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Abstract 

This paper investigates the problem of longevity risk sharing between an annuity provider and the annuitants. In this 
field, the idea of reducing the annuity periodic payments in similar way to what happens in the context of securitization 
is gaining. In the following the authors refer to a contract in which the installments of life annuities are scaled by a 
demographic index. The main finding is that, scaling the periodic installments, would result  in a significant reduction 
in the level of benefits. The conditions that allow to limit the reduction of benefits without worsening the insurer’s 
position is investigated. The conclusion is that it is possible to achieve an equilibrium not only reducing the amount of 
the periodic installments but also moving forward the retirement age. 
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Introduction81 

During the 20th century, human life expectancy have 
considerably increased for the populations of many 
developed countries. Although the past trends 
suggest that further changes in the level of mortality 
are to be expected, the future improvements of life 
expectancy are uncertain and difficult to be 
predicted.  

This uncertainty about the future development of 
mortality gives rise to longevity risk. The real 
challenge for public pension systems and for private 
insurance companies consists precisely in the design 
of products able to absorb any adverse events 
concerning the future mortality. In other words, the 
challenge is how to deal with the longevity risk. 
When we treat benefits depending on the survival of 
a certain number of individuals, the calculation of 
the present values, used both for pricing and for 
reserving, requires an appropriate projection of 
mortality in order to avoid an underestimation of 
future costs. Therefore, actuaries have to employ 
projected life tables incorporating a forecast of 
future trends of mortality. The insurer bears the risk 
that the projections of mortality turn out to be 
incorrect and the annuitants live longer than 
expected. Different approaches for the construction 
of the projected tables have been developed until 
now (for a full report on this subject, see Pitacco, 
2004), but no one turned out to be suitable for the 
problem solution. Actually, this problem is deeply 
felt by private insurance companies. Although the 
annuity market is not well developed in western 
countries, the reduction of the intervention field of 
public systems, due to the main goal of the cost 
containment and the gradual shift from defined 
benefit schemes to defined contribution systems, 
suggests a growing interest of individuals for 
annuities. 
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The main problem for insurers is to make the 
annuities market attractive to the insured. Indeed the 
risk borne out by insurers for insurance annuities, 
which is undoubtedly too high, is reflected in high 
premiums charged for these products that discourage 
individuals who are intending to purchase annuities. 

For this reason, many insurance companies and 
pension funds providers focus in the issue of sharing 
the longevity risk. An ordinary way to solve this 
problem is through reinsurance, but this method often 
involves high costs. The securitization provides a 
viable alternative (see Denuit, Devolder and 
Goderniaux, 2007), but unfortunately the longevity 
bonds are not a very attractive business for investors. 
Denuit et al. in 2011 have proposed a very interesting 
idea based on the reduction of annuity periodic 
payments in a similar way to what happens in the 
context of securitization. In this work, we try to 
develop this concept relying on past mortality 
experience of the Italian population measured in the 
period of 1954-2008. A computational tractable 
approach based on a CIR type stochastic process for 
modeling the future uncertainty about the force of 
mortality is used. We find that the process of 
reducing the payments for the insured would result in 
a significant reduction in the level of benefits hardly 
acceptable by the annuitant. On the other hand, 
without a proper reduction of benefits, the pension 
provider would face and hardly sustainable level of 
risk. At this point, in our opinion, it is possible to 
reconcile the two positions not only reducing the 
amount of periodic payments but also moving 
forward the retirement age, depending on the level of 
risk borne out by the insurer. In this way, the 
unknown factor is deferral time of the annuity, which 
becomes the variable to be controlled in order to 
achieve the equilibrium. 

The literature on the attractiveness of deferred 
annuities has addressed the issue of choosing 



Problems and Perspectives in Management, Volume 11, Issue 2, 2013 

116 

between the purchase of an immediate annuity and a 
deferred one (see Milevsky and Young, 2007; Blake 
Cairns and Dowd, 2006). Because of the longevity, 
the choice of a deferred annuity is often preferred by 
the annuitants (see Milevsky, 2005). We contribute 
to this literature by linking the time of deferral and 
the impact of longevity risk. In the following we 
refer to the case of a longevity indexed life annuity 
with the aim of finding an equilibrium between the 
reduction of benefits (or the increase of premiums) 
and the annuity deferral. 

The paper is organized as follows. Section 1 
describes the annuities indexing process. In section 2 
the general issue of modeling the uncertainty in 
future mortality is fronted and a CIR type model for 
describing the future evolution of hazard rates is 
described. In section 3 the effects that a certain 
hypothesis about the future mortality can have on 
the longevity index values are deepened. In section 
4 the authors look for the conditions that allow to 
reduce the loss of benefits to the insured by 
decreasing the period of payment of the annuity. 
The final section concludes and discusses the 
results. 

1. Longevity index 

Let us consider an individual aged x in the calendar 
year t. His remaining life is indicated by the notation 
Tx(t). Therefore, the individual will die at age x + Tx(t) 
in the calendar year t + Tx(t). Then qx(t) = P(Tx(t)  1) 
is the probability that an individual aged x in calendar 
year t dies before reaching the age x + 1 and p x(t) = 
= 1 – qx(t) = P(Tx(t) > 1) is the probability that the 
same individual reaches the age x + 1. 

Let px+k
mod(t + k) (k = 0,…,  – x) be the predicted 

one year survival probability referred to an 
individual aged x in the calendar year t deducted by 
some survival model, where  denotes the ultimate 
age. Therefore px+k

mod(t + k) (k = 0,…,  – x) is the 
assumption that is made on the future mortality. 

As time passes, the observed values of the one year 
survival probabilities px+k

obs(t + k) (k = 0,…,  – x) 
become available, so that it is possible to compare the 
values predicted on the basis of a given model with 
the actual ones, by means of the following ratio:  
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which can be assessed each future calendar year k. 
The basic idea is that the annual payment due at 
time k to an individual buying a longevity indexed 
annuity at age x in calendar year t, is adjusted by the 
factor (1). Hence, if the contract specifies an annual 

payment of 1, the annuitant receives a stream of 
payments ,...., 21 tt ii  as long as he or she survives. 
In practice, we consider a basic life annuity contract 
paying one monetary unit of currency at the end of 
each year as long as the annuitant survives. The 
single premium is given by 
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where 1(x,k) is an indicator which equals one if the 
individual with age x at time t is alive in the future 
year k (k = 1,…,  – x), v(t,k) is the deterministic 
discount factor, kpx(t) is the ordinary survival 
probability will be defined rigorously in the next 
section. 

At this point, if the predictions contained in the 
model are chosen such that the increase in longevity 
is greater than predicted, then the payments due to 
the insured are reduced accordingly. Substantially, 
the random longevity indexed life annuity is given 
by the following equation: 
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The annuitant bears the non diversifiable risk that 
the predicted mortality trend departs from that of the 
reference population.  

Our work focuses on evaluating ex post the effects 
that a certain hypothesis about the future mortality 
can have on the index values.  

The aim of our work is twofold: on the one hand, 
the authors analyze the values of the index in order 
to quantify the effects that an incorrect choice by the 
insurer can have on the benefits paid to the insured, 
on the other the conditions that allow to reduce the 
loss of benefits to the insured by decreasing the 
period of payment of the annuity are deepened. 

2. The mortality model 

Let us consider an individual aged x in the calendar 
year t. As seen, p x(t) = P(Tx(t) > 1) is the probability 
that an individual reaches the age x + 1. Analogously 
kpx(t) is the probability that an individual aged x in year 
t reaches age x + k in the year t + k. If we consider 
the hazard rate for an individual aged x + t in the 
year t  x+t we have 

k dssx
xk eEtp 0 .                                         (4) 

We describe the evolution in time of mortality by a 
widely used stochastic mortality model, supposing 
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that the force of mortality at time t for an individual 
aged x + t is given by 

ttxtxtx dBdtd ,                       (5) 

where  and  are positive constants,  is the long-
term mean and Bt is a Standard Brownian Motion. 
This model, referred as the CIR mortality model has 
the property that the mortality rates are continuous 
and remain positive. Moreover, for 22  the 
mortality rates does not reach zero, and the drift 
factor tx  ensures the mean reversion of x+t 

towards the long term mean . 

For convenience, we now introduce the centered 
version of the model. Let us consider the shifted 

txtx
* . The process is then centred around 

 and the long-term mean converges almost 
everywhere to zero: 

ttxtxtx dBdtd ***                            (6) 

with initial condition given by the known value of 
x+t. Its solution is given by 
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The expected value, the covariance and the 
stationary variance functions immediately follow: 
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2.1. Parameter estimation procedure. Estimating 
the parameters of the stochastic mortality model 
requires the discrete representation of the model. 

To this aim, we refer to the covariance equivalence 
principle (see Deelstra Parker, 1995 which requires 
that the expected values and the stationary variances 
of the continuous and discrete processes to be equal. 

The discrete model representation is given by the 
following equation: 

ttxatxtx a*
1

*
1

*
1
2 .                 (8) 

The expected value, the covariance and stationary 
variance functions of the previous equation are: 
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The estimation procedure starts by finding the value 
of  that minimizes the residual sum of squares 
function: 

*

2*
1

*

1
1
2

)(

tx

txtxN

t
RSS . 

The least squares estimate of 2
a  is given by 

RSS/N – 1. 

Finally the continuous model parameters are 
obtained by means of the parametric relationships  
between continuous and discrete models, derived by 
applying the covariance equivalence principle: 

2
1

,
2

22 e
e

a .                                                 (9) 

At this point, by the Pitman and Yor formula, we 
can compute 
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where x = 0 e and 22 2w . 

Applying the described estimation procedure, the 
significant parameters of the mortality-CIR model 
are obtained and therefore the survival probabilities 
for each specific calendar year. 

Our set of data relates to the Italian male 
population with annual age-specific death counts 
ranging from ages 64 to 89 over the period from 
1954 to 2008 (data source: Human Mortality 
Database, www.mortality.org). 

We refer to the class of the forward mortality 
models. These models study changes in the 
mortality rate curve for a specific age cohorts and 
capture dynamics of each age cohort over time for 
all ages greater than x in a specific year t (for 
example age x in the year t, x + 1 in the year t + 1 
and so on). In this case, the mortality curves are 
modeled diagonally (for example see Dahl, 2004; 
Cairns et al., 2006, Bauer et al., 2008). In practice, 
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on the basis of data available for the previous 25 
years, we can estimate the model parameters for the 
year t and, as a result, it is possible to get the 
forecasted survival probabilities. 

For example, with the data of the period of 1954-
1978 it is possible to obtain the column of the 
survival probabilities for the year 1979. This 
procedure is repeated thirty times in order to obtain 
the annual survival probabilities over the period 
from 1979 to 2008 and ranging from ages 64 to 89. 

These probabilities can be compared with the 
corresponding survival rates obtained from the 
tables of the Human Mortality Database. 

Regarding the choice of fixing the extreme age to 
89, recent studies (Khalaf-Allah et al., 2006) have 
shown that the most damaging effects in terms of 
annuities present values for the provider are in the 
age range 73-80. Clearly this happens because the 
number of survival is still large at these ages. As a 
consequence, even modest improvements in the 
level of survival probabilities with respect to those 
used for pricing and reserving, result in large 
additional costs for the annuity provider. The results 
of the estimation procedure are summarized in the 
following table (Table 1). The parameters  and 2  
are obtained, for each year, by means of the 
relations (9), after the estimation of the discrete 
parameters in (8). We choose to calculate the long 
term mean  as the simple mean of each historical 
series used to estimate the parameters. 

Variable  takes the same value for each calendar 
year. The reason can be found in the high 
autoregressive parameter of the discrete model  = 
0.999, which is the same each year explaining the 
high correlation of each data of each series with the 
preceding one.  

Table 1. CIR-estimated mortality parameters 

Year  2   

1979 0.0010005 0.02154137 0.09879589 
1980 0.0010005 0.02218555 0.09870146 
1981 0.0010005 0.02196340 0.09855553 
1982 0.0010005 0.02125207 0.09849015 
1983 0.0010005 0.02006831 0.09848095 
1984 0.0010005 0.02260864 0.09951799 
1985 0.0010005 0.02051935 0.09773577 
1986 0.0010005 0.02120267 0.09732236 
1987 0.0010005 0.01981722 0.09758413 
1988 0.0010005 0.01874663 0.09654774 
1989 0.0010005 0.01883434 0.09567750 
1990 0.0010005 0.01846146 0.09354197 
1991 0.0010005 0.01880755 0.09122329 
1992 0.0010005 0.01876966 0.09087511 

 

Year  2   

1993 0.0010005 0.01765508 0.09013384 
1994 0.0010005 0.01824302 0.08918243 
1995 0.0010005 0.01765857 0.08768303 
1996 0.0010005 0.01786665 0.08616861 
1997 0.0010005 0.01748889 0.08443631 
1998 0.0010005 0.01756343 0.08338616 
1999 0.0010005 0.0182456 0.08166418 
2000 0.0010005 0.01765565 0.07982632 
2001 0.0010005 0.0170472 0.07782871 
2002 0.0010005 0.01693314 0.07627881 
2003 0.0010005 0.01732366 0.07500763 
2004 0.0010005 0.01858599 0.07417957 
2005 0.0010005 0.01731115 0.07317319 
2006 0.0010005 0.01812203 0.07046889 
2007 0.0010005 0.01662066 0.06851038 
2008 0.0010005 0.01709801 0.06566561 

Source: Human Mortality Database: Italian male population. 

Figures 1a, 2a and 3a (see Appendix) show the compa-
rison between the estimated annual survival probabi-
lities obtained by means of the CIR model and the 
corresponding probabilities of the Italian male 
population. The results are shown year by year over 
the period 1979-2008.  

3. The ‘adjusted’ longevity index 

In the following we model the future uncertainty 
about mortality by means of the CIR type stochastic 
process described in section 2. 

In practice, the longevity index (1) is computed as: 

1

0

k

j obs
jx

CIR
jxCIR

kt jtp

jtp
i ,                                          (11) 

where jtpCIR
jx  is the forecasted annual survival 

probability of a male aged 64 in 1983. The 
forecasted probabilities are obtained by means of 
the CIR type stochastic process on the basis of the 
estimated parameters; jtpobs

jx  are the actual 
values of the annual survival probabilities deducted 
from the Italian male mortality tables over the 
period of 1983-2008. 

In formula (11), jtpCIR
jx  are calculated  by means of 

(10), using the estimated parameters for the year 
1983, based on the mortality experience over the 
period of 1958-1982. Figure 1 shows the comparison 
between the survival curve estimated by the model 
and the table available for the year 1983. The choice 
of the year 1983 can be explained as follows: an 
individual aged 64 in 1983 gets 89 in 2008. 
Knowing the real data until 2008, the estimated CIR 
probabilities can be compared with the real data. 
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Fig. 4. Comparison of longevity index (denoted by asterix) and ‘adjusted’ longevity index (denoted by circles) 

The condition that the index doesn’t fall below 80% 
limits the risk passed to the insured to a maximum 
of 20%. The insurer doesn’t take any risk; indeed 
the insurer should bear a risk if the index should go 
under 80%. 

Therefore, on the basis of an ex post analysis we 
observe that indexing the life annuity can lead to 
very low periodic installments. This condition 
doesn’t make the contract attractive to the insured. 

If the contract includes the capped version (12) the 
insured is encouraged to buy the annuity. On the 
other hand, the insurer is still exposed to the risk 
that the index goes below 80% if the predicted 
survival probabilities are estimated by means of the 
CIR stochastic model (or by means of any other 
model, knowing that at the moment doesn’t exist a 
stochastic model immune to the projection risk). 

Finally, if the ‘adjusted’ longevity index (13) is 
used, the risk passed to the insured is still limited to 
a maximum of 20% but the insurer doesn’t bear any 
risk because the adjusted longevity index doesn’t go 
below 0.8. Of course in this last case the insured 
will pay an higher premium. 

4. Longevity indexed deferral annuities 

At this point, in order to avoid a monetary penalty  
for the insured, you can search for an equilibrium 
between the reduction in benefits (or increase in 
premiums) and the deferral of the annuity. 
Essentially, it is possible to find a balance between 
economic penalty and time penalty to the insured. 

In the following we study two cases in which the 
equilibrium could be reached: on the one hand 
considering the probability estimated by the CIR 
model and those limiting the index to 0.8, on the 
other hand considering the adjusted probabilities and 
the observed ones. The technical rate is fixed to 3%. 

In the first case the unique premium ta ADJ
x  calcu-

lated using the survival probabilities generating the 
index value of 0.8 and the one calculated using the 
CIR survival probabilities ta CIR

x  both referred to the 
calendar year t are given, respectively, by the 
following expressions: 
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)()(/ tata CIR
x

ADJ
x  

so that we can determine the value of  realizing the 
identity. Here, the annuitant can choose to accept a 
deferral equal to tau in return for a loss of benefit equal 
at most to twenty percent. In our numerical example, 
the deferral period is approximately eight months. 

In the second case the unique annuity premium 
ta OBS

x  calculated using the observed survival 
probabilities referred to the calendar year t is given by: 

x

k

OBS
k

OBS
x tpktvta

x
1

, ,                               (15) 

 
Notes: x = 64; t = 2008; k = 0,1,2,3…..,26 

Fig. 5 Comparison between: ax
ADJ(t) and ax

CIR(t) (subplot 1), ax
ADJ(t) and ax

OBS(t) (subplot 2) 

Also in this case  )()( tata ADJ
x

OBS
x , where ta ADJ

x ( ) 
is given by (8). The difference )()( tata ADJ

x
OBS
x , is 

equal to the present value of an annuity calculated on 
the basis of the observed probabilities, with duration 
equal to . At the end we obtain: 

)()(/ tata ADJ
x

OBS
x , 

so that we can determine the value of   realizing the 
identity. The annuitant can choose whether to accept 
a further deferral equal to tau nullifying the loss of 
benefit. In our numerical example, the deferral period 
is approximately six months. 

It should be emphasized that deferring the annuity 
allows to reach the actuarial equilibrium instead of 
reducing benefits (or increase premiums). 

It is stressed that the cases described in this section 
avoid any risk to the insurer. The reason can be 
found the premise of this analysis: the longevity 
index does not fall below 0.8. 

Our contribution is to study the insured position in 
terms of the annuity attractiveness. He can choose 
between a loss of benefits (or an increase in the 
level of premium) or the annuity deferral that, on the 
basis of the previous considerations, is very short. 

Concluding remarks 

Although the annuity market is not well developed in 
western countries, the reduction of the intervention 
field of public systems and the gradual shift from 
defined benefit schemes to defined contribution 
systems, suggests both a growing interest of 
individuals for annuities and a considerable 
development of their market in coming years. The task 
of actuaries is to make this market more attractive than 
it is now. In fact, because of longevity, the risk borne 
out by insurers for insurance annuities, which is 
undoubtedly too high, is reflected in high premiums 
charged for these products that discourage individuals 
who are intending to purchase annuities. On the other 
hand, the idea of reducing the annuity periodic 
payments in similar way to what happens in the 
context of securitization could be reflected either in a 
significant reduction in the level of benefits for the 
annuitants or in a modest reduction of the risk for the 
insurer.  

In this context, this paper looks for the conditions that 
allow to achieve an equilibrium between the reduction 
of the benefits and the annuity deferral. Based on past 
experience of the Italian population mortality 
measured in the period of 1954-2008, we find that a 
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modest deferment of the starting point of the annuity 
can balance the needs of the insurer and the insured. In 
any case, the choice of the decrease in performance 
over time and the deferral of annuity should encourage 
to buy this kind of contract. 

Further research on this subject could be oriented in 
deepening the topic of stochastic interest rates. 
Moreover, we could also consider the choice of 
different mortality models in order to quantify the so 
called model risk. 
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