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Abstract 

Predictions of asset returns and volatilities are heavily discussed and analyzed in the finance research literature. This 
paper compares linear and nonlinear predictions for stock and bond index returns and their covariance matrix. The 
authors show in-sample and out-of-sample prediction accuracy as well as their impact on asset allocation results for 
short-horizon investors. The data comprises returns from the German DAX stock market index and the REXP bond 
market index as well as their joint covariance matrix over the period of January 1988-December 2007. The comparison 
of a linear and nonlinear prediction approach is the focus of this study. The results show that while out-of-sample pre-
diction accuracies are weak in terms of statistical significance, asset allocation performances based on linear predic-
tions result in significant Jensen’s alpha measures and Sharpe ratio and are further improved by nonlinear predictions. 
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Introduction© 

Predicting economic time series plays a crucial role 
in finance. It is essential for mean-variance efficient 
asset allocation to estimate expected returns, corre-
lations and volatilities. There is a vast number of 
literature dealing with linear prediction of risk and 
return. But also nonlinear prediction attains growing 
interest. As such, nonlinear models become more 
and more important in economic forecasting1. Com-
parative studies of linear and nonlinear models for 
economic predictions were performed, for example, 
by Swanson and White (1995; 1997). They apply 
nonlinear neural network models to predict future 
spot rates and macroeconomic variables. Many oth-
er studies testify that economic time series are non-
linear in nature. However, the effect of nonlinear 
predictions on asset allocation and the question 
whether nonlinear predictions are economically 
exploitable has been neglected in the literature. 

There exist several possibilities to build a nonlinear 
forecasting model2. But due to their flexibility, artifi-
cial neural networks can be a powerful method for 
predictions, especially if we have little prior know-
ledge about the data generating process. Therefore, 
we use a neural network approach for nonlinear fore-
casting in this study. We consider a mean-variance 
investor with one month investment horizons who 
allocates his wealth to stocks, bonds and a risk-free 
asset. The investor updates his opinion about condi-
tional returns and the conditional covariance matrix 
on the basis of a linear or a nonlinear prediction mod-
el, respectively. Predictions for monthly excess re-
turns and the conditional covariance matrix are per-
formed and plugged in a mean-variance asset alloca-
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1 They increasingly appear in standard econometric handbooks. See, for 
example, Tsay (2002) and TerЁasvirta (2006). 
2 See for example TerЁasvirta (2006). 

tion strategy. The asset universe consists of the Ger-
man stock market index DAX, the German bond 
market index REXP and a risk-free rate using data 
over the period of January 1988-December 2007. We 
report traditional portfolio performance measures 
such as Sharpe ratio and Jensen’s alpha as well as the 
Treynor Mazuy measure (Treynor and Mazuy, 1966) 
and a utility based measure of portfolio performance 
inspired by West, Edison and Cho (1993)3. Our re-
sults show that linear and nonlinear predictions are 
economically relevant for mean-variance investors. 
Nonlinear prediction models outperform linear pre-
diction models in terms of Sharpe ratio and Jensen’s 
alpha. In terms of the utility based performance 
measure and the Treynor and Mazuy measure, nonli-
near predictions result in better asset allocation per-
formances when we impose short-sales constraints. 

1. Literature review 

1.1. Predictability of asset returns. The question 
whether asset returns are predictable triggered a 
controversial debate in the finance literature. Coch-
rane (1999) reviews the research on predictability of 
stock and bond returns, and concludes that predicta-
bility can be seen as “new fact in finance”. In earlier 
studies, during the 1980s, valuation ratios were used 
to predict future returns, starting with dividend 
yields by Rozeff (1984) as well as Fama and French 
(1988). Also, Campbell and Shiller (1988a; 1988b) 
found that dividend yields are positively correlated 
with future returns. More recently, Kothari and 
Shanken (1997), Pontiff and Schall (1998), Lamont 
(1998), Stambaugh (1999), Lewellen (2004), and 
Campbell and Yogo (2006) examined the predicta-
bility of returns by financial ratios. They show that 
book-to-market ratios and dividend yields have pre-
dictive power for subsequent stock market returns. 

                                                      
3 This measure has been used, for example, by Fleming, Kirby and 
Ostdiek (2001) and Marquering and Verbeek (2004) for empirical asset 
allocation evaluation. 
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Research on other predictive variables include short-
term interest rates (e.g., Fama and Schwert, 1977), 
spreads between long-term and short-term interest 
yields (e.g., Keim and Stambaugh, 1986; Campbell, 
1987), spreads between corporate bonds and the 
one-month bill rate (e.g., Fama and French, 1989), 
stock market volatility (e.g., French, Schwert and 
Stambaugh, 1987), the level of consumption in rela-
tion to wealth (Lettau and Ludvigson, 2001)1, and 
others (see, e.g., Ferson and Harvey, 1993; Pesaran 
and Timmermann, 1995). A critical view on return 
predictability of risky assets is taken by Valkanov 
(2003), Ang and Bekaert (2007), and Goyal and 
Welch (2003; 2008). For long-horizon predictive 
regressions, Valkanov (2003) shows that t-statistics 
do not converge to well-defined distributions and the 
R2 is in some cases an inadequate measure of the 
goodness of fit. Ang and Bekaert (2007) correct for 
heteroscedasticity and find that long-horizon predic-
tability vanishes and is not robust across sample pe-
riods. Their results suggest that predictability is main-
ly a short-horizon phenomenon. These papers rely on 
econometric arguments using several statistical tests. 
The large variety of test procedures that have been 
proposed for return predictability, which have led to 
different conclusions, has hampered the understand-
ing of the rather large literature on predictability2. In 
a comprehensive study, Goyal and Welch (2008) 
analyze predictive variables in linear regression mod-
els out-of-sample. They argue that the historical aver-
age excess stock return has more predictive power 
than most of the tested linear regression models. A 
critical view on Goyal and Welch’s (2008) conclu-
sion is taken by Cochrane (2008) and Campbell and 
Thompson (2008). Cochrane (2008) points out that a 
poor out-of-sample R2 does not reject the null hypo-
thesis that returns are predictable. The out-of-sample 
R2 is not a test statistic that gives stronger evidence 
about return predictability than regression coeffi-
cients or other standard hypothesis tests. However, 
Cochrane (2008) argues that the absence of out-of-
sample performance is not likely to be useful in form-
ing real-time forecasts or market-timing portfolios. In 
addition, Campbell and Thompson (2008) impose 
simple restrictions on predictive regressions and con-
sequently improve the out-of-sample performance. 

Interestingly, most of the studies rely on linear re-
gression models. These models imply that predictive 
variables are subject to linear dependencies on pre-
dicted returns. However, Lee, White and Granger 
(1993) show that economic time series can be subject 

                                                      
1 In a more recent study, Guo (2006) supports their findings and con-
firms out-of-sample predictability of stock returns. 
2 Campbell and Yogo (2006) provide an understanding of the various 
test procedures and their empirical implications. 

to nonlinear dependencies and they establish a test to 
detect neglected nonlinearities in time series models 
based on neural networks. In their empirical study, 
Abhyankar, Copeland and Wong (1997) confirm 
nonlinear dependence for the stock indexes FTSE-
100, the S&P 500, the DAX, and Nikkei3. Also, De-
sai and Bharati (1998) find evidence of nonlinear de-
pendencies between explanatory variables and returns 
of large stocks and corporate bonds4. 

On the basis of monthly excess returns, the analysis 
of Qi (1999) as well as Qi and Maddala (1999) show 
that a nonlinear neural network approach outper-
forms a linear regression model in forecasting S&P 
500 returns. Qi (1999) mainly uses the same va-
riables as Pesaran and Timmermann (1995) in their 
linear regressions. As a result, Qi (1999) reports 
better in-sample fit and out-of-sample forecasts 
using a neural network model compared to its linear 
counterpart. More recently, Ince and Trafalis (2007) 
and Bekiros and Georgoutsos (2008) show that 
neural network models can be successfully imple-
mented for return predictability. 

1.2. Predictability of volatilities and correlations. 
For their portfolio construction, mean-variance in-
vestors need estimates of asset return volatilities. 
The application of volatility in optimal portfolio 
selection – among other important applications – 
has motivated numerous studies on volatility model-
ing5. In their analysis, Schwert (1989) and French et 
al. (1987) based the volatility measure on the sum of 
squared daily returns6. This approach is commonly 
referred to as realized volatility in the literature7. 
Another approach to modeling volatility is spurred 
by Engle’s (1982) model of autoregressive condi-
tional heteroscedasticity (ARCH) and its genera-
lized form (GARCH) (Bollerslev, 1986). A vast 
number of researchers have surveyed volatility fore-
casts in this framework8. 

However, as Andersen, Bollerslev, Diebold and 
Labys (2003) and Andersen, Bollerslev and Diebold 
(2009) argue, the measure of realized volatility ben-
efits from being free of parametric functional form 
assumptions in contrast to the ARCH and GARCH 
approaches. Realized volatility is a consistent esti-

                                                      
3 They use intra-day data between 15-seconds, 1-minute, and 5-minute 
intervals. They find that their results are also consistent for 15-minute, 
30-minute, and 1-hour intervals. 
4 Among other tests, they use the test for neglected nonlinearity pro-
posed by Lee et al. (1993). 
5 For a comprehensive review we refer to Andersen, Bollerslev, Chris-
toffersen and Diebold (2006) and Poon and Granger (2003). 
6 The model is based on an earlier work by Merton (1980). See Merton 
(1980), Appendix A. 
7 See, for example, Andersen, Bollerslev, Diebold and Labys (2001). 
8 The ARCH and GARCH class of models have been surveyed, for 
example, by Bollerslev, Chou and Kroner (1992), Bollerslev, Engle and 
Nelson (1994), Engle (2001; 2004), and Diebold (2004). 
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mate of ex-post return variability and provides a 
benchmark for out-of-sample volatility forecasts1. 
As such, Ludvigson and Ng (2007) perform volatility 
forecasts using time-series variation of daily returns, 
following Schwert (1989) and French et al. (1987). 
They use a factor analysis approach to predict quar-
terly volatility of excess returns. Also, Whitelaw 
(1994) and Ghysels, Santa-Clara and Valkanov 
(2005) use this measure of volatility in their studies. 

Hamid and Iqbal (2004) perform volatility forecasts of 
S&P 500 Index future prices using a neural network 
approach. They compare the forecast performance to 
Barone-Adesi and Whaley’s (1987) model of implied 
volatility forecasts of American futures option pricing. 
The reported results show that the nonlinear neural 
network approach outperforms implied volatility fore-
casts when compared to realized volatility2. 

Ferland and Lalancette (2006) use the measure of 
realized volatility to compare neural network, AR-
MA, GARCH-BEKK, and naive volatility and cor-
relation forecasts of Bax and Eurodollar futures. They 
measure realized correlation similar to realized vola-
tility. As such, forecasts are performed for weekly 
volatilities and correlations with an out-of-sample 
period of 98 weeks. The neural network model and 
the ARMA model provide the best forecasting per-
formance. Furthermore, the results show, that the 
neural network approach has additional explanatory 
power beyond the ARMA-based model. 

As for return predictability, most of the literature 
focuses on evaluating the statistical performance of 
volatility models rather than the economic relevance 
of predictive volatility. For predictions of forecast-
ing covariances or correlations, the impact on opti-
mum portfolios has been discussed by Chan, Kar-
ceski and Lakonishok (1999), Ledoit and Wolf 
(2003), and Elton, Gruber and Spitzer (2006). Chan 
et al. (1999) use a linear factor model with a number 
of factors ranging from one to ten in order to fore-
cast covariances. Whereas they find that predictions 
do not significantly outperform a constant cova-
riance model and consequently do not lead to better 
asset allocation, Elton et al. (2006) show that corre-
lation forecasts that outperform constant historical 
correlations in terms of root mean squared errors 
also result in better portfolio decisions. They calcu-
late minimum variance portfolios based on the fore-
cast of correlations and historic variances. Subse-
quently they examine the actual risk of the portfolio. 

                                                      
1 See the discussion in Andersen et al. (2006), p. 830 and the literature stated 
above. Also Hansen and Lunde (2006) discuss realized volatility as a proxy 
for “true” volatility to evaluate the performance of volatility models. 
2 In their study, realized volatility is defined slightly different, since the 
standard deviation is divided by the root number of days of the volatility 
window. See Hamid and Iqbal (2004, p. 1121). 

The results show that their correlation forecasts lead 
to lower portfolio variance. 

However, these studies on correlation and cova-
riance matrix forecasts are restricted to linear mod-
els and do not take into account estimates of returns 
in the calculation of portfolios. 

2. Mean-variance investors and optimization 

To quantify the value of nonlinear predictions, we 
measure the impact on the performance of asset 
allocation strategies of an investor with one-month 
investment horizons. In order to implement the asset 
allocation strategy we use mean-variance analysis. 
In period t, the investor selects the asset fractions 

N
t Rw∈ from a given set of N risky assets and allo-

cates the remainder )1( 1tw′− , where 1 is an N x 1 
vector of ones, to the risk-free asset. Let rt+1 be an 
N x 1 vector of excess returns over the risk-free 
asset return f

tR in period t + 1. The portfolio return 

is then 11 ++ ′+= tt
f

t
p
t rwRR . The N-dimensional vector 

of conditional expected value of rt+1 is given by 1+tr̂  
and the expected conditional covariance matrix is 

NN
t Rˆ ×
+ ∈Ω 1 . For each month t, the investor solves 

the optimization problem3: 
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where λ is a constant that scales the resulting vector 
of 1

1
1 +

−
+Ω tt r̂ˆ  to the expected target excess return of 

the portfolio [ ]p
tt rE 1+ . As such, the solution is a min-

imum-variance portfolio to the pre-determined ex-
pected excess portfolio return. However, the deter-
mination of the portfolio risk premium [ ]p

tt rE 1+  de-
pends on the investor’s tolerance for risk. 

Therefore, we consider an investor with a particular 
risk aversion and assess the asset weights that are 
optimal for the investor’s risk-return trade-off. More 
specifically, we impute a utility function and refor-
mulate the optimization problem in terms of max-
imizing the investor’s utility: 

                                                      
3 For a comprehensive discussion see Rudolf (1994). 
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where γ is a coefficient representing the investor’s 
level of relative risk aversion. The solution to the 
above maximization is: 

,1
1

1
1 +

−
+Ω= ttt r̂ˆw

γ        (4) 

which is equivalent to equation (2) with γ = 1/γ as a 
measure of the investor’s tolerance for risk. We use 
this approach to determine the optimal asset weights 
and show the impact on altering the investor’s risk 
aversion γ. 

The calculation of optimal asset weights requires 
one-step-ahead knowledge about the vector of con-
ditional excess returns 1+tr̂  and the conditional cova-
riance matrix 1+Ωt

ˆ . In general, the parameters are 
unknown and have to be estimated. In the next sec-
tion we develop linear and nonlinear models to pre-
dict the required parameters. 

3. Methodology of predictions 

3.1. Linear and nonlinear models for asset re-
turns and correlations. For mean-variance efficient 
asset allocation we need estimations for expected 
returns, correlations and volatilities of the asset un-
iverse. Consequently, we have to establish three 
prediction models. In their paper, Marquering and 
Verbeek (2004) use linear models for the condition-
al expectations of excess returns and volatilities1. 
We will use these models as benchmark to our ex-
tended, nonlinear approach. 

Linear regression modeling is well known and most 
widely used for prediction problems. Although a 
linear model is powerful and has convenient proper-
ties, it still rules out many useful nonlinear func-
tional forms. A linear regression model assesses the 
relationship between a dependent variable yt+1 and 
one or a vector of more independent variables 

1+∈ k
t Rx , where k is the number of independent 

variables, including a constant. The functional rela-
tionship is assumed to be linear. As such, the gener-
ic form of a linear regression model (including a 
constant β0) is given by: 

,
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where 1+∈ kRβ  is a vector of to be estimated parame-
ters and 1+tε  are residuals not explained by the mo-

                                                      
1 They omit the problem of estimating correlations since they use only 
one risky asset in their analysis. 

del2. Most studies limit the set of predictive functions 
to the linear relation ,)()( ββ x,xlxf tt ′≡=  with a vector 

1+∈ k
t Rx  of k independent variables including a con-

stant (i.e., ),,,1( ,1, ′= kttt xxx K ), and a vector 1+∈ kRβ  
of to be estimated linear parameters. Generally, the 
true functional relationship is, however, unknown. 

Marquering and Verbeek (2004) use those simple 
linear regressions to predict excess returns with a set of 
k predictive variables xr;t available at time t = 1,...,T. 
Thus, the expected value of rt+1, given the information 
of predictive variables xr;t, is assumed to be3: 

,1,,1 ++ +′= trrtrt xr εβ        (6) 

where .Rxxx k
ktrtrtr

1
,,1,,, ),,,1( +∈′= K  For predictive 

variables in xr;t, lagged financial ratios and macroeco-
nomic data is used. Thus, k indicates the number of 
independent variables that are used in the model. Since 
we include a constant in our prediction model, βr is a 
(k + 1) vector of to be estimated parameters. The pa-
rameters rβ̂  are determined by an OLS estimation, so 
that the forecasts for excess returns in t + 1 are: 

.,1 rtrt
ˆxr̂ β′=+         (7) 

In the same way, we consider a linear model for 
predicting conditional correlations pij,t+1 between 
asset i and j (i ≠ j): 

ρρ β̂xp̂ ttij ,1, ′=+   [ ],1;11, −∈+tijp̂      (8) 

where 1p
,,1,,, R),,,1( +∈′= pttt xxx ρρρ K  is a vector of 

predictive variables for correlations, ρβ̂  is a (p + 1) 
vector of estimated parameters (including a con-
stant) and we limit tijˆ ,ρ  to be in the interval [-1; 1]. 
ρ indicates the number of predictive indicators that 
are used in the model for correlation predictions. 

We now extend the linear prediction models for 
asset returns and correlation to capture nonlinear 
dependencies. In order to assure that the nonlinear 
model nests the linear model, we follow White’s 
(2006) proposition by including a linear component 
in f (·) and specify: 

{
,),(),,( 111 +++ ++′=+= t

partnonlinear
t

partlinear
tttt єxnxєxfy

43421
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where ),( ψtxn  is a nonlinear function with to be 
estimated free parameters ψ. For estimation purpos-

                                                      
2 Residuals are usually assumed to be uncorrelated with xt, have condi-
tional expected value zero and constant variance. 
3 The predictions are done for every asset i,i = 1,...,N. However, we do not 
state i in the following equations for the virtue of simplicity. The sub-script r 
indicates that the variable is part of the model for predicting returns r. 
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es, we use the OLS solution to assess the linear pa-
rameters β (see the general linear equation (5)). 
From this linear regression model, we further ana-
lyze the resulting vector of residuals .),,( 1 ′= Tεεε K  
We uncover the purely nonlinear dependency be-
tween independent variables xt and the dependent 
variable yt+1 by using the residuals as dependent vari-
able for the nonlinear model. The regression parame-
ters ψ from the nonlinear part of the prediction model 
are assessed by a neural network approach. As such, 
we use the linear regression method for estimating 
parameters in the linear part of the model and the 
neural network approach to estimate parameters in 
the nonlinear part represented by ).,( ψtxn  

The implication of this procedure is as follows. The 
errors εt+1 in the general linear prediction model (5) can 
be random noise, which is unrelated to the predictive 
independent variables xt. But they might also include 
hidden dependencies which cannot be mapped by the 
linear structure of the regression model. If there are 
nonlinear dependencies, the neural network “adds 
value” to the prediction model which will be reflected 
in a reduction of the squared error term. Consequently, 
we try to explain the errors εt+1 from the linear model 
by a nonlinear neural network model: 

,),( 1t1 ++ += єxn tt ψε                  (10) 

where ψ are to be estimated parameters and єt+1 is ran-
dom noise. If the mean-squared-error over the vector 
of all errors є is smaller compared to ε, we can expect 
some nonlinear dependencies between rt+1 and xt. 

Hence, we write the combined model for return predic-
tions for the nonlinear model following equation (9): 

),,,,1 rtrrtrt ˆx(nˆxr̂ ψβ +′=+                  (11) 

where the model parameters rβ̂  are OLS estimates. 
The parameters rψ̂  are obtained from neural net-
work training with the linear residuals as network 
targets (equation (10)). By analyzing the errors ε 
and є, we can separate the prediction performance 
due to the linear regression and assess the added 
value of the neural network. 

For realized correlation consider the same model 
structure as presented for asset returns. That is for 
the nonlinear predictions: 

),,( ,,1, ρρρρ ψβρ ˆxnˆxˆ tttij +′=+                 (12) 

where ρβ̂  are again estimated OLS parameters and 

ρψ̂  are estimated neural network parameters. For an 
in depth overview on neural network modeling we 
refer to Kuan and White (1994) and Bishop (1995). 
The following specifications are made to the neural 

network which are used for estimating nonlinear 
parameters ψ̂ . We use Bayesian regularization for 
parameter estimation based on the work of MacKay 
(1992)1. This is a very sophisticated and powerful 
algorithm to achieve network models with good 
generalizing abilities. The algorithm ensures that the 
network is kept at the necessary simplicity and is 
not overparameterized. We use a computationally 
efficient method which is described by Foresee and 
Hagan (1997) by integrating the Levenberg-Marquardt 
algorithm to the neural network estimation process. All 
neural networks we use throughout this paper are 
trained with seven neurons in a single hidden layer 
with logistic activation function2. 

3.2. Linear and nonlinear prediction models for 
volatilities. The prediction model for conditional 
volatilities is explained by a vector of predictive 
variables 1q

,,1,,, R),,,1(x +∈′= qtVOLtVOLtVOL xx K  and for 
the linear part by a (q + 1) vector βVOL of coeffi-
cients (again including a constant) which has to be 
estimated. q states the number of independent va-
riables that are used to predict volatility. Similar to 
Marquering and Verbeek (2004) and in the fashion 
of Harvey’s (1974) model of multiplicative heteros-
cedasticity, we assume for the linear model: 
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where we denote VOLt+1 to be the asset’s conditional 
volatility. Again, the parameters βVOL are estimated 
via OLS. The linearly predicted value VÔLt+1 in pe-
riod t + 1 for conditional volatility is then given by: 

.log ,1 VOLtVOLt
ˆxLÔV β′=+                 (14) 

To establish the nonlinear model of realized condi-
tional volatilities, we extend the prediction model 
for VOLt+1 by forecasting exp(εVOL,t+1) from equation 
(13) through a neural network approach. We there-
fore write: 

,),()exp( 1,,1, ++ += tVOLVOLtVOLtVOL єxn ψε            (15) 

where estimates for the parameters ψVOL are again 
obtained from neural network learning. Given the 
linear OLS estimates VOLβ̂  from (13) and the network 
estimates VOLψ̂  from (15), the predicted values from 
the nonlinear model for VÔLt+1 are derived from: 

).,(x)xexp( ,,1 VOLtVOLVOLtVOLt ˆnLÔV ψβ ⋅′=+               (16) 

                                                      
1 A review of Bayesian techniques for neural networks is also given by 
Bishop (1995, pp. 385-433). 
2 Due to the properties of Bayesian regularization, an increasing number 
of neurons in the hidden layer does not change the results severely. 
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Predictions for realized conditional volatilities for 
all assets in combination with predictions for all 
assets correlations allow us to construct a prediction 
of their joint covariance matrix. This will be useful 
for calculating optimal portfolios. 

In summary, the linear prediction models are de-
scribed by equation (7) (excess returns), (8) (corre-
lations), and (14) (volatilities). The nonlinear mod-
els are represented by equation (11) (excess returns), 
(12) (correlations), and (16) (volatilities). 

3.3. Realized volatility and correlation. Defining 
realized returns is straight forward. We compute 
monthly returns rt from prices P as rt = logPt − 
logPt-1. We subtract the risk-free rate to obtain 
excess returns. However, for assessing the cova-
riance matrix, we have to rely on volatility model-
ing. In our analysis, we use daily returns to calculate 
monthly realized volatility. This approach is dis-
cussed by Merton (1980), French, Schwert and 
Stambaugh (1987), Schwert (1989), and more re-

cently by Andersen, Bollerslev, Diebold and Labys 
(2003) and Andersen, Bollerslev and Diebold 
(2009). Similar to Schwert (1989), we measure vo-
latility of monthly returns as the sum of squared 
daily returns: 

,
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tdt rVOL                   (17) 

where rd,t is the return on day d and Dt is the number 
of trading days in month t. 

In a similar fashion, we measure the correlation 
between asset returns. We denote the correlation 
between asset i and j as1: 
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Subsequently, we can generate the covariance ma-
trix of two assets i and j in month t + 1 as  
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We predict the individual elements in Ωt+1 with a 
linear and a nonlinear model as described in the 
previous sections to assess the expected covariance 
matrix 1+Ωt

ˆ . The predictions are restricted to be 
positive for values of VOLt+1 and between -1 and 1 
for values of ρij,t+1. As such, we assure that the cova-
riance matrix is positive semidefinite. 

4. Empirical results 

4.1. Data summary. In this section, the forecast-
ing models are applied to empirical data. The as-

set universe consists of two popular risky asset 
classes, i.e., equities and bonds, and a risk-free 
asset. The investor allocates his wealth each 
month to the German stock market performance 
index DAX, the bond performance index REXP 
and the one-month Frankfurt banks middle rate (as 
a proxy for the risk-free asset)2. We use monthly 
data for returns covering the time period from Jan-
uary 1988 to December 2007 and we use daily 
returns of the DAX and REXP to measure realized 
volatility and correlation. 

Table 1. Sample summary statistics12 
The table provides summary statistics for excess returns of the German stock market DAX 30 performance index and the 
REXP performance bond index for the period from 1988 to 2007 and two sub-periods from 1988 to 1997 and from 1998 to 
2007. The table also provides summary statistics of the mean of the 30-days average realized volatility and correlation mea-
sure based on daily returns. 

 January 1988-December 2007 
T = 240 

January 1988-December 1997 
T = 120 

January 1998-December 2007 
T = 120 

DAX excess returns 
Mean (%) 0.492 0.709 0.275 
Mean realized volatility 6.386 5.369 7.262 
REXP excess returns 
Mean (%) 0.113 0.097 0.130 
Mean realized volatility 0.898 0.873 0.922 
DAX, REXP return correlation 
Mean realized correlation 0.163 0.432 -0.106 

                                                      
1 See also Ferland and Lalancette (2006) for a similar approach. 
2 The rate has a correlation to the one-month EURIBOR of practically one. However, we use the Frankfurt rate due to a longer time-series history. 
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Table 1 presents summary statistics of the stock- 
and bond index excess returns. The table provides 
sample statistics for the entire data sample of 20 
years and two sub-samples of 10 years from 1988 to 
1997 and 1998 to 2007. The sample statistics show 
the typical characteristics of the two asset classes, 
where the equity index yields higher excess returns 
compared to bond index excess returns, but is asso-
ciated with higher risk (i.e., realized volatility). For 
the entire sample period, January 1988 to December 
2007, the mean of monthly DAX excess returns is 
0.49% with a corresponding mean realized volatility of 
6.39%. For the same sample period bonds have a mean 
of monthly excess returns of 0.11%. The lower returns 
also correspond to lower volatility of about 0.90% per 
month. The mean realized correlation of excess returns 
is 0.16 for the entire sample. The sub-samples reveal 
that the correlation is clearly positive during the period 
from 1988 to 1997 (0.43) and negative in the subse-
quent period from 1998 to 2007 (-0.11). 

For our choice of predictive variables for asset re-
turns we refer to Keim and Stambaugh (1986), Fama 
and French (1988), Campbell and Shiller (1988a; 
1988b), Fama and French (1989), and Campbell and 
Yogo (2006). For DAX excess return predictions, the 
dividend yield (DY), earnings-price ratio (E/P) and 
term-structure (TERM) are included as predictive 
variables. All variables are included with a one-
month lag in order to perform true ex ante predic-
tions. The term structure is defined as the spread 
between long-term German government bond yields 
(9-10 years) and the one-month short-term interest. 
For REXP bond excess return predictions the term-
structure (TERM) is used and the growth rate of M3 
money supply (contribution to Euro basis) denoted 
by ∆MNY. The choice of predictive variables is moti-
vated by the literature: The dividend yield and earn-
ings-price ratio as predictive variables for equity 
returns have been used, for example, by Lewellen 
(2004) and Lettau and van Nieuwerburgh (2007), 
among many others. Predictions of bond returns are 
discussed, for example, by Keim and Stambaugh 
(1986) and Fama and French (1989). 

For DAX and REXP volatility predictions the same 
predictive variables are used as for their return pre-
dictions, but also one-month lagged realized condi-
tional log volatility is included to account for vola-
tility clusters1. Correlations are predicted by one-
month lagged realized correlations and one-month 
lagged realized conditional log volatilities of DAX 
and REXP returns. This choice of variable selection 
is motivated by Elton, Gruber and Spitzer (2006), 

                                                      
1 See Marquering and Verbeek (2004) for a similar procedure. 

who emphasize the autoregressive character of cor-
relations and note that variances can be useful for 
correlation forecasting. All data is taken from 
Thomson Reuters Datastream. 

4.2. Prediction results. The sample period goes 
from January 1988 to December 2007 and contains 
240 months of data. Predictions are made in recur-
sive model estimations and proceeds as follows: 120 
observations from the beginning of the time series 
(i.e., from January 1988 to December 1998) are 
taken as base period. The linear and nonlinear mod-
els are estimated from these observations and the 
parameter values are used to make predictions for 
January 1999. In order to make predictions for Fenr-
uary 1999, the sample is increased to the period from 
January 1988 to January 1999 and we re-estimate the 
model parameters each month. We proceed as such 
for each subsequent month. Consequently, we em-
ploy an expanding data window for parameter esti-
mation, where the final parameters are estimated 
from the data sample containing data from January 
1988 to November 2007 in order to make predictions 
for December 20072. We can evaluate the predictions 
for each month as out-of-sample results since the 
recursive procedure ensures that the predicted month 
is not used for model parameter estimation. 

We report both, in-sample and out-of-sample pre-
diction results in order to assess the quality of the 
predictive models. In-sample results are derived 
from a prediction model whose parameters are esti-
mated from a data set and the same data is used for 
in-sample performance measures. By contrast, for 
out-of-sample results excluded data from the estima-
tion period is reserved for out-of-sample perfor-
mance measurement. For linear regressions it is 
common practice to report only in-sample results. 
However, in this analysis it is also important to con-
sider out-of-sample results due to two reasons: First, 
the in-sample and out-of-sample performance of 
neural network models can severely differ because of 
over-fitting. Second, it is a general problem to 
achieve good out-of-sample performances for finan-
cial market predictions, even though when in-sample 
results are promising, as shown by Bossaerts and 
Hillion (1999) and Goyal and Welch (2003; 2008). 

In particular, the following measures of forecasting 
accuracy are used to compare the fit of the models. 
When ŷt+1 is a fitted (in the case of in-sample analysis) 
or predicted (in the case of out-of-sample analysis) 
value and yt+1 is the true value, the root mean squared 
error (RMSE) of prediction is given by: 

                                                      
2 This recursive method of model estimation is also chosen by Qi (1999) 
and Marquering and Verbeek (2004). 
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where T is the number of months which are used for 
parameter estimation. Furthermore, the mean absolute 
error (MAE) is defined as the absolute deviation be-
tween the true value and the fitted or predicted value: 
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The correlation (CORR) between the true value and 
the fitted or predicted value by the model is given by: 
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where 1+ty  is the mean of the true values and 1+tŷ  
is the mean of the fitted or predicted values. Firstly, 
we concentrate on the (in-sample) fitted values ra-
ther than on the (out-of-sample) predicted values, 
which are analyzed subsequently. 

Table 2. In-sample model fit for DAX and REXP 
excess returns 

The table provides average performance measures, given by (20), 
(21) and (22), for fitted values of DAX and REXP excess return. 
The linear model is based on OLS estimates for rtrt

ˆr̂ β,1 x′=+  and 
the nonlinear model is based on OLS and neural network esti-
mates for ),(xx ,,1 rtrrtrt nˆr̂ ψβ +′=+ . * Indicates that the model 
is significantly different to the performance measure of the 
historical mean model, based on a 5% significance level t-test. 
† indicates that the performance measure for the nonlinear model 
is significantly different to the performance measure of the linear 
model at the 5% significance level. 

 RMSE MAE CORR 
DAX excess returns (%) 
Historical mean 5.924 4.596 - 
Linear model 5.854 4.536 0.145 
Nonlinear 
model 5.433*† 4.171*† 0.392† 

REXP excess returns (%) 
Historical mean 1.011 0.815 - 
Linear model 1.008 0.818 0.064 
Nonlinear 
model 0.939*† 0.753*† 0.368† 

For excess return predictions, we use lagged predic-
tive variables (at time t) [ ]′= ttttrDAX TERMP/EDY ,,x ,  
for predicting DAX excess returns and =trREXP ,x

[ ]′Δ= tMNY,TERM t  for predicting REXP excess 
returns. All networks are trained with seven neurons 
in a single hidden layer with logistic activation func-
tion and linear activation function for the output 
unit. Due to a total of 120 recursive estimations it is 
infeasible to report all details of every single estima-

tion. In Table 2 the average of each measure across 
all estimations is reported. In addition to the linear 
and nonlinear model, the table reports perfor-
mance measures if the historical mean is taken as 
prediction value. Using the historical mean as 
prediction value corresponds to the assumption 
that there is no dependence whatsoever, neither 
linear nor nonlinear, between the dependent and 
independent variables1. 

Table 2 shows that the nonlinear model provides the 
best fit to the data across all measures. Obviously, 
the nonlinear model yields the smallest RMSE and 
MAE performance values, and the correlation meas-
ure CORR is the largest. For DAX excess returns the 
RMSE reduces from 5.92 for the historical mean 
model to 5.85 for the linear model. This error meas-
ure decreases to 5.43 for the nonlinear model. The 
differences might seem small but they are signifi-
cantly different based on a t-test with 5% signific-
ance level. Also, the correlation between the true 
values and predicted values significantly improve 
when we turn from the linear model (CORR = 0.15) 
to the nonlinear model (CORR = 0.39)2. 

Table 3. In-sample model fit for DAX and REXP 
volatilities and correlation 

The table provides average performance measures, given by (20), 
(21) and (22), for fitted values of DAX and REXP volatilities and 
correlation. The linear model is based on OLS estimates and is 
given for correlation forecasting by equation (8) and for volatility 
forecasting by (14). The nonlinear model is based on OLS and 
neural network estimates and is given for correlation forecasting 
by equation (12) and for volatility forecasting by (16). * Indicates 
that the model is significantly different to the performance meas-
ure of the historical mean model, based on a 5% significance level 
t-test. † indicates that the performance measure for the nonlinear 
model is significantly different to the performance measure of the 
linear model at the 5% significance level. 

 RMSE MAE CORR 
DAX variances (%) 
Historical mean 7.032 5.085 - 
Linear model 6.459* 4.475* 0.501 
Nonlinear model 6.171*† 4.619* 0.569† 
REXP variances (%) 
Historical mean 0.815 0.652 - 
Linear model 0.767* 0.604* 0.456 
Nonlinear model 0.693*† 0.584*† 0.658† 
DAX, REXP correlation 
Historical mean 0.357 0.294 - 
Linear model 0.281* 0.222* 0.603 
Nonlinear model 0.277*† 0.220* 0.620 

                                                      
1 Calculating the correlation measure (CORR) for the historical mean model 
for in-sample performance is infeasible because the prediction value corres-
ponds to the historical mean, leading to a nominator and denominator in 
equation (22) being close to zero. The values are therefore not reported. 
2 Significance for CORR is based on a hypothesis test for equal correla-
tion coefficients at the 5% significance level. 
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In addition to excess return predictions, we perform 
forecasts for realized conditional volatilities and 
correlations of the DAX and REXP indexes. For 
volatility forecasts the same independent variables 
are included as for their excess return predictions. In 
addition, one-month lagged conditional volatilities 
are included to account for volatility clustering. I.e., 
the vectors of independent predictive variables are 
given by [ ]′= ttttDAXtVOL TERMPEDYVOLx

DAX
,/,,log ,,  and 

[ ]′Δ= tttREXPtVOL MNYTERMVOLx
REXP

,,log ,, . For predicting 
correlations, lagged correlation and lagged log va-
riances are used as vector of independent variables, 
i.e., [ ]′= tREXPtDAXtt VOLVOLx ,,, loglogρρ . The in-
sample performance results of the fitted values are 
presented in Table 3. 

We observe that the nonlinear model performs again 
best according to the given performance measures. 
A single exception is the MAE for DAX volatilities, 
where the MAE = 4.48 for the linear model yields a 
better performance than the MAE = 4.62 for the 
nonlinear model. We find that the linear and nonli-
near model is always significantly better than the 
historical mean. In-sample results presented so far 
indicated considerable improvement by implement-
ing neural networks for predicting excess returns 
and conditional volatilities. We now turn to the out-
of-sample performances. It is well known from Bos-
saerts and Hillion (1999), Goyal and Welch (2003; 
2008) and Lettau and van Nieuwerburgh (2007) that 
for linear regressions, even with significant in-sample 
predictability of financial market data, the out-of-
sample prediction properties are generally poor. 

Out-of-sample results of predicted values are again 
evaluated based on the measures RMSE, MAE and 
CORR. The measures are calculated over all out-of-
sample predictions − a total of 120 observations. 

Table 4. Out-of-sample prediction performance for 
DAX and REXP excess returns 

The table provides average performance measures, given by 
(20), (21) and (22), for DAX and REXP excess return predic-
tions. The linear model is based on OLS estimates for 

rtrt
ˆr̂ β,1 x′=+  and the nonlinear model is based on OLS and neural 

network estimates for ),(x ,,1 rtrrtrt xnˆr̂ ψβ +′=+ . * Indicates that 
the performance measure for the nonlinear model is significant-
ly different to the performance measure for the historical mean 
model at the 5% significance level. 

 RMSE MAE CORR 
DAX excess returns (%) 
Historical mean 6.862 5.249 -0.089 
Linear model 6.873 5.216 0.101 
Nonlinear model 7.338 5.747 0.152* 
REXP excess returns (%) 
Historical mean 0.905 0.741 -0.162 
Linear model 0.903 0.741 0.039 
Nonlinear model 0.988 0.801 0.138* 

Table 4 reports the out-of-sample performance meas-
ures. The RMSE for DAX excess returns for the non-
linear model is 7.34, for the linear model 6.87 and 
6.86 if we take the historical mean as predictive val-
ue1. Consistent with the literature, we find that the 
out-of-sample prediction power vanishes. In terms of 
RMSE and MAE the nonlinear model underperforms 
the benchmark models. However, the correlation of 
predicted values and true values increases. The nonli-
near CORR results are significantly better than the 
historical mean model, whereas we find no signifi-
cant improvement compared to the linear model. 

Table 5. Out-of-sample prediction performance for 
DAX and REXP volatilities and correlation 

The table provides average performance measures, given by 
(20), (21) and (22), for DAX and REXP volatilities and correla-
tion predictions. The linear model is based on OLS estimates 
and is given by equation (8) for correlation forecasting and by 
(14) for variance forecasting. The nonlinear model is based on 
OLS and neural network estimates and is given by equation (12) 
for correlation forecasting and by (16) for variance forecasting. 
* Indicates that the performance measure for the model is sig-
nificantly different to the performance measure for the historical 
mean model at the 5% significance level. † indicates that the 
CORR performance measure is significantly greater than zero 
based at the 5% significance level. 

 RMSE MAE CORR 
DAX volatility (%) 
Historical mean 8.207 6.059 -0.103 
Linear model 7.368 5.169 0.616*† 
Nonlinear model 6.742 5.086 0.668*† 
REXP volatility (%) 
Historical mean 0.745 0.615 -0.186 
Linear model 0.684 0.569 0.456*† 
Nonlinear model 0.710 0.612 0.463*† 
DAX, REXP correlation 
Historical mean 0.467 0.399 0.248† 
Linear model 0.316 0.250 0.383† 
Nonlinear model 0.315 0.254 0.371† 

The out-of-sample prediction results for volatilities 
and correlation are presented in Table 5. DAX vola-
tilities are best predicted by the nonlinear model as 
all three performance measures indicate. The RMSE 
is 6.74, compared to 7.37 for the linear model and 
8.21 for the historical mean. A joint F-test shows 
that the nonlinear model outperforms the historical 
mean model at the 5% significance level. 

For REXP volatility predictions we see that the 
RMSE and MAE are the lowest for the linear model. 
The correlation is the largest for the nonlinear model 
(CORR = 0.46) showing some ambiguity to rank the 

                                                      
1 Note that the performance measures for DAX excess returns of the 
nonlinear model are based on two removed outliers, which gave clearly 
unrealistic return predictions of 60% and -42%. 
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models even though the linear and nonlinear models 
outperform the historical mean. We find the same 
result for correlation forecasts. The linear and nonli-
near models outperform the historical mean. 

Before we discard our prediction results as their sta-
tistical out-of-sample accuracy is weak and some-
what ambiguous (i.e., weak RMSE and MAE, but 
improving CORR measure) we analyze the contribu-
tion to the allocation of assets by a mean-variance 
investor. Therefore, in the next section we let a mean-
variance investor use our prediction results to com-
pute optimal asset weights and we analyze whether 
the predictions are economically exploitable. 

4.3. Asset allocation results. To evaluate the ulti-
mate value of our predictions, we use our out-of-
sample predictions as inputs for portfolio construc-
tion. Consider the mean-variance investor from sec-
tion 3 with one-month investment horizons. The asset 
weights wt are the solution of equation (4). Those 
mean-variance asset allocations are solely based on 
out-of-sample predictions. The predictions are used as 
conditional expectations for the necessary parameters 
in mean-variance optimization. The conditional expec-
tations for excess returns 1+tr̂  and covariances 1+Ωt

ˆ  are 
plugged into the mean-variance optimization. 

We use our 120 out-of-sample monthly predictions 
for 120 out-of-sample portfolios covering the pe-
riod from January 1998 to December 2007. We 
focus on three kinds of investors. The first investor 
is an “uninformed” investor who does not use pre-
diction models for conditional expectations. This 
investor uses the historical mean for expected re-
turns and the covariance matrix. The second inves-
tor relies on recursive linear prediction models for 
conditional parameter expectations and the third 
investor uses recursive nonlinear prediction models. 
For comparison, we additionally evaluate equally 
weighted portfolios. 

We assume γ = 6 for the investor’s risk aversion, 
which represents a moderately risk averse investor. 
We also allow or exclude short-sales constraints, i.e. 
we restrict the portfolio weights to be positive and 
the sum of weights to be less or equal to one. 

For evaluating portfolio performances, we calculate 
Sharpe ratio as the ratio of mean excess portfolio 
returns and the portfolio’s standard deviation. How-
ever, for time-varying volatility, Sharpe ratio over-
estimates portfolio risk. We report Sharpe ratio as a 
common measure of portfolio performance as well 
as average realized utility Ū. The utility-based per-
formance measure is an estimate of the portfolio’s 
economic value. It states the investor’s certainty 
equivalent, i.e., the certain return that provides the 

same utility to the investor as the risky portfolio1. 
Average realized utility Ū is obtained by: 
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where p
tR 1+  is the realized return of the portfolio and 

1+Ωt  is the realized covariance matrix in month t + 1. 
A utility-based measure of portfolio performance in 
a linear setting is used by Marquering and Verbeek 
(2004) and for volatility timing by Fleming et al. 
(2001). This approach provides a good measure to 
compare different portfolio strategies. Furthermore, 
we report a common measure from the literature to 
evaluate the outperformance of a portfolio strategy 
which is provided by Jensen’s alpha (Jensen, 1969). 
Alpha represents outperformance and is calculated 
as the estimated intercept in a regression of excess 
returns upon the market’s excess returns: 
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An advantage of the performance measure α is that 
it does not include a simple leverage of the market 
portfolio (which is absorbed by β). In addition, we 
can use standard regression analysis to evaluate this 
measure. A standard t-test can be employed for test-
ing whether a is significantly larger then zero. It is 
reasonable for an investor to invest a part of his 
wealth in the portfolio when a has a positive value. 

However, market-timing implies that beta varies 
over time. In this case, Jensen’s alpha is a biased 
measure because beta is not constant and depends 
on market excess returns. Treynor and Mazuy 
(1966) suggest to use a measure that adds a quadrat-
ic term in the fitting formula2. The Treynor and 
Mazuy measure is thus given by: 
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Including the quadratic term of market excess 
returns implies that beta depends linearly on mar-
ket excess returns. Consequently, we can explain 
the Treynor and Mazuy measure by plugging 

m
tr10 βββ +=  into equation (24). If β1 has positive 

value, the equation describes a convex and upward-
sloping regression line. Positive slope of squared 
market excess returns (i.e., a significant positive 
value of β1) indicates successful market timing. That 
means a positive coefficient indicates higher returns 
in up markets and less negative returns in down 
markets. We can also use t-statistics to evaluate the 

                                                      
1 This criterion for ranking the performance of prediction models on a 
utility-based measure is suggested by West, Edison and Cho (1993). 
The proposed measure utilizes the close relationship between mean-
variance analysis and quadratic utility. 
2 See Treynor and Mazuy (1966, p. 134). 
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regression model. We also report asset allocation 
results with short selling constraints, i.e. restricting 
the sum of risky asset weights to the interval [0; 1]. 
Imposing short selling restrictions avoids extreme 
asset weights and is common practice for portfolio 
optimization. Markowitz (1959) and Rudolf (1994) 
discuss techniques to optimize portfolios including 
asset weights being subject to specific constraints. 

Table 6 presents out-of-sample asset allocation 
results when excess returns and the elements in 
the covariance matrix are predicted by the respec-
tive forecasting models. Using historical means of 
moments for portfolio construction (strategy 3 and 
4) yields a Sharpe ratio of 0.08 for the uncon-
strained case and 0.02 when asset weights are 
restricted to [0; 1]. 

Table 6. Asset allocation evaluation: equities, bonds and risk free asset 
The table provides out-of-sample results of asset allocation performances including monthly excess returns, monthly standard devia-
tion, Sharpe ratio, monthly average utility assuming a relative risk aversion of γ = 6, Jensen’s alpha, its t-statistics and t-statistics for 
the Treynor Mazuy measure. The investor can allocate his wealth to the DAX equity index, the REXP bond index and a risk free 
asset. Excess returns, standard deviation and Jensen’s alpha are in percent. 

 Avg. exc. return Std. dev. Sharpe ratio Avg. utility J’s alpha (t-stat.) TM (t-stat.) 
1. 33/33/33 0.1335 2.1614 0.0618 -0.0004    
2. 50/50 0.2023 3.2749 0.0618 -0.0019    
3. Hist. moments 0.2488 3.1643 0.0786 -0.0010    
4. Hist. moments [0; 1] 0.0586 2.2597 0.0226 -0.0016    
5. µlinear 1.2569 12.2141 0.1029 -0.0255 0.7208 0.7735 -1.1764 
6. µnonlinear 9.2956 32.7581 0.2838 -0.8492 8.7567 2.9727 -0.5098 
7. µlinear [0;1] 0.5685 3.9226 0.1449 0.0005 0.4955 2.4363 -0.3365 
8. µnonlinear [0;1] 1.1473 4.2794 0.2681 0.0056 1.0836 3.6751 3.8734 
9. (µ, σ)linear 1.6845 7.8473 0.2147 -0.0005 1.3848 2.1953 -1.6475 
10. (µ,σ)nonlinear 4.1675 16.6644 0.2501 -0.1386 3.7143 2.5832 -1.0147 
11. (µ, σ)linear [0;1] 0.5367 3.2275 0.1663 0.0022 0.4826 2.4372 -2.0535 
12. (µ, σ)nonlinear [0;1] 1.0685 3.9115 0.2732 0.0056 1.0109 3.7190 3.9119 

 

In terms of Sharpe ratio, the unconstrained approach 
produces slightly better performances than the naive 
equally weighted strategies 1 (denoting one third of 
wealth to each asset) and 2 (denoting 50% of wealth 
to each risky asset). Average realized utility is -
0.0004 and -0.0019 for strategies 1 and 2 respective-
ly. In terms of this measure, strategies 3 and 4 per-
form better than strategy 2, but not in comparison to 
strategy 1. Strategies 5 to 8 represent results for 
asset allocations where excess returns are predicted 
by the linear and nonlinear models. Strategies 9 to 
12 also include predictions for volatility. An inves-
tor who times the market by a nonlinear model ge-
nerates significant positive alpha for constrained and 
unconstrained asset allocation strategies. Also, 
Sharpe ratio is the highest when expectations are 
formed by nonlinear predictions. This is true for 
constrained and unconstrained asset allocations 
compared to linear predictions and historical means. 
If for portfolio optimization only excess return pre-
dictions are considered (and the sample mean cova-
riance matrix), Sharpe ratios for nonlinear predic-
tions are 0.28 for the unconstrained case and 0.27 
for the constrained case. For linear predictions, 
Sharpe ratio is 0.10 for the unconstrained case and 
0.14 for the constrained case. For linear predictions, 
Jensen’s alpha is significant only for constrained 
portfolios, whereas for nonlinear return predictions 

alpha of 8.75% (unconstrained) and 1.08% (con-
strained) are both significant. The Treynor and Ma-
zuy measure is significantly positive only for the 
constrained case (strategy 8). 

If we include volatility and correlation forecasts 
(strategies 9 to 12), Jensen’s alpha is significantly 
positive for the constrained and unconstrained 
cases. In this case, however, the Treynor and Ma-
zuy measure is positively significant only for non-
linear predictions and constrained asset weights 
(strategy 12). 

The average realized utility is strongly affected by 
portfolio constraints. Unconstrained portfolios based 
on conditional predictions perform poorly in terms 
of average realized utility. However, if asset weights 
are restricted, the performance is superior compared 
to the uninformed strategies 1 to 4. Constrained 
portfolios based on nonlinear predictions lead to the 
best performances. Switching from strategy 7 to 11 
by including linear covariance predictions increases 
average realized utility from 0.0005 to 0.0022. By 
contrast, average realized utility remains 0.0056 
when an investor switches from strategy 8 to 12 by 
including nonlinear covariance predictions. This indi-
cates that nonlinear covariance predictions have no 
economic value to mean-variance investors in terms 
of average realized utility. 
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Imposing constraints on asset weights seems rea-
sonable in the light of extreme unconstrained asset 
weights1. Constrained portfolios based on nonlinear 
predictions have larger Sharpe ratios than their li-
near and historical mean counterparts, larger aver-
age realized utility, larger alpha values and have 
significantly positive Treynor and Mazuy measures 
in contrast to the linear predictions. The asset allo-
cations returns for strategy 7 are plotted against 
constrained historical mean portfolio returns in Fig-
ure 1. The fitted Treynor and Mazuy regression is 
also shown. The graph indicates that the nonlinear 
investment strategy leads to favorable market tim-
ing. The convex regression line shows that asset 
allocations returns are higher in up markets and less 
negative in down markets. 
Whereas Marquering and Verbeek (2004) find that 
linear prediction models for S&P 500 returns and 
 

volatility lead to a significant coefficient in the 
Treynor and Mazuy measure, we find the contrary 
in our linear prediction models for DAX and REXP 
returns and volatilities. The Treynor and Mazuy 
measure is only significantly positive if returns are 
predicted by the nonlinear model. 

In order to analyze to which period we can attribute 
the asset allocation performances, it is helpful to 
look at out-of-sample portfolios for several sub-
samples. This question is investigated by plotting 
the capital market line (CML) based on portfolios 
constructed by using historical mean estimates. Port-
folio standard deviations and returns are then calcu-
lated based on average realized returns and risks. We 
also plot the average realized portfolio standard devi-
ation and return for constrained linear and nonlinear 
portfolios (i.e., strategies 11 and 12). 

 
Fig. 1. Empirical Treynor and Mazuy measure for strategy 12 

The sample1is equally divided into six sub-samples, 
such that each sub-sample includes a period of 20 
months. The results are graphically shown in Figure 
2. Portfolios based on linear predictions are indi-
cated by a cross, portfolios based on nonlinear pre-
dictions are indicated by a circle. A portfolio located 
above the historical mean CML indicates an outper-
forming risk-return-profile. Figure 2a reveals that 
the constrained nonlinear portfolio delivers a better 
out-of-sample risk-return-profile than the historical 
mean portfolios during the period from January 
1998 to August 1999. By contrast, the linear portfo-
lio performs worse in this period. We observe that 
the out-of-sample nonlinear portfolios are superior 
during the period from January 1998 to August 1999 

                                                      
1 Unconstrained asset weights based on linear predictions range from -
280% to 803% and asset weights based on nonlinear predictions range 
from -6,192% to 2,202%. 

and during January 2003 to December 2007. The 
constrained linear portfolio outperforms the histori-
cal mean only during the last two sub-periods (Sep-
tember 2004 to December 2007). The linear portfo-
lio strategy outperforms the nonlinear strategy only 
during the period from May 2001 to December 
2002. The linear portfolio strategy is dominated by 
the nonlinear strategy during all other periods. 

Conclusion 

The aim of our paper is to scrutinize, whether nonli-
near predictability of returns and volatilities has 
economic relevance. Several papers present artificial 
neural networks as promising nonlinear prediction 
method and find some nonlinear dependencies in 
economic time series. We used this approach to 
perform one-month ahead predictions for excess 
returns and the covariance matrix of the German 
equity index DAX and the bond index REXP. 
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Fig. 2. Out-of-sample portfolios of strategy 11 as well as 12 and CML 

We considered unconditional asset allocations and 
linear predictions as benchmark. Our results suggest 
that accounting for nonlinearities in prediction mod-
els for conditional asset allocations lead to exploita-
ble improvements to risk-averse investors. 

In summary, several conclusions can be drawn. Pre-
diction accuracies from in-sample statistics vanish 
for out-of-sample data. Despite weak proof for out-
of-sample prediction accuracy, Table 6 shows that 
out-of-sample asset allocation results improve sig-
nificantly in terms of Jensen’s alpha and Sharpe 
ratio for linear and nonlinear predictions. The 
Treynor Mazuy measure is significantly positive 
and average utility improves when asset weight 
constraints are imposed. Overall, the results from 

Figure 2 indicate that most of the success of the 
timing strategies are attributed to the time period 
from September 2004 to December 2007, and, in 
addition for the nonlinear strategy, from January 
1998 to August 1999. 

The results show that detecting nonlinear dependen-
cies performed by artificial neural networks are 
exploitable and contribute to improved asset alloca-
tion performances. They further improve asset alloca-
tion results compared to linear predictions and histor-
ical moments in terms of Sharpe ratio and Jensen’s 
alpha. Furthermore, when portfolio weights are con-
strained, nonlinear predictions lead to higher average 
realized utility for mean-variance investors and to a 
significantly positive Treynor Mazuy measure. 
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