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Abstract 

The purpose of this paper is to introduce the demand for the quality movement practice in the supply chain environ-
ment. The author shows both the need and application of these measures, especially the need for multivariate quality con-
cepts to reduce the costs of operating supply chains, to control the flow throughout the supply chain and in the dynamic 
behavior of supply chains, to utilize concepts associated with multivariate methods and autocorrelated time series. 
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Introduction© 

Supply chain management involves the leveraging 
of channel wide integration to better serve customer 
needs. Increases in productivity and quality control 
and improvement will follow when firms will im-
plement and coordinate quality management activi-
ties upstream. When corporate management recog-
nizes the aspects of supply chain management, qual-
ity control and quality assurance two duties should 
be undertaken. The first refers to the process where-
by measures are taken to make sure defective prod-
ucts and services are not part of the final output, and 
that the product design meets the quality standards 
set out at the initiation of the project. One may ob-
serve that quality assurance entails overlooking all 
aspects, including design, production, development, 
service, installation, as well as documentation. The 
quality movement is the field that ensures that man-
agement maintains the standards set and continually 
improves the quality of the output. According to Lee 
and Wang (2003, p. 26): “The quality movement has 
offered us sound lessons that can be very powerful 
to address supply chain security lessons. Instead of 
final, end-product source inspection, the quality 
movement emphasizes prevention, total quality 
management, source inspection; profess control and 
a continuous improvement cycle. These are all in-
gredients for successful and effective ways to man-
age and mitigate the risks of supply chain security.” 

We introduce the philosophy and methods of the 
quality improvement to achieve the best results of 
production and supply chain management. This 
paper focuses on supply chain planning with quality 
control in an environment with multiple manufactur-
ing centers and multiple customers.  We first discuss 
the needs for quality planning in the supply chain 
environment to focus on the notion of statistical 
process (or quality) control (SPC); why it is so vital 
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to the performance of a firm’s supply chain and why 
it is so vital to the performance of supply chains in 
the global firm environment? In turn, we introduce 
and discuss the desire for more sophisticated SPC to 
insure that quality and improvement is maintained 
in production processes involving more and greater 
sophisticated production methods. 

While supply chains are so crucial to the health of 
business enterprises, these supply chains must be 
sustained by both preventative and emergency meas-
ures. Zhang, Yu and Huang (2009) propose several 
sophisticated strategies for dealing with SPC strate-
gies in the supply chain environment. Their study 
presents principle agent models regarding the cus-
tomer’s quality evaluation and the supplier’s quality 
prevention level decisions. Studies such as this may 
produce results not heretofore examined by the 
practioner’s of SPC in the supply chain environ-
ment. In addition, threats to supply chains are real 
and many measures must be developed to indicate 
when supply chains are not operating in an efficient 
and productive manner. These measures include 
those of SPC which will indicate when risks are 
present in the supply chain. Since supply chains are 
increasingly globalized, these SPC measures must 
be appropriately placed in the supply chain and the 
choice of the particular SPC procedure is critical in 
developing an optimal plan. 

1. Process control and improvement methodology 

Most SPC methodologies assume a steady state 
process behavior where the influence of dynamic 
behavior is ignored. In the steady state system, dy-
namic behaviors are assumed not present and the 
focus is only on one variable at a time. Specifically, 
SPC control for changes in either the measure of 
location or dispersion or both. SPC procedures as 
practiced do disturb the flow of the production 
process and operations. In recent years, the use of 
SPC methodologies to address the process where 
behavior is characterized by more than one variable 
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is emerging. The purpose of this next section is to 
review the basic univariate procedures to observe 
how they may be improved by more sophisticated 
methods having the same goal. 

2. Univariate control charts 

Shewhart control charts which is the central foun-
dation of univariate SPC has one major shortcom-
ing which we recognize now. The major drawback 
of the Shewhart chart is that it considers only the 
last data point and does not carry a memory of the 
previous data. As a result, small changes in the 
mean of a random variable are less likely to be 
detected rapidly. Exponentially weighted moving 
average (EWMA) chart improves upon the detection 
of small process shifts. Rapid detection of small 
changes in the quality characteristic of interest and 
ease of computations through recursive equations 
are some of the many good properties of the EWMA 
chart that make it attractive. 

EWMA chart achieves faster detection of small 
changes in the mean. It is used extensively in time 
series modeling and forecasting for processes with 
gradual drift (Box and Draper, 1998). It provides a 
forecast of where the process will be in the next 
instance of time. It thus provides a mechanism for 
dynamic process control (Hunter, 1986). 

The EWMA is a statistic for monitoring the process 
that averages the data in a way that gives exponen-
tially less and less weight to data as they are further 
removed in time. 

The EWMA statistic is defined by: 
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Can be used as the basis of a control chart. The proce-
dure consists of plotting the EWMA statistic Zi versus 
the sample number on a control chart with center line 
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The term [ ]i2)1(1 λ−−  approaches unity as i gets 
larger, so after several time periods, the control limit 
will approach steady state values. 
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The design parameters are the width of the control 
limits k and the EWMA parameter λ. Montgomery 

(2005) gives a table of recommended values for 
these parameters to achieve certain average run 
length performance. 

In many situations, the sample size used for process 
control is n = 1; that is, the sample consists of an 
individual unit (Montgomery and Runger, 2003). In 
such situations, the individuals control chart is use-
ful. The control chart for individuals uses the mov-
ing range of two successive observations to estimate 
the process variability. The moving range is defined 
as MRi = abs (Xi – Xi-1) an estimate of б is 
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because d2 = 1.128 when two consecutive observa-
tions are used to calculate a moving range. It is also 
possible to establish a control chart on the moving 
range using D3 and D4 for n = 2. The parameters for 
these charts are defined as follows. 

The central line (CL) upper and lower control limits 
for a control chart for individual are: 
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For a control chart for moving ranges 
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Although very useful, more recent studies indicate 
that misplaced control limits are present in many 
applications as discussed in the next section. 

3. Process with dynamic inputs and behavior 

In an extensive survey, Alwan and Roberts (1995) 
found that more than 85% of industrial process con-
trol applications resulted in charts with possibly 
misplaced control limits. In many instances, the 
misplaced control limits result from autocorrelation 
of the process observations, which violates a basic 
assumption often associated with the Shewhart chart 
(Woodall, 2000). Autocorrelation of process obser-
vations has been reported in many industries, includ-
ing cast steel (Alwan, 1992), blast furnace operations 
(Notohardjono and Ermer, 1986), wastewater treat-
ment plants (Berthouex, Hunter, and Pallesen, 1978), 
chemical processes industries (Montgomery and Ma-
strangelo, 1991), semiconductor manufacturing (Kim 
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and May, 1994), injection molding (Smith, 1993), 
applications with calibration curves (Mestek, Pavlik, 
and Suchanek, 1994), beer demand (Koksalan, Erkip, 
and Moskowitz, 1999) and basic rolling operations 
(Xia, Rao, Shan and Shu, 1994). 

Several models have been proposed to monitor 
processes with autocorrelated observations. Alwan 
and Roberts (1988) suggest using an autoregressive 
integrated moving average (ARIMA) residuals 
chart, which they referred to as a special cause 
chart. For subsample control applications, Alwan 
and Radson (1992) describe a fixed limit control 
chart, where the original observations are plotted 
with control limit distances determined by the va-
riance of the subsample mean series. Montgomery 
and Mastrangelo (1991) use an adaptive exponen-
tially weighted moving average (EWMA) centerline 
approach, where the control limits are adaptive in 
nature and are determined by smoothed estimate 
process variability. Lu and Reynolds (1999) investi-
gate the steady state average run length of cumula-
tive sum (CUSUM), EWMA, and Shewhart control 
charts for autocorrelated data modeled as a first 
order autoregressive process plus an additional ran-
dom error term. Last, Box and Luceno (1997) con-
sidering quality monitoring by feedback adjustment. 

A problem with all these control models is that the 
estimate of the process variance is sensitive to out-
liers. If assignable causes are present in the data 
used to fit the model, the model may be incorrectly 
identified and the estimators of model parameters 
may be biased, resulting in loose or invalid control 
limits (Boyles, 2000). To justify the use of these 
methods, researchers have made the assumption that 
a period of “clean data” exists to estimate control 
limits. Therefore, methods are needed to assure that 
parameter estimates are free of contamination from 
assignable causes of variation. Intervention analysis, 
with an iterative identification of outliers, has been 
proposed for this purpose. The reader interested in 
more detail should see Alwan (2000, pp. 301-307), 
Atienza, Tang and Ang (1998), and Box, Jenkins, 
and Reinsel (1994, pp. 473-474; 2008). Atienza, 
Tang, and Ang (1998) recommend the use of a con-
trol procedure based on an intervention test statistic, 
λ, and show that their procedure is more sensitive 
than ARIMA residual charts for process applications 
with high levels of positive autocorrelation. They 
limit their investigation of intervention analysis, 
however, to the detection of a single level distur-
bance in a process with high levels of first order 
autocorrelation. Wright, Booth, and Hu (2001) pro-
pose a joint estimation method capable of detecting 
outliers in an autocorrelated process where the data 
available is limited to as few as 9 to 25 process ob-
servations. Since intervention analysis is crucial to 

model identification and estimation, we investigate 
varying levels of autocorrelation, autoregressive and 
moving average processes, different types of distur-
bances, and multiple process disturbances. 

The ARIMA and intervention models are appropri-
ate for autocorrelated processes which input streams 
are closely controlled. However, there are quality 
applications, which we refer to as “dynamic input 
processes,” where this is not a valid assumption. 
The treatment of wastewater is one example of a 
dynamic process that must accommodate highly 
fluctuating input conditions. In the health care sec-
tor, the modeling of emergency room service must 
also deal with highly variable inputs. The dynamic 
nature of the input creates an additional source of 
variability in the system, namely the time series 
structure of the process input. For these applica-
tions, modeling the dynamic relationship between 
process inputs and outputs can be used to obtain 
improved process monitoring and control as dis-
cussed by Alwan (2000, pp. 675-679). 

4. Transfer function modeling 

West, Delana and Jarrett (2002) proposed the fol-
lowing transfer function model to solve problems 
having dynamic behavior. 

If a process quality characteristic zt, has a time series 
structure, an ARIMA model of the following gener-
al form can represent the undisturbed or natural 
process variation: 

Φ(B)a(B)zt = Ѳ(B)at.       (9) 

In equation (1), B represents the back-shift operator, 
where B(zt) = zt-1. The value of Φ(B) represents the 
polynomial expression (1 – Φ1(B) − … − Φ1Bp), 
which models the autoregressive (AR) structure of 
the time series. The value of the Ѳ (B) represents the 
polynomial (1 – Ѳ1(B) - … - Ѳq Bq), which models 
the moving average (MA) structure of the time se-
ries. The value of a(B) represents the expression 

dd BB 2
8

1 )1()1( −− , where d = d1 + sd2. This quantity is 
a polynomial in B that expresses the degree of diffe-
rencing required to achieve a stationary series and 
accounts for any seasonal pattern in the time series. 
Finally, at is a white noise series with distribution N 

)(O,2
α . This model is described by Chen and Liu 

(1993a, 1993b). If the series zt are contaminated by 
periods of external disturbances to the process, the 
ARIMA model may be incorrectly specified, the 
variability of the residuals overestimated, and the 
resulting control limits incorrectly placed. 

The following transfer function model of Box and 
Tiao (1975) describes the observed quality characte-
ristic, yt, as a function of three courses of variability: 
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The first term v(B)xt-b, is the dynamic input term and 
represents an impulse function. v(B), applied to the 
input xt-b with a lag of b time periods. If a dynamic 
relationship between the input and output time se-
ries exists, lagged values of process inputs can be 
modeled, resulting in considerable reduction of un-
explained variance. The second term, w(B)/δ(B)It, is 
the intervention term and identifies periods of time 
when assignable causes are present in the process. 
Here, It is an indicator variable with a value of zero 
when the process is undisturbed and a value of one 
when a disturbance is present in the process. See, 
for example, Box, Jenkins and Reinsel (1994, p. 
392; 2008) for the development of the transfer func-
tion term, and Box, Jenkins and Reinsel (1994, p. 
462; 2008) for details of the intervention term. The 
rational coefficient term It is a ratio of polynomials 
that defines the nature of the disturbance as detailed 
in Box, Jenkins and Reinsel (1994, p. 464; 2008). 
The third term (Ѳ(B)/Φ(B) at, is the basic ARIMA 
model of the undisturbed process from equation (9). 
We refer to equation (10) as the “transfer function” 
model throughout this paper. 

Different types of disturbances can be modeled by 
the proper design of the intervention term. The two 
most common disturbances for quality applications 
are a point disturbance, with an impact observed for 
only a single time period, and a step disturbance, 
with an impact persisting undiminished through 
several subsequent observations. The point distur-
bance is modeled as an additive outlier (AO). An 
AO impacts the observed process at one observa-
tion. The AO is modeled in the form: 
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where w0 is a constant. A step disturbance to the 
process is modeled as a level-shift outlier (a form of 
innovational outlier or IO) in the form: 
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Chang, Tiao, and Chen (1988) and Chen and Liu 
(1993a; 1993b) discuss both types of disturbance. 

Chang, Tiao, and Chen (1988) extended the concepts 
of Box and Tiao (1975) to an iterative method for 
detecting the location and nature of outliers at un-
known points in the time series. The above researchers 
defined procedures for detecting innovational outliers 
and additive outliers and for jointly estimating time 
series parameters. Their work also demonstrates the 
need for future study of the nature of outliers. 

5. Multivariate control charts 

Multivariate analyses utilize the additional informa-
tion due to the relationships among the variables and 
these concepts may be used to develop more efficient 
control charts than simultaneously operated several 
univariate control charts. The most popular multiva-
riate SPC charts are the Hotelling’s T2 (see Sullivan 
and Woodall (1996) and multivariate exponentially 
weighted moving average (MEWMA) (Elsayed and 
Zhang, 2007). Multivariate control chart for process 
mean is based heavily upon Hotelling’s T2 distribu-
tion, which was introduced by Hotelling (1947). Oth-
er approaches, such as a control ellipse for two re-
lated variables and the method of principal compo-
nents, are introduced by Jackson (1956) and Jackson 
1959. A straightforward multivariate extension of the 
univariate EWMA control chart was first introduced 
in Lowry Woodall, Champ and Rigdon (1992) and 
Lowry and Montgomery (1995) developed a multiva-
riate EWMA (MEWMA) control chart. It is an exten-
sion to the univariate EWMA. 

Zi = Λ X + (I − Λ)Zi-1,                 (13) 

where I is the identity matrix, Z is the ith EWMA 
vector, ,X  is the average ith observation vector I = 
1, 2, …, n, Λ is the weighting matrix. The plotting 
statistic is: 
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Lowry and Montgomery (1995) showed that the 
(k,1) element of the covariance matrix of the ith 
EWMA, ∑zi, is: 
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where бk,1 is the (k,1) element of ∑, the covariance 
matris of X . 

If λ1 = λ2 = …….. = λp = λ, then the above expres-
sion simplifies to: 
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where ∑ is the covariance matrix of the input data. 

There is a further simplification. When I becomes 
large, the covariance matrix may be expressed as: 

∑∑ −
=

λ
λ

2
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Montgomery and Wadsworth (1972) suggested a mul-
tivariate control chart for process dispersion based 
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In the next section, we explore how multivariate me-
thods improve process control in the supply chain. 

6. Interpretation of multivariate process control 

Multivariate quality control (MPC) charts (Hotelling, 
1947; Jackson, 1956, 1959, 1985; Hawkins, 1991, 
1993, Kalagonda and Kulkarni, 2003, 2004; Wierda, 
1994; Jarrett and Pan, 2006, 2007a, 2007b; Mestik, 
Mastrangelo and Forrest, 2002) have several advan-
tages over creating multiple univariate charts for the 
same business situation: 

1. The actual control region of the related variables 
is represented. In the bivariate case the repre-
sentation is elliptical. 

2. You can maintain a specific probability of a 
Type 1 error (the risk). 

3. The determination of whether the process is out 
of or in control is a single control limit. 

Currently, there is a gap between theory and prac-
tice and this is the subject of this manuscript. Many 
practitioners and decision-makers have difficulty 
interpreting multivariate process control applica-
tions, although Montgomery (2005) addresses many 
of the problems of understanding not discussed in 
the technical literature noted before. For example, 
the scale on multivariate charts is unrelated to the 
scale of any of the variables, and an out-of-control 
signal does not reveal which variable (or combina-
tion of variables) causes the signal. 

Often one determines whether to use a univariate or 
multivariate chart by constructing and interpreting a 
correlation matrix of the pertinent variables. If the 
correlation coefficients are greater than 0.1, you can 
assume the variables correlate, and it is appropriate 
to construct a multivariate quality control chart. 

The development of information technology enables 
the collection of large-size data bases with high di-
mensions and short sampling time intervals at low 
cost. Computational complexity is now relatively 
simple for on-line computer-aided processes. In turn, 
monitoring results by automatic procedures produces 
a new focus for quality management. The new focus 
is on fitting the new environment. SPC now requires 
methods to monitor multivariate and serially corre-
lated processes existing in new industrial practice. 

Illustrations of processes which are both multiva-
riate and serially correlated are numerous in the 

production of industrial gasses, silicon chips and 
highly technical computer driven products and ac-
cessories. In optical communication products manu-
facturing, the production of fiber optic is based on 
SiO2 rods made from condensation of silicon and 
oxygen gasses. The preparation of SiO2 rods need to 
monitor variables such as temperature, pressure, 
densities of different components, and the intensity 
of molecular beams. Similar processes exist in 
chemical and semiconductor industries where mate-
rials are prepared and made. In service industries, 
the correlation among processes are serial because 
due to the inertia of human behaviors, and also 
cross-sectional because of the interactions among 
various human actions and activities. As an exam-
ple, the number of visits to a restaurant at a tourist 
attraction may be serially dependent and also related 
to (1) the room occupation percentage of nearby 
overnight residences and (2) the cost and conveni-
ence of transportation. Furthermore, the latter fac-
tors are also autocorrelated and cross-sectionally 
correlated to each other. Business management and 
span of control problems relate unit sales to internal 
economic factors such as inventory, accounts re-
ceivable, labor and materials costs, and environmen-
tal factors such as outputs, competitors’ prices, spe-
cific demands, and the relevant economy in general. 
These problems are multivariate and serially corre-
lated because one factor at one point in time is asso-
ciated with other factors at other points in time 
(past, present and future). 

SPC emphasizes the properties of control for decision 
making while it ignores the complex issues of process 
parameter estimation. Estimation is less important for 
Shewhart control charts for serially independent 
processes because the effects of different estimators 
of process parameters are nearly indifferent to the 
criterion of average run length (ARL). Processes’ 
having serial correlation, estimation becomes the key 
to correct construction of control charts. Adopting 
workable estimators is then an important issue. 

In the past, researchers studied SPC for serially cor-
related processes and SPC for multivariate processes 
separately. Research on quality control charts for 
correlated processes focused on univariate pro-
cesses. Box, Jenkins, and Macgregor (1974) and 
Berthouex, Hunter and Pallesen (1978) noticed and 
discussed the correlated observations in production 
processes. Alwan and Roberts (1988) proposed a 
general approach to monitor residuals of univariate 
autocorrelated time series where the systematic pat-
terns are filtered out and the special changes are 
more exposed. Other studies include Montgomery 
and Friedman (1989), Harris and Ross (1991), 
Montgomery and Mastrangelo (1991), Maragah and 
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Woodall (1992), Wardell, Moskowitz and Plante 
(1994), Lu and Reynolds (1999), West, Delana and 
Jarrett (2002) and West and Jarrett (2004), English 
and Sastri (1990), Pan and Jarrett (2004) suggested 
state space methodology for the control of auto cor-
related process. Further, additional technologies 
implemented by Testik (2005), Yang and Rahim 
(2005) and Yeh, Huang and Wu (2004) provide 
newer methods for enabling better MPC methods. 

In Alwan and Roberts’ approach, a time series is 
separated into two parts that are monitored in two 
charts. One is the common-cause chart and the other 
is the special-cause chart. The common cause chart 
essentially accounts for the process’s systematic 
variation that is represented by an autoregressive-
integrated-moving-average (ARIMA) model, while 
the special cause chart is for detecting assignable 
causes that can be assigned in the residual of the 
ARIMA model. That is, the special cause chart is 
designed as Shewhart-type chart to monitor the resi-
duals filtered and whitened from the autocorrelated 
process (with certain or estimated parameters). In 
this analysis, the authors suggest methods used in 
conventional quality control software (i.e., Mini-
tab®). These methods entitled multivariate T2 and 
Generalized Variance control charts. These multiva-
riate charts show how several variables jointly in-
fluence a process or outcome. For example, you can 
use multivariate control charts to investigate how 
the tensile strength and diameter of a fiber affect the 
quality of fabric or any similar application. If the 
data include correlated variables, the use of separate 
control charts is misleading because the variables 
jointly affect the process. If you use separate univa-
riate control charts in a multivariate situation, Type 
I error and the probability of a point correctly plot-
ting in control are not equal to their expected values. 
The distortion of these values increases with the 
number of measurement variables. 

Multivariate control charting has several advantages 
over creating multiple univariate charts: 

♦ The actual control region of the related variables 
is represented (elliptical for bivariate case). 

♦ You can maintain a specific Type 1 error. 
♦ A single control limit determines whether the 

process is in control. 

Conclusions 

This paper discusses the control chart usage and 
illustrate why better procedures are available to 
supply chain managers. For example, we illustrated 
methods developed by Alwan and Roberts’ utilizing 
residual chart analysis. Later we explored methods 
such as West et al. transfer function application and 

traditional Multivariate Hotelling T2 chart to moni-
tor multivariate and multivariate serially correlated 
processes (those with dynamic inputs). The scheme 
can be viewed as a generalization of Alwan and 
Roberts’ special cause approach to multivariate cases. 
The guideline and procedures of the construction of 
VAR residual charts are detailed in this paper. Mol-
nau et al. (2001) produces a method for calculating 
ARL for multivariate exponentially weighted moving 
average charts (2001). Mastrangelo and Forrest 
(2002) simulated a VAR process for SPC purposes. 
However, the general study on VAR residual charts is 
heretofore not reported. In addition, more recent stu-
dies by Kalagonda and Kulkarni (2003, 2004), and 
Jarrett and Pan, (2006, 2007a, 2007b) indicate addi-
tional ways in which one can improve upon the mul-
tivariate methods currently available in commercial 
quality control software such as Minitab® and others. 
These newer techniques provide more statistically 
accurate and efficient methods for determining when 
processes are in or not control in the multivariate 
environment. When these methods become commer-
cially available, practitioners should be able to im-
plant these new statistical algorithms for multivariate 
process control charts (MPC) using ARL measure to 
control and improve output. 

These new methods provide methods for MPC 
charts focusing on the average run length. The pur-
pose is to indicate how useful these techniques are 
in the supply chain environment where processes 
are multivariate, dynamic or both. Simple SPC 
charts though very useful in simple environments 
may have limited use in the supply chain. In any 
event, future research should focus on exploring the 
characteristics of the supply chain and finding the 
best model to implement quality planning and im-
provement programs. Multivariate analysis should 
provide many of the new tools for adaption in im-
proving supply chain management. The costs of 
security, stoppages and threats to the supply chain 
will diminish when managers explore the usefulness 
of multivariate methods noted before. Last, these 
supply managers much be trained, retrained and 
continually trained in those methods that best fit the 
supply chain environment. Simple Shewhart me-
thods no longer are sufficient to manage in the glob-
al environment of the supply chain. In the future, I 
suspect as supply become more global some of the 
underlying mathematics of modeling will also seek 
to handle more difficult problems when extreme 
value occur. Knowledge of extreme value theory 
(EVT) will become very useful in predicting and 
accounting distribution of data having long and 
heavy tails in their distributions (see Novak (2012) 
for the mathematical underpinning of predicting and 
accounting for extreme values). 
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