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In this contribution, a concept of the integration of spatial predictive analytics and mathematical programs for spatial 
decision making – namely, advanced spatial analytics and management – is outlined. In particular, selected methods for 
spatial predictive analytics are discussed, including spatial econometrics and discrete choice analysis. Then, the 
integration of spatial predictive models in mathematical programs (prescriptive analytics) for facility location and 
districting is demonstrated. The paper includes illustrative applications which stem from health care, retail, marketing, 
logistics, and transportation. Based on the discussion, future research perspectives are developed. 
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Introduction  

Geographical or spatial factors – such as location and 
distance – play an important role in everyday decision 
making of organizations, since the data used for 
decision making have a geographic component in 
nearly all cases (Day et al., 1987; Crossland et al., 
1995; Benoit and Clarke, 1997; Vlachopoulou et al., 
2001; Grimshaw, 2000; Porter and Stern, 2001; Graf 
and Mudambi, 2005; and Miller et al., 2006). For 
many operations, such as health care, finance, energy, 
insurance, communications, transportation, logistics 
and retail, location intelligence or spatial analytics 
provide very specific benefits, which translate into 
increased revenues, reduced costs, and improved 
efficiency for any organization. For example, a retail 
chain may be interested in analyzing the shopping 
destination choice behavior of their customers to 
estimate branch patronization of existing and potential 
branch locations. Based on these estimates, the retail 
chain might modify its network of branches to increase 
patronage, revenues, and profits. Using tailored spatial 
models and methods helps the management to make 
better locational decisions. In particular, the 
endogenous incorporation of predictive analytics 
(choice models, for example) in mathematical decision 
models (i.e., prescriptive analytics) seems to be 
beneficial for many decision processes in many 
operations (MaseTshaba and Seeletse, 2014). For 
example, in planning of the network of lines for a 
public transport service provider one usually employs 
customer demand as an input factor (i.e., a parameter). 
However, a given network of public transport lines 
(i.e., a solution) yields a specific demand by public 
transport users. Thus, demand must be treated 
endogenously, i.e., as a variable. As a consequence, 
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reliable demand models need to be incorporated in 
public transport line planning models. The same is true 
for locating preventive health care facilities, for 
example (Krohn et al., 2016). A given set of located 
facilities triggers the participation of (potential) clients. 
If we do not consider the choice (decision) behavior 
directly within the facility location model by adequate 
spatial choice models, we might end up with bad 
locational decisions and, as a consequence, with low 
participation rates (and the corresponding effects). 
This leads us to two crucial questions: (i) what are 
adequate spatial predictive models, and (ii) how can 
we incorporate them in mathematical models for 
decision making? To answer these questions, we, first, 
discuss selected spatial predictive models and how 
these might be applied in management and economics. 
Since these models are based on empirical data, we 
distinguish between (spatially) aggregated data and 
disaggregated (or individual-level) data. This 
discrimination is meaningful, because spatial 
aggregation usually comes along with continuous 
measures of the dependent variable of the predictive 
models, while individual-level (choice) data yield 
categorical dependent variables. Of course, we might 
further distinguish between cross-sectional and 
longitudinal data. The predictive models considered 
here stem from the realm of spatial econometrics 
(spatial error models, for example) and discrete choice 
analysis (multinomial logit model, for example). 
Second, the description of the spatial predictive 
models and the discussion of illustrative applications is 
followed by an elaboration of how the spatial 
predictive models are incorporated in mathematical 
spatial decision models (i.e., prescriptive analytics). In 
particular, we consider facility location models and 
districting models. The applications presented here 
range from the analysis of destination choice behavior 
and service quality to the planning of facility locations 
of retail branches and the alignment of sales territories. 
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1. Spatial predictive analytics 

Predictive analytics can be seen as an arsenal of 
statistical techniques that enable to analyze current and 
historical data to make predictions about unknown 
(future) events (Shmueli and Koppius, 2011; Hair, 
2007). In business applications, predictive analytics 
exploit patterns found in historical and transactional 
data to support decision makers in their tasks to 
identify risks and opportunities of unknown events. 
The respective methods and models disclose 
relationships between the variable of interest (revenue, 
for example) and a variety of explaining attributes 
(service quality, for example) and characteristics. This 
empirical relationship is, then, used to make – 
hopefully good – predictions about the future (Taylor, 
2012). Now, the crucial point with spatial predictive 
analytics is to explicitly account for spatial effects in 
the relationship between the dependent variable (the 
variable of interest) and the explanatory variables. 

1.1. Aggregate data. Assume your variable of interest 
can take any value. Then, a simple predictive model 
would consist of a dependent variable and a set of 
independent or rather predictor variable X. This 
relationship is expressed as an equation that predicts 
the dependent variable y as a linear function of the 
model parameters : 

.y X                                                               (1) 

These parameters are adjusted so that a measure of fit 
(a function related to ) is optimized. Unfortunately, it 
is well evidenced that the relationship of (1) suffers 
from bias due to spatial effects underlying the data 
generating process (Anselin, 2003). So, in presence of 
space in our data, we might be better off choosing a 
formal relationship that enables to account for these 
spatial effects. One such spatial effect occurs if we 
omit variables from the model which are actually 
spatially correlated. As a consequence, the errors of 
our model are spatially correlated. In such a case, the 
spatial error model 

1( )y X I W                                            (2) 

would be a good choice, because the correlation is 
captured via the spatial weights matrix W and the 
parameter  (Anselin, 1988; Bradlow et al., 2005; 
Bronnenberg, 2005)1. A second spatial effect is that 
the relationship in (1) and (2) is not constant over 
space, i.e., the parameter  might be a function of 
location. This phenomenon is known as spatial non-
stationarity (Wheeler and Paez, 2010). For example, 
Müller and Haase (2015) show that neglecting spatial 
effects is likely to yield revenue response functions 
that produce bad predictions. In particular, they study 
                                                      
1 I is the identity matrix. 

the relationship between revenue and service quality of 
a local public transport service provider in Munich, 
Germany. The study reveals that simple linear 
regression models suffer from biased parameter 
estimates due to spatially correlated error terms. The 
authors employ a spatial error model of (2) to account 
for this spatial effect. Further, they define the 
parameters  in (2) as a function of the location of the 
observations (districts) in order to account for spatial 
non-stationarity. The findings illustrate that addressing 
spatial effects of service data can improve 
management ability to implement programs aimed at 
enhancing seasonal ticket revenue. The corresponding 
spatial revenue response function enables managers to 
identify small scale areas that are most efficient in 
terms of increasing revenue by service improvement. 
These findings are confirmed by Mittal et al. (2004) 
and Müller et al. (2013). Müller et al. (2013) and 
Müller (2012) employ the geographically weighted 
regression (GWR) technique (Fotheringham et al., 
1997) 

( )1y X                                                      (3) 

with 
1ˆ ( )i i iX W X X W y                                             (4) 

to account for spatial non-stationarity. The results of 
the GWR are included in (2) such that the resulting 
predictive model (revenue response function) is able to 
simultaneously account for spatial dependencies 
(correlated error terms, for example) and spatial non-
stationarity. The resulting simultaneous model is new 
to the literature and shows statistically significant 
better estimates compared to traditional models. 

1.2. Disaggregate data. So far, the data we considered 
are characterized by a dependent variable that can take 
any value. In spatial analysis, we usually observe this 
kind of data, if the underlying data is spatially 
aggregated: for example, the sum of revenues of public 
transport customers within a zip-code area. Now, we 
turn to this underlying data. If we stick to the revenue 
example, the sum of revenues within a zip-code area is 
the result of decisions of individuals to choose public 
transportation for their trips and to pay a certain 
amount of money for this service. Aggregating this 
data might yield a loss in information due to 
aggregation (Müller and Rode, 2013; Rode and 
Müller, 2016). Therefore, we are interested in 
analyzing individual-level data. The best method for 
this kind of analysis is discrete choice analysis 
(McFadden, 2001): an individual (customer) n chooses 
an alternative j from the set of all alternatives M,2 if 
                                                      
2 The choice set M must be exhaustive, and the alternatives have to be 
mutually exclusive. Roughly speaking, all alternatives the individuals 
face have to be included in the choice set. 
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    , .nj nmu u m M m j                                       (5) 

Utility unj consists of a deterministic component vnj and 
a stochastic component nj, i.e., 

 .nj nj nju v                                                             (6) 

Usually, the deterministic component is modeled as a 
linear function: 

,nj jl njl
l L

v c                                                          (7) 

where L is the set of attributes or characteristics 
(attractiveness determinants), cnjl is the value of 
attribute l concerning individual n and alternative j, 
and the coefficient jl is the utility contribution per unit 
of attribute l related to alternative j. jl are the model 
coefficients (parameters) to be estimated by maximum 
likelihood (Ben-Akiva and Lerman, 1985). Since unj of 
(6) is stochastic, we can only make probabilistic 
statements about (5): 

  (     , ).nj nj nmP Prob u u m M m j               (8) 

Assuming that the stochastic component nj is 
independent, identically extreme value distributed (iid 
EV), the probability (8) that individual n chooses 
alternative j is determined by 

  ,
nj

nm

v

nj v
m M

eP
e

                                                    (9) 

which is the well-known multinomial logit model 
(Ben-Akiva and Bierlaire, 2003). For example, Müller 
et al. (2008) employ the multinomial logit model 
(MNL) to analyze and forecast the mode choice 
behavior of students in Dresden, Germany. The 
authors found ranges of commuting distances for 
which a given transport mode is dominant. This 
dominance depends on further attributes and 
characteristics, such as weather and car availability. 
The specified and validated model is, then, used to 
predict the changes in market shares of the transport 
modes due to school closures. Further, they quantified 
scenarios of school closures by the change in transport 
cost. However, closing a certain school not only yields 
a change in the students mode choice behavior, but 
also shifts the students to the remaining school (van 
Wyk and Van der Westhuizen, 2015). This, in turn, 
needs the school choice behavior of students (or their 
parents, respectively) to be understood (Müller, 2011). 
Müller et al. (2012) analyzed the school choice 
behavior of students in Dresden, Germany. Since 
choosing one school location from a set of spatially 
dispersed school locations is truly a spatial choice, we 
might presume that spatial effects underlie this specific 
choice process (Müller, 2010). The authors, indeed, 

find strong empirical evidence that the simplifying 
assumptions that underlie the MNL are breached (i.e., 
iid EV). They propose a sophisticated spatial nesting 
structure to relax the independence from irrelevant 
alternatives property (which stems from the iid 
assumption) and to reveal the underlying spatial 
correlations between school locations. In particular, 
they employ the general nested logit model (GNL)
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with Cn as the choice set (of school locations), K the 
set of nests (subsets of school locations), Cnk as the 
set of schools that belong to the choice set of n and 
to nest k, ik as an allocation parameter that reflects 
the extent to which alternative i is a member of nest 
k, and scale parameters μ and μk. Although (10) is 
not a straightforward formulation, it exhibits the 
advantage of a closed-form model, while allowing 
flexible correlation – and, thus, substitution patterns 
– between alternatives (here: school locations). The 
mixed multinomial logit model (MXL) allows for an 
even greater flexibility at the cost of a non-closed-
form model, though (Seidel et al., 2016)3. It is easy 
to imagine that having a school choice model as 
(10) at hand would be very important when planning 
the locations of school facilities in a city, or region 
(see Section 2.1). 

2. Spatial management and planning 

In this section, we consider selected spatial decision 
problems that occur in management and the business 
industry. First, we show how the MNL can be 
incorporated into the well-known general maximum 
capture problem (ReVelle, 1986). This is followed by 
some extensions (considering capacities and 
heterogeneous customers) and applications to health 
care, retail, and school location. Second, we present 
the integration of revenue response functions in the 
sales force deployment problem (Drexl and Haase, 
1999). The ultimate goal is to illustrate the benefit for 
researchers and practitioners integrating predictive 
analytics and mathematical programs for spatial 
business decision making. 

2.1. Location planning. In discrete facility location 
planning, we are faced with the problem to select 
locations from a given set of potential facilities with 
respect to an objective that is optimized. Let us 
assume that we aim to select r locations from a set 
                                                      
3 In case of a non-closed-form, the choice probabilities have to be 
simulated. 
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of potential facility locations J so that the total 
customer patronage of the selected facilities is 
maximized. Further, we assume that the customer 
choice is modeled by the MNL. Then, we might 
formulate the problem as 

\

maximize

ij

ij ij

v
jj J

v v
i I jj M j j J

e y

e e y
           (11) 

subject to 

jj J
y r                                                        (12) 

0,1jy

j J
                                                           (13) 

with vij as the deterministic utility of customers 
located in i  I choosing facility location j  M. yj is 
the decision variable that equals one, if the location 
j  J is selected, and zero, otherwise. M \ j denotes 
the set of locations that are not under decision 
(locations of competitors, for example). Haase and 
Müller (2014) present a mixed-integer linear 
reformulation to the non-linear program (11)-(13) 
that is superior to other reformulations in terms of 
solvability using a standard integer program solver. 
The reformulation is based on the constant 
substitution pattern inherent to the MNL. Haase and 
Müller (2015) discuss an application to preventive 
health care facility location planning, where the 
linear reformulation of (11)-(13) is enhanced by 
capacity constraints. It is shown that the original 
formulation proposed by Zhang et al. (2012) might 
yield suboptimal results, if the utility function of (7) 
is not specified in an adequate manner. In particular, 
Zhang et al. (2012) consider the quality of care 
exogenously to the choice model. That is, they 
consider a corresponding constraint within the 
mathematical program instead of considering this 
important attribute within the utility function. 

Müller and Haase (2014) address the impact of the 
predictive bias of the MNL due to the independence 
from irrelevant alternatives property (IIA) of the 
MNL. They show that this bias can be reduced by 
more than 15% (based on their studies of retail 
facility location), if customer segmentation is used. 
That is, for each demand node i, a set of customer 
segments S is used. In fact, the IIA applies to each 
segment S, but not to demand point i over all 
segments S. However, the predictive bias of the 
MNL due to the IIA can only be completely 
eliminated by either a perfect specification of the 
deterministic utility function or an adequate 
modeling of the stochastic part of utility in (6). 
While the former is usually impossible (Ben-Akiva 

et al., 2002) – in particular, in a spatial context 
(Hunt et al., 2004) – the latter one is achieved by 
more sophisticated choice models (see Section 2.2). 
In Haase and Müller (2013), a MXL is incorporated 
in a school location planning approach to maximize 
students utility, while a certain budget must not be 
exceeded. The MXL does not provide closed-form 
choice probabilities and, as a consequence, 
simulation procedures are used to compute the MXL 
choice probabilities. From a mathematical 
programming perspective, this yields a stochastic 
problem (Müller et al., 2009). The authors propose 
an intelligible Monte-Carlo simulation-based mixed-
integer program as the corresponding deterministic 
equivalent. The problem can be easily solved by 
standard integer program solvers. 

2.2. Districting. Roughly speaking, the districting 
problem is to partition a set of areas (census blocks, 
for example) into larger areas, “regions”, given an 
optimization criterion (minimization of the 
perimeter of the regions, for example) and some 
feasibility constraints (contiguity, for example). A 
prominent application of districting appears in sales 
force deployment (Zolterns and Sinah, 2005; Georgi 
and Lachmann, 2014). Sales force deployment 
involves the concurrent resolution of four 
interrelated subproblems (Drexl and Haase, 1999): 
(i) sizing of the sales force, (ii) locations of the sales 
representatives (location planning), (iii) sales 
territory alignment (districting), and (iv) sales 
resource allocation. The objective is to maximize 
profit (Skiera and Albers, 1998). Haase and Müller 
(2014) propose explicit contiguity constraints to 
guarantee contiguous sales territories as demanded 
by many sales organizations. Haase et al. (2016c) 
propose general model formulations for random 
utility models. Further, they introduce a semidefinite 
mixed-integer program to account for the 
continuous domain of the selling time variable 
(denoted as t). The problem is solved by a branch-
and-price algorithm. The authors consider a general 
concave profit contribution function 

,b
ij ij ijp t c t o t                                              (14) 

where i is the location of the sales representative, j 
is the accounts’ location, cij is a profitability 
parameter dependent on account j and travel time 
from i to j, oij is a travel cost parameter, and b is the 
selling time elasticity (0 < b < 1)4. The selling time 
elasticity b is estimated by the methods mentioned 
in Section 1.1. Now, Haase and Müller (2014) found 
that the objective function value (i.e., the profit) 
                                                      
4 To be correct: b is the calling time (time for presenting a product, for 
example) elasticity. Selling time is the sum of travel time and calling 
time. Generally, it is assumed that the calling time is a constant fraction 
of the selling time. 
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heavily depends on the value of b, as shown in 
Figure 1. Obviously, biased estimates of the selling 
time elasticity are likely to yield remarkably biased 
solutions to the sales force deployment problem. 

Conclusion 

In this contribution, we address the questions such 
as: what are adequate spatial predictive analytical 
models and methods, and how can we implement 
them in mathematical programs for spatial decision 
making? We delineated selected methods for spatial 
predictive analytics and we showed how they can be 
incorporated in facility location problems and  
 

districting problems. This integrated approach might 
be defined as advanced spatial analytics and 
management. An excerpt of the constitutive work 
towards advanced spatial analytics and management 
has been discussed here. However, from this point, 
several new and demanding challenges appear. For 
example, the integration of decision variables into 
the utility function of locational choice models 
(waiting time and quality of care in preventive 
health care facility planning). The consideration of 
multiple choices of customers (i.e., a customer is 
choosing more than one location, for example) may 
be an interesting endeavor as well. 

  
Fig. 1. Profit contribution, profit F, and elasticity b. Assuming cij = 1 and oij = 0 

Figure (a) shows that the profit contribution remarkably varies in b. The same is true for the coherence of the objective function 
value F and elasticity b (Figure (b)). The box blots summarize results over 30 randomly generated instances.  

Source: Haase and Müller (2014). 

Although we have outlined a wide range of 
applications (health care, retail, transportation 
etc.), the use of advanced spatial analytics and 
management in further applications might be 
fruitful (Kassens-Noor et al., 2015; Haase et al., 
2016a; Haase et al., 2016b; Müller and Haase, 
2016b). Moreover, applying this approach in other 
domains within management and business industry 
would help to establish the idea of integrating 
(spatial) analytics and mathematical programming. 
For example, we might consider a social space 
(social distance) instead of a geographical  
 

space in predictive models (“socio-spatial error 
models”). Or we might consider predictive models 
forecasting the choice of products instead of locations 
to be selected according to an optimization principle 
(assortment optimization). 

One final insight can be gained from this 
contribution: researchers and practitioners benefit 
from having expertise in both fields – predictive 
analytics and mathematical programming – to 
adequately tackle problems that arise in management 
and business industry. 
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