566   (1.5759) 

L Labor input; measured as the yearly total wage payment taken in natural logarithmic form. 
RD: 10.5632  (1.8019) 

NRD: 0.0000   (0.0000) 
R R&D capital; measured as the R&D capital taken in natural logarithmic formc. 

RD: 10.0124  (2.3064) 
NRD: 2.4251   (0.5557) 

F-Age Firm age; measured as the sum of the value of 2001 minus the starting year of the firm plus the ratio of 12 
minus the starting month to 12 taken in logarithmic form. RD: 2.4882   (0.6002) 

NRD: 1.9039   (1.4414) 
F-Size Firm size; measured as the number of employment taken in logarithmic form. 

RD: 4.4410   (1.6307) 
NRD: 7.2448   (1.0996) 

F-KL Capital intensity; measured as the ratio of the fixed capital stock to labor employment taken in logarithmic 
form. RD: 7.4127   (0.9538) 

NRD: 0.2198   (0.4078) 
F-Sub Firm’s subcontractor intensity; measured as the subcontractor revenue to total sales. 

RD: 0.0383   (0.1784) 
NRD: 0.0000   (0.0000) 

F-RDI Firm’s RD intensity; measured as the ratio of R&D investment to sales. 
RD: 0.0936   (0.2071) 

NRD: 0.4200   (0.1344) 
I-CR4 Four-firm concentration ratio; measured as the percentage of total industry output produced by four largest 

firms in the 4-digit industry where the firms locate. RD: 0.4518   (0.1227) 
NRD: 18.9726  (0.8877) 

I-Scale Industrial scale; measured as the industrial scale in terms of total sales in the 4-digit industry where the firms 
locate taken in logarithmic form. RD: 19.2075  (0.9127) 

NRD: 0.0182   (0.0312) 
I-RDI Industrial RD intensity; measured as the average RD intensity of firms in 4-digit industry where the firms 

locate. RD: 0.0361   (0.0513) 

Notes: a: Means and standard deviations for non-R&D firms. b: Means and standard deviations for R&D firms. c: Refer to appendix 
of this paper for details. 

2. Empirical results1 

In this section, we employ two alternative approaches 
to compare technical efficiencies between R&D and 
non-R&D firms to highlight the importance of 
endogenous R&D effect on the R&D-efficiency nexus: 
(i) the conventional stochastic frontier analysis model 
as shown by equation (1), and (ii) the two-step 
switching stochastic frontier approach as shown by 
equation (7) in the previous section.  

2.1. Technical efficiency analysis without the 
endogenous R&D effect. Table 2 displays the 
estimated results of the conventional stochastic 
frontier analysis that does not control for the 
endogenous R&D effect. As shown in the upper 
panel of Table 2, it is clear the estimated 

                                                      
1 As for the calculation process of R&D capital please refer to the 
appendix of this study for details. Indeed, we do not find a large 
difference in the empirical results between using the R&D capital or 
R&D investment as the factor input in production function. 

coefficients for variables of input factors are 
roughly in line with expectations. Looking further at 
the estimated results for the inefficiency regression 
shown in the lower panel of Table 2, we can find 
that firms’ age, size, subcontracted intensity, and 
industrial scales are negatively associated with 
technical inefficiency, whereas firms’ capital labor 
ratio, firms’ R&D intensity, industrial CR4 ratio, 
and industrial R&D intensity are positively 
associated with technical inefficiency. The 
implications of these estimated results will be 
provided in the discussion of Table 4 in the 
following sub-section.  

Table 2. Estimation of conventional stochastic 
frontier analysis modela 

Variable Coefficient Std. err. t-value 
Constant 1.3759*** 0.1509 9.1163 
Variable Coefficient Std. err. t-value 
lnK 0.2044*** 0.0401 5.1022 
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Table 2 (cont.). Estimation of conventional 
stochastic frontier analysis modela 

Variable Coefficient Std. err. t-value 
lnL 0.6589*** 0.0476 13.8344 
lnR -0.0091 0.0134 -0.6792 
lnK2 0.0878*** 0.0080 11.0131 
lnL2 0.1086*** 0.0096 11.3520 
lnR2 0.0193*** 0.0025 7.7086 
lnK x lnL -0.0909*** 0.0073 -12.4766 
lnK x lnR -0.0028 0.0021 -1.3205 
lnL x lnR -0.0049** 0.0025 -1.9101 

Inefficiency regression 
Constant -8.1007*** 1.7723 -4.5707 
F-Age -0.1335*** 0.0487 -2.7390 
F-Size -1.2403*** 0.0366 -33.8583 
F-KL 1.1207*** 0.0717 15.6411 
F-SubI -2.3712*** 0.3248 -7.2999 
F-RDI 4.2317*** 0.2552 16.5826 
ICR4 3.4962*** 0.4477 7.8088 
I-Scale -0.4143*** 0.0472 -8.7870 
I-RDI 10.6365*** 1.5501 6.8618 
σ2 4.9917*** 0.3903 12.7896 
Γ 0.9700*** 0.0024 401.3774 
№ of Observation 7,590 
L-LR χ2(0.01, 
19)b=36.19 -6617.0464*** 

Notes: ***, ** and * denote coefficients significant at 1%, 5% 
and 10% statistical levels, respectively. a: all firms are used to 
estimate the stochastic frontier regardless of the segmentation of 
production technology. b: Log-Likelihood ratio test; H0: all the 
coefficients equal 0; H1: at least one of the coefficients is not 0. 

Turning to the main question, do R&D firms have a 
higher technical efficiency than non-R&D firms? To 
obtain a first indication of the R&D-technical 
efficiency relation, we calculate average technical 
efficiencies of R&D and non-R&D firms and 
conduct the difference tests. The results shown in 
Table 3 are taken as the benchmark model.  

Table 3. Mean technical efficiency estimates of 
R&D and non-R&D firms (conventional SFA model 

setting) 

Industry categories Groups Mean TE Diff. test No. of 
obs. 

NRD 0.6769 6,449 Electronics industry 
RD 0.6886 

4.156** 
1,141 

Sub-electronics industries     
NRD 0.6228 138 Electronics and semiconductor 

equipment RD 0.6772 
1.770 

27 
NRD 0.6819 1,180 Computer and peripherals 
RD 0.7031 

3.655* 
278 

NRD 0.6521 450 Telecommunication and machinery 
appliance RD 0.6231 

-2.106 
128 

NRD 0.6609 724 Audio-visual electronics products 
RD 0.7019 

3.860** 
71 

Data storage and media electronic NRD 0.6479 0.011 79 

product RD 0.6519 21 
NRD 0.7047 357 Semiconductor 
RD 0.6677 

-3.936** 
175 

NRD 0.6711 966 Passive electronics component 
RD 0.7263 

13.079*** 
145 

NRD 0.6824 594 Printed circuit board 
RD 0.7479 

11.920*** 
83 

NRD 0.6867 1,961 Other electronic components 
RD 0.6779 

-0.454 
213 

Notes: ***, ** and * denote coefficients significant at 1%, 5% 
and 10% statistical levels, respectively. The difference test 
employed in the table is one-way ANOVA test with F-statistics. 
The positive and negative signs are denoted for comparison; a 
positive sign denotes that the mean efficiency of R&D firms is 
higher than that of non-R&D firms, and vice versa. 

For all samples of the 2-digit electronics industry, 
the mean technical efficiency of R&D firms is 
0.6886, which is slightly higher than that of 0.6769 
for non-R&D firms. Besides, the different test 
shows the difference in technical efficiency is 
statistically significant at the 5% level, indicating 
that R&D firms are more efficient than their non-
R&D counterparts, on average. This result agrees 
with the positive association of R&D-efficiency 
inference already mentioned (e.g. Dilling-Hansen et 
al., 2003 and Wu et al., 2007). If checking the sub-
sector of the 3-digit industry further, it can be found 
the mean technical efficiency of R&D firms is 
superior in four sub-industries and is significantly 
inferior in one sub-industry at the 10% statistical 
level, compared with non-R&D firms. Meanwhile, 
there are also four industries with no significant 
difference in efficiency. The range of mean 
technical efficiencies is 0.6228 to 0.7479, which 
indicates a moderate technical efficiency for 
Taiwan’s electronics industry. However, it is worth 
further consideration before we try to draw any 
conclusion from these results obtained by the 
conventional specifications that do not consider the 
effect of endogenous R&D. Moreover, the moderate 
technical efficiency for Taiwan’s electronics 
industry suggests a substantial proportion of the 
total variability is associated with technical 
inefficiency of production. Thus, identifying the 
factors influencing technical efficiency is also a 
crucial issue for firms to improve their technical 
efficiencies. 

2.2. Technical efficiency analysis with 
endogenous R&D effect. We now turn to the two-
step switching stochastic frontier approach proposed 
by this study. In the first step, a switching regression 
dealing with the R&D choice is carried out by the 
Probit model and the results are reported in Panel A 
of Table 4. In the second step, the separate frontier 
of the two groups incorporating the selectivity terms 
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for correcting the endogenous effect of R&D choice 
are conducted with the SFA model. The estimated 
results are reported in Panel B of Table 4. 

Table 4. Estimations of SFA model with R&D 
choice effect a 

Panel A. R&D choice regression  − Probit model 
Variable Coefficient Std. Err. t-value 

Constant -5.1972*** 0.5171 -10.0513 
F-Age -0.1746*** 0.0398 -4.3847 
F-Size 0.5298*** 0.0147 36.0046 
F-KL 0.1652*** 0.0219 7.5301 
F-SubI -0.8187*** 0.0928 -8.8264 
ICR4 0.7007*** 0.1724 4.0652 
I-Scale 0.0804*** 0.0251 3.1991 
I-RDI 2.1951*** 0.5363 4.0930 
No. of observations 7,590 
L-LR χ2(0.01, 8)b=20.09 -2040.2340*** 
Panel B. Stochastic frontiers model 

R&D firms Non-R&D firms 
Variable 

Coefficient Std. 
err. t-value Coefficient Std. 

err. t-value 

Constant 2.9202*** 0.9395 3.1082 1.7810*** 0.2343 7.6012 
lnK 0.4346*** 0.1249 3.4789 0.1416*** 0.0431 3.2863 
lnL 0.2306 0.1580 1.4589 0.6689*** 0.0539 12.4049 
lnR -0.0052 0.0771 -0.0676 - - - 
lnK2 0.1163*** 0.0301 3.8615 0.0887*** 0.0085 10.4705 
lnL2 0.2661*** 0.0369 7.2134 0.0982*** 0.0104 9.4449 
lnR2 0.0460*** 0.0097 4.7372 - - - 
lnK x lnL -0.1634*** 0.0302 -5.4090 -0.0851*** 0.0080 -10.7067 
lnK x lnR 0.0180 0.0119 1.5170 - - - 
lnL x lnR -0.0521*** 0.0131 -3.9891 - - - 
S (Selectivity term) -0.2654*** 0.1140 -2.3290 -0.0239 0.0229 -1.0468 
Inefficiency regression 
Constant -6.6085*** 2.3697 -2.7888 -4.0399*** 1.8864 -2.1416 
F-Age -0.9588*** 0.3093 -3.1002 0.5420*** 0.1267 4.2777 
F-Size -0.1252* 0.0734 -1.7057 -1.4665*** 0.0429 -34.1746 
F-KL 0.4733*** 0.1097 4.3156 0.6419*** 0.1226 5.2372 
F-SubI -1.7100*** 0.8347 -2.0486 -1.8309*** 0.2321 -7.8869 
F-RDI 1.7822*** 0.2309 7.7187 - - - 
ICR4 3.2687*** 1.0424 3.1357 2.5454*** 0.3690 6.8983 
I-Scale 0.1461 0.0914 1.5992 -0.3378*** 0.0792 -4.2669 
I-RDI 4.1804*** 1.4994 2.7881 3.7317*** 1.0245 3.6424 
σ2 1.5019*** 0.3382 4.4408 3.4380*** 0.3196 10.7571 
Γ 0.9004*** 0.0237 37.9255 0.9590*** 0.0042 226.5907 
No. of observations 1,141 6,449 
L-LR χ2(0.01, 
22)b=40.29  -1057.1023 *** - 

L-LR χ2(0.01, 
17)b=33.41 - -5457.8328*** 

Output elasticity of K 0.2680 (0.1313) 0.3097 (0.0968) 
Output elasticity of L 0.5832 (0.2113) 0.6322 (0.1042) 
Output elasticity of R 0.1187 (0.0777) - - 
Output elasticity 0.9699 (0.0672) 0.9419 (0.0250) 

Notes: ***, ** and * denote significance at 1%, 5% and 10% 
statistical levels, respectively. a: the effect of endogenous R&D 
choice is taken into account in the R&D and non-R&D firms’ 
production function and the production frontiers are estimated 

separately. b: Likelihood ratio test; H0: all the coefficients equal 
0; H1: at least one of the coefficients is not 0. c: figures in 
parentheses are standard deviations. 

Drawing from the results shown in Panel A, a firm 
with a larger size and/or capital intensity has a 
higher probability of engaging in R&D activity, 
while this probability decreases as firm’s age and 
subcontractor intensity increase. As for the impacts 
of industrial characteristics, industrial CR4 ratio, 
industrial scale and industrial R&D intensity are 
found to be associated with a significantly positive 
coefficient. This result is consistent with 
expectations suggested by theoretical literature that 
firms locate in an industry that is more concentrated, 
R&D intensive, and has a larger market, they also 
tend to have a higher probability of devoting more 
to their R&D effort.  

Before discussing the estimates shown in Panel B, it 
is important to examine whether R&D and non-
R&D firms share the same technology. A 
likelihood-ratio (LR) of the null hypothesis that, the 
frontiers of the two firm groups are the same, is 
calculated after estimating the stochastic frontier by 
pooling the firms. The value of the LR statistic is 
201.8912, which is significantly higher than the 
critical value χ2

(0.01, 17)=33.41. This result suggests 
the production frontiers for R&D and non-R&D 
electronics firms are not the same in Taiwan. 
Therefore, it might induce a bias when comparing 
technical efficiency between R&D and non-R&D 
firms without considering R&D effect, suggesting 
the need to estimate their frontiers separately. 

From Panel B, as for the production functions, most 
of the signs and significances of estimated 
coefficients are consistent with expectations. Of 
interest is the coefficient of the selectivity variable 
Si is significantly negative for the R&D firms’ 
production frontier at the 1% statistical level. Such 
result implies the existence of negative selection 
bias in estimating production function, lending 
support to the need of correcting the endogenous 
problem. It is thus necessary to control for the latent 
influence of R&D choice when examining the 
R&D-efficiency connection, which is neglected in 
existing works.  

Moreover, Panel B also reports the overall output 
elasticity of R&D firms (0.9699) and non-R&D 
firms (0.9419) on an average level. For the output 
elasticity of various inputs, it is revealed that the 
output elasticity of labor inputs is about two times 
larger than capital input. One point particularly 
worth noting here is the positive output elasticity of 
R&D capital. Specifically, by virtue of the translog 
production functional form being used, the 
contribution (marginal effect) of a specific input on 
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output cannot be merely identified by the estimated 
parameter of the linear term of the input. Rather, it 
should be judged by the output elasticity obtained 
from a first order partial derivative of log-output 
with respect to the log-input. Then, based upon the 
values of output and input being both positive and 
normal, the sign of marginal effect of the specific 
input on output and the sign of output elasticity will 
be the same. Thus, in this study, it is plausible to 
infer the positive output elasticity of R&D capital 
input implies the existence of the R&D capital effect 
on enhancing actual production and thus improving 
technical efficiency, that is, the productivity 
enhancement effect. 

The estimates of the determinants of inefficiency 
show that all the parameters are statistically 
significant and display the same signs for R&D and 
non-R&D firms, except for the effects of firms’ age 
and industrial scale. We firstly discuss the impacts 
of firm-specific characteristics. For the firm’s age, 
there is still a lack of definite conclusion in previous 
studies. The impact of age on efficiency is found to 
be negative in some studies (for example, Hill and 
Kalirajan, 1993), positive in others (Biggs et al., 
1996), or insignificant (Lundvall and Battese, 2000). 
In this study, we obtain the result that the impact of 
firm’s age (F-age) on inefficiency is significantly 
negative for R&D firms but significantly positive 
for non-R&D firms. Presumably, for the R&D 
firms, the superior efficiency of older firms could be 
attributed to the learning effect. Alternatively, for 
the non-R&D firms, the inferior efficiency of older 
firms could be explained by those younger firms 
having relatively more advantage in employing 
advanced technologies.  

Firm size is found to have a significantly negative 
coefficient, especially for the non-R&D firms, 
implying large electronics firms tend to have a 
higher technical efficiency than their smaller 
counterparts. This result is consistent with most of 
the previous works on the size-efficiency link1. It 
can be attributed to the advantages of market power 
and scale economies of larger firms (Kim, 2003; 
Jovanovic, 1982). The coefficient on capital labor 
ratio is positive and statistically significant, 
implying more capital input per capita would not 
improve technical efficiency of electronics firms. At 
first glance, this result seems to contradict the 
prediction, but it is also reasonable when properly 
thought through. As previously mentioned, the 
output elasticity of capital input is lower (about less 
than a half) than the labor input. Thus, all other 
thing being equal, additionally exploiting capital use 

                                                      
1 Please refer to Taymaz (2005) for a comprehensive survey. 

to substitute labor use would result in a decrease in 
output2. Alternatively, it might arise from the fact 
that many electronics firms in Taiwan highly stress 
capital use relative to labor use in their production, 
that is: more capital intensive production. Yet, such 
a presumption needs further investigation out of the 
scope of this study. Moreover, the coefficient of 
subcontractor intensity is significantly negative for 
both R&D and non-R&D firms, suggesting a 
positive impact on firms’ technical efficiency. This 
positive linkage could be interpreted by smoother 
production schedules, production specialization 
(Abraham and Taylor, 1996), or reducing market 
uncertainty. In addition, the subcontractor activity 
also often serves as one important channel to 
acquiring production technologies in Taiwan (Aw 
and Batra, 1998).  

As for the industry-specific characteristics, two 
measures of entry barriers, four-firm concentration 
ratio and industry R&D intensity, are found to be 
positively associated with inefficiency, suggesting 
firms located in industries that are more 
concentrated and R&D intensive are less efficient. 
This result is consistent with the expectation that 
lower market competition may result in incumbent 
firms paying less attention to improving technical 
efficiency. Further, the industrial scale displays a 
positive impact on improving technical efficiency 
for non-R&D firms, which suggests greater market 
room would be beneficial to the operations of both 
incumbents and potential entrants and then 
contribute to efficiency.  

Here, we reserve the discussion of firm’s R&D 
intensity. As shown in Table 4, the variable of 
firms’ R&D intensity reveals a significantly positive 
sign, which implies a negative association with 
technical efficiency. Such an outcome could be 
associated with the unnecessarily R&D-efficiency 
presumption (Kim, 2003). We regard it as 
believable because the benefit of innovative activity 
is usually not the same as setting up a pole and 
seeing its shadow. Instead, there are the needs for 
time and accumulation processes, such as the 
processes of knowledge sifting, fathoming, 
experimentation and trial (Duranton and Puga, 
2001). Therefore, in the relative short term, R&D 
intensity may demonstrate an effect like extra cost 
expenditure in production. Meanwhile, in the 
relative long run, R&D capital represented by the 
accumulated R&D stock displays a positive 
output elasticity as mentioned previously, which 

                                                      
2 For example, from the results, it is implied exploiting 1% capital use 
to substitute 1% labor use would result in approximately a 0.3% 
decrease in output. 
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implies a contribution to actual production and 
technical efficiency.  

Turning to the major focus of this study, the 
technical efficiencies of R&D and non-R&D firms 
are compared again. However, as discussed 
above, while the frontiers of two firm groups are 
not identical and are estimated separately, the 
direct comparison of efficiency measures for 
firms using different technologies and producing 
under different frontiers is inappropriate. The 
adjustment factor calculated according to equation 
(9) now is needed and reported in Table 5. As 
shown in Table 5, it can be found, on average, the 
measure of adjustment factors is greater than 
unity regardless of the overall electronics industry 
or sub-industries. As indicated in Aw and Batra 
(1998), the adjustment factor represents the 
relative frontier position of the two firm groups. 
A ratio greater than unity points out, using the 
same input vector (herein, that of non-R&D 
firms), the estimated value added of using the 
technology of R&D firms exceeds using the 
technology of non-R&D firms. We, therefore, 
have evidence that the technology frontier of 
R&D firms is indeed superior to non-R&D firms, 
lending support to the technology enhancement 
effect. This result is also consistent with the 
presumption in Kim (2003) and Perelman (1995) that 
the production frontier might be pushed upward by 
R&D activity. More importantly, these adjustment 
factors can be used to calculate the adjusted technical 
efficiency and then compare the mean technical 
efficiency between R&D and non-R&D firms.  

Table 5. Mean adjustment factor calculations for 
R&D and non-R&D firms 

Industry categories Mean AF Std. dev. No. of obs. 
Electronics industry 1.1528*** 0.0405 6449 
Sub-electronics industries    
Electronics and semiconductor 
equipment 1.1501*** 0.0363 138 

Computer and peripherals 1.1434*** 0.0362 1,180 
Telecommunication and machinery 
appliance 1.1519*** 0.0421 450 

Audio-visual electronics products 1.1522*** 0.0414 724 
Data storage and media electronic 
product 1.1350*** 0.0445 79 

Semiconductor 1.1528*** 0.0421 357 
Passive electronics component 1.1532*** 0.0394 966 
Printed circuit board 1.1468*** 0.0412 594 
Other electronic components 1.1615*** 0.0405 1,961 

Notes: ***, ** and * denote coefficients significant at 1%, 5% 
and 10% statistical levels, respectively. 

For the two-digit industry level, comparing the results 
in Table 6 with those in Table 3, one can clearly note 
the average technical efficiency of non-R&D firms 
increases from 0.6769 to 0.7824, after correcting for 
the effect of endogenous R&D choice. In contrast, the 
average technical efficiency of R&D firms decreases 
slightly from 0.6886 to 0.6210. It is worth noting the 
difference test reveals the average technical efficiency 
of non-R&D firms is significantly higher than that of 
R&D firms at the 1% level, showing non-R&D firms 
have higher technical efficiency than their R&D 
counterparts after controlling for the endogenous R&D 
effect. This result sheds light on the importance of 
endogenous R&D choice when the R&D-technical 
efficiency connection is examined. 

Table 6. Mean technical efficiency estimates for R&D and non-R&D firms (controlling for the R&D  
choice effects) 

Industry categories Groups Mean ATE Diff. test No. of obs. 
NRD 0.7824 6,449  Electronics industry 
RD 0.6210 

-613.105*** 
1,141  

Sub-electronics industries 
NRD 0.7205 138  Electronics and semiconductor equipment 
RD 0.6222 

-4.430** 
27  

NRD 0.7859 1,180  Computer and pеripherals 
RD 0.6387 

-138.899*** 
278  

NRD 0.7513 450  Telecommunication and machinery appliance 
RD 0.5571 

-78.311*** 
128  

NRD 0.7593 724  Audio-visual electronics products 
RD 0.6786 

-11.607*** 
71  

NRD 0.7430 79  Data storage and media electronic product 
RD 0.5413 

-23.725*** 
21  

NRD 0.8175 357  Semiconductor 
RD 0.5725 

-134.442*** 
175  

NRD 0.7727 966  Passive electronics component 
RD 0.6542 

-44.837*** 
145  
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Table 6 (сont.). Mean technical efficiency estimates for R&D and non-R&D firms (controlling for the R&D  
choice effects) 

Industry categories Groups Mean ATE Diff. test No. of obs. 
NRD 0.7931 594  Printed circuit board 
RD 0.7089 

-15.367*** 
83  

NRD 0.7971 1,961  Other electronic components 
RD 0.6078 

-156.993*** 
213  

Notes: ***, ** and * denote coefficients significant at 1%, 5% and 10% statistical levels, respectively. The difference test employed 
in the table is one-way ANOVA test with F-statistics. The positive and negative signs are denoted for comparison; a positive sign 
denotes that the mean efficiency of R&D firms is higher than that of non-R&D firms, and vice versa. a: the means of adjustment 
factor are reported. 

Turning to the further comparison of technical 
efficiencies between R&D and non-R&D firms 
among 3-digit industries, it is shown that the 
number of statistics with a significantly negative 
sign increases from one to nine, whereas the number 
of statistics with a significantly positive sign 
decreases from four to zero. That is, among the nine 
sub-industries, non-R&D firms tend to have a better 
technical efficiency than their R&D counterparts in 
the electronics industry after controlling for the 
impact of the endogenous R&D effect. However, 
this result can be explained only from the static 
perspective, because the utilized dataset is cross-
sectional data. The possible interpretation is, in 
the short run, the increase in productivity is less 
than the production frontier for R&D firms, 
resulting in fall of technical efficiency. However, 
the technology enhancement effect is crucial from 
the macro and dynamic perspectives.  

In sum, the above analyses highlight the importance 
of the endogenous R&D effect in examining the 
relationship between R&D and technical efficiency. 
The efficiency effect of R&D is overestimated in 
previous studies due to the neglect of the 
endogenous R&D effect. The non-R&D firms are 
found to be more efficient in this study, showing 
non-R&D electronics firms don’t necessarily have 
worse performance in technical efficiency from a 
static perspective compared with their R&D 
counterparts in Taiwan. However, we cannot infer 
R&D has a negative impact on technical 
efficiency. One reason is this study is a cross-
sectional study that can explain the R&D-
efficiency relationship for only one point in time 
rather than over a period of time. The productivity 
enhancement effect of R&D may be apparent after 
some time has passed. More importantly, from 
both macro and dynamic perspectives, R&D 
serves as the major source in promoting 
technological capability. The short-term 
inadvantage in efficiency can be overcome by 
continuous improvement on productivity. 
Moreover, from the methodology perspective, the 
traditional estimates for the R&D-technical 

efficiency nexus may suffer an estimation bias 
without dealing with the endogenous R&D effect.  

Concluding discussion  

Are R&D firms more efficient than non-R&D 
firms? This study employs a two-step switching 
stochastic frontier approach to re-examine the 
R&D-efficiency nexus by adding three additional 
considerations. First, there are misspecifications in 
the conventional construction of the production 
frontier. Specifically, do R&D and non-R&D firms 
use the same technologies? Instead, it is more 
persuasive to view R&D and non-R&D firms as 
operating under different frontiers (technologies). 
Second, while the production technologies are 
distinct, selection bias may arise since the choices 
to engage in R&D activity and what kinds of 
technology to adopt are rational decisions made by 
the firms. Thus, it indeed refers to an endogenous 
selection problem. Moreover, the regression of 
technical efficiency in the R&D variable only 
implies that R&D activity can improve, reduce or 
be irrelevant to technical efficiency, other things 
being equal. Except the question as to why a firm 
who has a higher R&D intensity results sometimes 
has worse technical efficiency is explained 
insufficiently, it is also incapable of disentangling 
the perplexity: are R&D firms really more efficient 
than non-R&D firms? 

In this study, we develop a two-step switching 
stochastic frontier approach to re-examine the 
R&D-technical efficiency nexus. The problems 
concerning the endogenous selection problem of 
R&D choice, separate frontiers and inverse impact 
of R&D intensity on efficiency are simultaneously 
tackled in this framework. The empirical estimates 
show: (i) the average technical efficiency of R&D 
firms is larger than that of non-R&D firms without 
correcting for the endogenous R&D effect, 
whereas the non-R&D firms have a higher 
technical efficiency when we consider the potential 
influence of endogenous R&D effect, suggesting 
R&D firms are not necessarily more efficient than 
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non-R&D firms. More importantly, this study 
highlights the importance of endogenous R&D 
choice on the R&D-technical efficiency nexus. (ii) 
R&D firms actually have a higher frontier than non-
R&D firms, implying superior technology of R&D 
firms; and (iii) the positive contribution of R&D 
activity to technical efficiency is mainly sourced 
from R&D capital accumulation, but the effect of 
current R&D investment is the opposite. 

Based on these estimates obtained by the two-step 
approach, several economic implications can be 
achieved from our empirical study. First, R&D and 
non-R&D firms use different technologies and 
operate under different frontiers. Actually, R&D 
firms face a higher technology frontier and the 
technology of R&D firms is superior to their non-
R&D counterparts. This result can be attributed to 
the technology enhancement effect of R&D. From 
the macro and dynamic perspectives, this 
technology enhancement effect of R&D is 
particularly relevant to sustained economic growth. 
Second, R&D is not always beneficial to firms from 
the static perspective. As discussed earlier, firms are 
rational and follow profit-maximizing behaviors; the 
R&D choice is therefore made according to firms’ 
own comparative advantage, by considering the 
technological environment they are located in. 

Therefore, we can find the R&D firms are not 
necessarily more efficient than non-R&D firms.  

However, our study does not mean R&D activity 
has no contribution to technical efficiency. Instead, 
there are two types of effect embedded in R&D 
activity impacting efficiency: productivity 
enhancement effect and technology enhancement 
effect. It needs to undergo a time lag and knowledge 
accumulation processes to draw benefit from 
innovative activity, suggesting the contribution of 
R&D activity is mainly sourced from the 
accumulated R&D capital rather than just one 
period of R&D spending. In the relative short term, 
R&D intensity only represents an effect like an 
additional cost or expenditure in production. 

Finally, we would like to highlight a point in our 
methodology. To compare technical efficiency 
across groups, this paper adopts the adjustment 
factor approach. This technique not only makes the 
efficiency comparable between two groups, but also 
enables us to observe the relative frontier positions 
of the two groups. Therefore, we do not assume all 
firms have potential access to the same technology 
and adopt the metafrontier production function 
model developed by Battese et al. (2004). Of course, 
it is also of interest to conduct a metafrontier study 
on this issue1.  
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Appendix A. The inference and calculation of R&D capital 

In virtue of the properties of uncertainty, accumulation and lag inherent in R&D activity, the calculation of R&D 
capital (RK) is an interesting but complicated work. The uncertainty reflects inconsistency between expectations and 
real outcome of R&D investment. As this paper has no intention of covering the problem of uncertainty, the RK is 
assumed under a certainty perspective. Further, the accumulation and lag signify a process of time lag and depreciation 
when transforming R&D investment into productive knowledge − R&D capital, RK. In the literature1 the common 
approach assumes the relationship between R&D and RK as follows:  

10
(1 )P

t p t p tp
RK u RD RKδ− −=

= + −∑ ,                                                                                                                          (A1) 

where, t is the time period, and t=0, 1, 2,…T; p is the lag period, while P is the maximum lag period, and p=0, 1, 
2,…P; δ represents a rate of depreciation; up denotes a lag operator. Therefore, equation (A1) implies the RK in the 
current period is the summation of the R&D expenditure of each prior period according to the lag structure and the 

                                                      
1 E.g., Mansfield (1980), Griliches (1979), Odagiri and Iwata (1986), Bernstein and Nadiri (1988), Goto and Suzuki (1989), and Goel (1990). 
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depreciated RK of the last period. However, as for the lag structure, there is a lack of definite pattern in hand. Griliches 
(1979) indicated the peak of R&D transforming into RK is about 3-5 years and then decays rapidly as time progresses. 
Goto and Suzuki (1989) assumed an average lag pattern of t-θ. 

In practice, due to the lack of a definite lag structure, the average lag pattern t-θ is adopted by this paper. Meanwhile, 
based on most R&D investments in Taiwan being application research but not basic research; the average lag θ should 
be a short period which is assumed to be 0. Griliches and Mairesse (1984) indicated a tiny influence concerning the 
specification of lag period. Thus, equation (A1) is adapted as equation (A2), while the RKt-1 is specified as equation (A3): 

1(1 )t t tRK RD RKδ −= + − ,                                                                                                                                         (A2) 

1 ( 1)
1 0

(1 )T T t
t tt

RK RDδ− − −
− =

= −∑ .                                                                                                                               (A3) 

In equation (A3), t denotes the age of the firm to 2001. Further, due to the cross-section data used in this paper, the 
prior four periods of R&D investment are presumed according to the growth rate of R&D expenditure of each four-
digit industry calculated from the Industrial Census Report undertaken by the Directorate-General of Budget, 
Accounting and Statistics in Taiwan. If the firm age is more than four years, the growth rate is assumed to be the 
average of the last four years. Additionally, in this study, similar to general specifications1, the depreciation rate is 
assumed to be 15%. Griliches and Mairesse (1984) also found a weak influence concerning the specification of the 
depreciation rate. 

Table A.1. Electronics industries of ICS census 2001 in Taiwan 

SIC Industries No. of firms 
2548 Electronics and semi-conductor equipment manufacturing 165 
2611 Computer manufacturing 157 
2612 Monitor and terminal manufacturing 80 
2613 Computer and peripheral equipment manufacturing 386 
2614 Electronic parts and components manufacturing 584 
2619 Other computer peripheral equipment manufacturing 251 
2621 Wired communication equipment manufacturing 275 
2622 Wireless communication equipment manufacturing 303 
2631 Visual electronic product manufacturing 22 
2632 Audio electronic product manufacturing 488 
2639 Other audio and video electronic product manufacturing 285 
2640 Data storage and media electronic product manufacturing 100 
2710 Semi-conductor manufacturing 532 
2720 Passive electronic component manufacturing 1,111 
2730 Printed circuit board manufacturing 677 
2791 Electronic tube manufacturing 82 
2792 Optical instruments and equipment manufacturing 220 
2799 Other electronic parts and components manufacturing not elsewhere classified 1,872 

Note: Compiled for this study. 

 

                                                      
1 E.g., Cuneo and Mairesse (1984), Griliches and Mairesse (1984), Griliches (1986), Coe and Helpman (1995), Raut (1995), and Hall and Mairesse (1995). 


