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HatiMennry moxuOKy MaroTh MepEeTBOPIOBAYL TIPH OpieHTaMlil BUMIPIOBaTbHOT XopaH mia kyToM 0 pad,
aka B Meykax 15-17 mepepiziB gocsirae MIHIMYMY 31 3HaUYeHHSMH OymspkuMu jgo 0.B mianasom 20-21
TepepiziB MOXHOKH TPUIATY 32 PI3HHX OPIEHTAT[H BHMIPIOBATBHOT XOP/IH CTBIIATAIOTH 1 HAOMIGKAIOTHCS IO

(0,5 — 0,6)%, 3a BHKIIOYECHHSAM OpicHTaL{i HapaMY nockianus V3 curuanis 6=37 / 4 pao.

Bucrorkn

JUIS  yIbTpa3BYKOBOIO IIEPETBOPIOBAYA OJHONIPOMCHEBOI KOH(Irypauii pe3y/bTaT BHMIPIOBAHHS
XOPAOBOI TBHAKOCTI, IO BH3HAYAE BHTPATY, 3aJIEKHMTh BiJl BEJIHMHHH BHKPHBICHHS OCBOBOT CHMETpii
mpodiTio 1 3SMEHTITVETRCS 3 BIUTATIEHHSIM KOHTPOIBHOTO MEPETHHY Bil MICIIEBOTO 0Mopy. BemmnHa moxXHOKH
3ATICHKHTH BUT MPOCTOPOBOI OPIEHTAIT TPHIAAY BIHOCHO BEPTHKAILHOI BICI HA TEXHOJIOTIMHIA MEpSHKi.
OTpHMaHi Pe3yIbTaTH JAKOTh YITKY KAPTHHY MICIlh JIOKATBHOTO PO3MIIICHHS TPHIAIB Ha TEXHONOTIUHIH
MEpei 33 YMOB MAKCHMAJIBLHOI TOYHOCTI 1 MIHIMAJIBHOI Al Ha BHMIpIoBaHe cepemosuine. lle mosBomse
MOXTHBICT  ©()EKTHBHO 3aCTOCOBYBATH TIEPETBOPIOBaYl  0e3 OTSTy Ha BHMOTH 00OB’A3KOBOTO
3a0e2eUcHHS TPAMHX JUISTHOK JI0 1 MIC/IA IPHIIAB.
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A VIBRATION SENSOR AND A CUTTING SYSTEM MATHEMATICAL DESCRIPTION

From a unified point of Engineering Physics an attempt was made to give a mathematical description
of a vibration sensor - accelerometer and an elastic cutting system in which the sensor is the source of the
information signal.

Keywords: engineering physics, vibration sensor, an information signal.

IIpeonpunama nONBIMKA C eOUHBIX NOSUYUTE UHIHCEHEPHOT (PUSUKU OGRS MAMEMANTUHECKOE ONUCAHUE
BUBPAYUOHHO20 OGmMHUKd — GKCeNepoMempa 1 YRpy2oii MexHoN0SUHeCcKol CUCMeMbl pesaniii, 6 Komopoli
IO OAMUUK AETIAEMCS UCTIOUHUKOM UHOPMAYUOHHO2O CUSHANA.

Knrouesote cnoea: umsicenepnasn usura, eubpaytioHHbI OamyuK, UHOOPMAUOHHbLTL CUSHAT.

3pobnena cnpoba 3 eOUHUX NOUYIT THXHCEHEPHOT (hisuku Oanmi MameManuuHuil onuc eibpayilinozo
damuiira - aKkcenepoMempa | npY¥eHOT MexHONo2iMHOT cucmemid PI3anHa, 6 Akl yeil oamuur € dxcepenom
inghopmayitinozo cuznany.

Knrouosi crosa: inycenepra ¢hisura, siopayitinuil Oamuux, iHQOpMayiliHil CUeHAL.

Statement of the problem. To ensure reliable operation of advanced high-speed CNC machine a
control system should provide not only precision programmable tool displacement relative to a workpiece
but also diagnosis of the cutting technological system. The weakest link in the system is the cutting tool (CT)
life which should be sufficient for reliable operation of the CNC machine for the desired cutting time.

The industrial cutting systems vibration problem is generally known, starting with the F.W. Taylor’s
works. Domestic researchers in this field, for example, Al Kashyrin, V.I. Dikushin, V.A. Kudinov and
many others are also known. All of them paid much attention in their works to the physical principles of
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vibration when cutting hard and easily workable materials because an insight to the mechanism of vibration
allows identifying appropriate ways to deal with this phenomenon.

Modern construction materials (stainless and heat resistant steels as well as alloys, titanium and its
alloys, etc.) have high performance, but also they have a low machinability, which leads (because of the
unpredictable influence on the process of cutting force and temperature factors) to low CT life. On the other
hand for easily workable workpiece materials such as aluminum and its alloys a high cutting speed is
currently using in high speed machining with increased feed and depth of cut. In both cases (i.c. hard and
casily workable materials) a cutting vibration problem refers to the number of actual one in mechanical
engineering since the appearance of vibration is usually associated with a CT life as well as a premature
failure of the machine spindle block. There are some exceptions connected with the controlled vibrations
which improve the CT work such as these in vibrodrilling.

It is well known a necessity to increase the metal removal rate as well as machining production on the
CNC machines. In order, however, to do this the so-called “chatter” arises and does this phenomenon a far
more significant concern. That is why a manufacturer faces not only features of a machine and tool but also
the dynamic characteristic of the spindle and work subsystems.

To avoid as the chatter as the other significant dynamic oscillations the most promising for use on
modern CNC machines is small vibration sensors, such as AP2019 type. These sensors can be embedded in
the various directions of the machine coordinate system (figure 1).
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Figure 1 — AP2019 type accelerometer (left) and its mountiﬁ on the machine 500/V35 spindle block
(right) along the machine v and z axes (x axis 18 not shown).

However, so far no reliable methods the CT state technological vibrodiagnostics which can be
implemented on the basis of these sensors and available CNC system computational resources. Besides, there
are no theoretical studies directing to the vibration sensor dynamic error evaluation.

The purpose of this research is from a unified point of Engineering Physics to give a mathematical
description of a vibration sensor - accelerometer and an clastic cutting system in which the sensor is the
source of the information signal. The research is the scientific premises for a CT state vibrodiagnostics
automated system based on a USB type modular system NI CompactDAQ followed by programming the
diagnostic algorithm (without any additional hardware) in modern CNC system having available computing
resources.

Selection of unsolved parts of the problem. There are known technological methods of diagnosis by
different estimating criteria for the CT state needed to solve a technological management task. They vary
depending on the nature of selected physical parameters i.e. sources of information about the CT state:
power, torque, cutting temperature, cutting vibrations (displacement, velocity, and acceleration), acoustic
emission (sonic and ultrasonic), the parameters of quality of processing parts ete. [1].

In the physical dynamics there are two kinds of vibration: forced vibration and self-excited one.
Forced vibrations are generated by the action of a periodic force, for example, due to an imbalance of the
rotating spindle or CT edges interrupted operation (e.g. drill or mill edges). In this case, the vibration source
(a spindle or CT edges) vibrates interacting with the technological system elements. As a result, the vibration
frequency spectrum consist of the spindle and associated with it structural elements speed components as
well as the rate of introduction into the machining material of the cutting edges. In order to understand the
vibration self-excitation mechanism it is necessary to consider the nature of free vibrations in cutting which
arise, for example, when the cutting forces suddenly released, i.e. when the next CT edge is exited from the
contact area. In this case sudden elimination of the impact of cutting forces on the machine takes place.
These vibrations are characterized by their natural or own frequency which is known to be determined by the
clastic system stiftness and its reduced mass.

Main material with a substantiation of results. There arc two main approaches in engineering
physics modeling: “lumped" physical system, such as configurations of masses, springs, and “dashpots’ and
the “distributed™ one. The term “lumped’™ comes from electrical engineering, and refers to lumped-parameter
analysis, as opposed to distributed-parameter analysis. In general, a lumped-parameter approach is
appropriate when the physical object has dimensions that are small relative to the wavelength of vibration.
However a lumped-parameter approach is the most in cutting dynamics although a cutting system structure is
a distributed one. There is the only one realm in which a lumped-parameter approach is appropriate well and
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this is the vibration sensor modeling. Firstly, the sensor is rectilinear one; secondly it has configurations of
masses, springs, and “dashpots™ which are selected by the designer especially for the measurement problem.
Depending on the circumstances a displacement or a force is measured only. There is no another alternative
in measurement technique [1]. That is why the question now is how to measure a displacement and its
denvatives (velocity or aceeleration), on the one hand, and the force, on the other hand. In the both cases a
dynamic sensor model is used. This is one side of problem.

Under dynamic conditions, a sensor is described by its dynamic transfer function and may be
characterized with a time-dependent characteristic which is called a dynamic characteristic. It means that the
sensor does not respond instantly, it may indicate values of stimuli which are somewhat different from the
real; i.e., the sensor responds with a dynamic error. The latter is a difference between static and dynamic
errors. When a sensor is incorporated inside the control system which has its own dynamic characteristics,
the combination may cause a delay in the appearance of a true value of a stimulus or even oscillations of the
output value [2].

Mathematically, a vibration sensor can be described by a differential equation whose order depends on
the sensor’s nature and design. There are three types of the equation depends on the relationship between the
input 5(f) and the output S(¢): a zero-order, a first-order, and a second-order response.

In a control system theory the input-output relationship is described through a constant —coefficients
linear equation. That is why the sensor’s dynamic characteristics can be analyzed by evaluated such an
equation with a zero-order, a first-order, or a second-order differential equation. The latter takes place for
vibration sensors in measuring forces, displacement and their derivatives (velocity, acceleration).

A second-order differential equation describes a sensor that incorporates at least two energy storage
components (a mass and a spring). The relationship between the input 5(f) and output S(#) is represented

by the equation

2
o, 450 dzgr)

di* !

where b, ,5,, and b, are constant coefficients (constants).

+b,5(H)=s5(1), ()

Mathematical modeling of a sensor is a power tool in assessing its performance [2]. The modeling
may address two issues: static and dynamic. The dynamic models may have several independent variables;
however, one of them must be time. The resulting model is referred to as a lumped parameter model. As it
was mentioned above the vibration physical laws may be interpreted most completely on the example of the
vibration sensor mathematical description (see the name of the paper). This allows exhausting the vibration
lumped-parameter modeling for all possible combinations of masses, springs, and “dashpots™ as well as their
ndividual quantities” measures. In other words, for the vibration analysis, a sensor is separated into simple
lumped parameter elements and each of them is considered separately.

An example of a second-order sensor is an accelerometer that includes a mass and a spring, which are
energy storing elements, and a “dashpot” (damper), which is energy dissipating one (figure 1).

- - — x
b I dx

k Jex b
J\/V v ] Bl VA S
U

Sprin Mass  Damping

Accelerometer housing

Studying object motion

Figure 2 — Mechanical model of an accelerometer () and a free-body diagram of a mass (b) [2].

A monoaxial accelerometer consists of an inertia element A7/ whose movement may be transformed
mnto an electrical signal, for instance, on the basis of piczoelectric transformer. The mass A/ is supported by
a spring with stiffness & and the mass movement is damped by a damping element with a coefficient? .
Mass may be displaced with respect to the accelerometer housing only in horizontal direction x (figure 2, b).

During operation, the accelerometer housing is subjected to acceleration d”y/d*, and the output signal is
proportional to the mass Af deflection of x,. The system has the only one degree of freedom because the

accelerometer mass is constrained to linear motion. Applying Newton’s second law of motion gives
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2 2
M dE = 1Y )
dt dt dt
The each term of the equation is the force and comparing the expressions (1) and (2) we obtain the
following conclusion: S(#)=x;s(t)=d’y/di* ;b,=1; b =b/M ; b, =k /M . The differential equation
(2) is of a second order, which means that the sensor output signal may have a vibrating form. In order to get
a desirable response, it is necessary selecting an appropriate coefficientd , and then the output signal may be
brought to a critically damped state. Thus, once the equations describing the elements have been formulated,
individual elements can be recombined to yield the mathematical model of the original sensor [2].
Using the Laplace transformation for the equation (2) we can get

Mp*X (p)+bpX (p)+kX (p)=MA(p) (3)
where X (p) and A(p)are the Laplace transforms of x(¢) and d*y/dr’, respectively. Soling for X'( p),
we obtain

MA
X(py=— )
Mp +bp+ik
Introducing a conventional variable o, =~/k/M and 28w, = b/M , the equation (4) can be expressed as
A
X(p)=-—y ) )
P +2o,pto,
where , is accelerometer’s angular natural frequency and £ is the normalized damping coefficient.
In its turn, in terms of the inverse Laplace transform operator, we obtain
x(1) =17 [G(p)Ap)] (6)
Here
1
G(p)=- 7

p*+ 2o, pte;

General scientific problem of the mechanical oscillations in engineering systems with lumped
parameters more fully discussed in the study of linear and torsional vibrations [3]. Analysis of this work can
reveal some features of the elastic cutting system vibration mechanism.

Initially this work examines free (or natural) harmonic oscillations when the oscillations of a vibrating
weight which can be substituted later by a reduced (concentrated) mass is maintained only by an spring force
that is equal to the product of stiffness % (spring constant according to Timoshenko S.P.) and elastic
displacement x | 1.e. kx , where & is the force which produces a unit displacement. Equilibrium equation or
differential equation of motion for an ideal mass-spring system which can be derived on the basis of
Newton’s principle is

i+ p'x=0, (8)

k ,
where p= \/: or p= é‘é is introduced notation for the natural or own frequency of the spring
m st

mechanical system; m 1s the reduced to a point mass, kg, gis the gravitational acceleration, m’/s;

o, = ?g is the static deflection of an equivalent spring in an ideal mass-spring system (an elastic system).

Introducing the equation (8) here as well as the following equations below we assume that further it
will be a kind of lumped (concentrated) elastic system which will be equivalent to the real distributed elastic
system for any technical arrangement including a machine tool. The equation (8) is a homogeneous (without
right part) linear differential equation of second order with constant coefficients and satisfied if

x=C cospt and x=C,sin pf, where | and C, are arbitrary constants (constants of integration) a

number of which is equal to the order of the differential equation (8). The general solution of this equation is
the sum of the mentioned above components each of them is a particular solution of equation (1), that is

x=C, cos pt+C, sin pf (9)
Taking into account that at the initial moment (7 = 0) the vibrating mass has a displacement x, (from

its equilibrium position) and moves at this moment with the velocity X, it can be obtained | =x, and

C, =%, / p. Therefore the equation (9) takes the form
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X =X, €os pf+ﬁsinpr (10)

It is important to observe that each vibration phenomenon can be represented both in vibrational and
rotational forms. The equation (third) represents a sum of the two vector projections on the x axis. The later

can be represented as
X, . %, |:(7r ﬂ %, (z ]
—sin pt = —¢Cos| —| —— pt ||=—cos| —— pt |.
p p 2 p 2

X=X, cospr+%cos(§—ptj (1)

Therefore

It is seen that even without both a viscous damping and a disturbing force the vibration consist of two
parts; the first is proportional to cos pf and depends on the initial displacement x, and the second is

proportional to cos (g— pr and depends on the initial velocity %, in the form of X, / p. The two rotating

vectors can be substituted by resulting one which rotates with the same angular velocity p around a fixed
point. This velocity in contrast to the former 1s circular velocity p of vibration. I’ one resulting vector

remains instead of the two rotating ones and it is equal to the geometrical sum of the previous vectors then
the same solution like equation (third) or (forth) has the following form

. 2 .
x= fx02+x%cos(pt—arcfg % J (12)
p X P

Thus, the sum of projections of the two rotating vectors on the x axis is equal to one resulting vector

.. X, ; . ; .
projection. The angle arcig —— 1is equal to onc between the vector with amplitude x, and the resulting
xO
x 2
vector with amplitude (x> + Lz and is the phase shift between these vectors. It is seen that if at the initial
P

moment (7 = 0) the initial velocity X, of the vibrating body is absent, i.e. X, =0, then the only one vector
rotates with an amplitude x; .
Then a disturbing force (Jsint is applied to the elastic system that is "a harmonic force function”

added to the system. This function has the amplitude (J (in Newtons) and circular frequency @ (radians

per second) which has been imposed on the elastic system. In such a case instead of the equations (8) and (9)
we obtain correspondingly the equilibrium equation and the general solution of the equation, i.e.

¥+ p'x= gsinwr. (13)
. in of
x:ClCospt+C2s1npr+%nz:2 (14)
Taking into attention th.':lti2 = %, the later part of the equation (14) takes the form
P
. 1
x= Qsmwt — | (15)
k -/ p

: : o k

Where x is the part of total amount of displacement during vibration of a reduced mass, m; p =, /—
m

1s the natural frequency of the mechanical system, rad/ s;
In expression (8) the second multiplier taken in modulus is called the magnification factor which is
given by the multiplier

I
1-w*/ p*

It can be seen that the magnitude of /3 depends on the ratio @/ p which is obtained by dividing the
frequency of the disturbing force @ by the frequency of free vibration p .
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A positive sign for £, thatis @ < p , indicates coincidence driving directions of the reduced mass and
the driving force (phase match) while a negative one, that is @ < p, on the contrary means that these
directions are opposite. In the first case, a positive feedback loop is created, in which the disturbing force is
"swinging" an oscillation, in the second — a negative feedback when the disturbing force is "extinguishing"
the oscillation. With increasing frequency @ the frequency ratio @’ / p* increases, the magnification factor
B decreases sharply, asymptotically approaching zero. For example, if we assume @/ p=3 then f=
0,125. At the same time as the @ decreases, i.e. @/ p tends to zero, the factor f asymptotically tends to the
unit value. Finally, when @ = p a resonance occurs in which the magnification factor /3 is increased
sharply, i.e. f— 0.

Finally, to match the real actual mechanical system it is necessary to introduce the so-called equivalent
viscous damping [3]. The presence of the damping forces (friction force between the dry or lubricated sliding
surfaces, environmental resistance, internal friction in the elastic zone of material, etc.) in real technical
systems partly changes described mechanism of vibration, bringing it closer to the real mechanism that takes
place in practice. Damping forces cause dissipation (or loss) of energy and are complex in terms of their
mathematical description. Therefore, in the classical theory of oscillations it is accepted to replace any
resistance forces by the equivalent viscous damping in which the damping force ¢xX is proportional to the

velocity X of the reduced mass displacement where ¢ is a coefficient of viscous damping that is equal to the
value of the damping force per unit velocity.

Forced oscillations equation for the reduced mass with one degree of freedom (motion along a single
coordinate) is now a major equation in the theoretical study of vibrations in the cutting technological system.

This equation consists of the clastic and damping forces which are equal to &x and X respectively. The
equation and its solution have the following form [3]

mi¥ = —kx—cx+(Qsin ot (16)

x=e"(C,cos p,t+C,sin p,t )+ M cos &t + Nsin et , (17)

where  (sinef is the harmonic force function that is similar to the above

mentioned expression (Jsinof, H; n=c/2m — the analog of circular frequency caused by the

equivalent viscous damping, rad / s; p, =/ p* —n" — the angular frequency of damped oscillations when
the damping takes place, rad /s ; C|,C, — integration constants, which is determined by the initial conditions

for free oscillations; A/ , N — integration constants that is defined by substituting of the equation (17), to the
exclusion of free oscillations, in the original equation (16).

The equation (17) corresponds to the case of "precritical”" damping, in which the degree of damping
does not prevent the periodic oscillations. Otherwise, free movement is not periodic one because the viscous
resistance 1s so large (» > p), that the reduced mass does not oscillate, but only returns to its equilibrium

position. This is so-called "overdamping” which leads to aperiodic motion of the lumped mass. The critical

value of the damping coefficient ¢_ is found from the condition »= p and equalto ¢, = 2.\/km .

To determine C, and C, it is assumed that in the initial moment of time, that is at f = 0, the reduced
mass is displaced during its oscillation from the equilibrium position, for example, by an amount of x, and
has at this time point the initial velocity X, . Then it is obtained

C =x,; c,=2" (18)
Py
After damped free vibrations cease to exert influence on the process, in accordance with equation (10)
the forced oscillations of the following form is set
x=M coset+ N sin ar . (19)
It is seen from the equation (19) that the forced oscillation consists of the two terms. One of them is
proportional to cos @t with the A/ constant and the other is proportional to sin @f with the V constant.
Substituting (19) into the original equation (16) follows [3]

2 2
— 2
- 2@’(}72 © )z 2 and N = 2 q(znm) 2 27
(pr—o)+4n w (p"—o)+4n o

wherein ¢ =)/ m is the acceleration, that is the inertia force component, which can be controlled by the

: 2
vibrosensor, m/s”.
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The above analysis of the physical essence of mechanical vibrations in an elastic mechanical system
such as any arrangement including a machine tool allows you to reframe the principles of equivalence and
generalized parameters for the development of embedded system of technological diagnostics.

Conclusions

1. For over a long historical period (more than a hundred years) in the theoretical study of vibrations
into cutting technological system the lumped system concept is used, while the real cutting system is the
distributed one. The lumped approach in engineering physics is more suitable for a vibration sensor
mathematical description then for machine elastic system one.

2. Even without both a viscous damping and a disturbing force the vibration consist of two parts; the

first 1s proportional to cos pf and depends on the initial displacement X, and the second 1s proportional to

cOs (%— ptj and depends on the initial velocity X, in the form of %, / p.

3. In a system with a natural vibration frequency p presence of damping leads to reduction of the
natural frequency to a level of p, < p, that 1s viscous damping has got a high pass filter property.

4. In a system with "precritical” damping a reduced mass movement consists of two components: a
damped free (it undergoes transient and disappears) and forced periodic (it is operating indefinitely).

5. The emergence of “chatter” is a manifestation of mechanical resonance in the elastic system with
damping, but differs from it by the mechanism of the influence of the previous traces of machining, for
example, such as a pre-formed waviness.
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Onecckii HAHOHAIBHBIH MOTHTCXHHYCCKHH YHUBSPCHTET

3AKOHOMEPHOCTH OBPA30BAHITA ITPHZROI'OB 3AKAJIKH 11IPH HITHPOBAHIIN
HOAUIMITHHUKOBBIX CTAJIEH 3A CHET JAPPY3IMOHHOI'O MEXAHU3MA MAPTEHCHT-
IHEPJIMT-AYCTEHHT

YV cmammi naeedeHo pesyiemanid COCAIONCEHb 3aKOHIE  VINGOPEHHA CMPYKRMYpPU  aVCimeHimy &
HOSepXHesoMy wiapi demani npu uvtigpyeanni lle seuige odepxcano Hassy UULIDYEANbHI NPURAREHi.
Cmpykmypa yux Apunanedt 2611 cobow aycmerim eucokol maepdocmi. Taka cmpyKmypa noeepxresnzo
MIAPY 3HAUHO ZHUNCYE 0062061uHICMb | eKchnayamayiiinugl pecype oemani. [loxasano, wo ye nepemeopenis
Mogice  @I0Byeanmuca 3d  PAXyHOK MPOX pI3HUX Mexarizmie - ougysilinozo, ©Gesoudysilinozo npu
HOPMATIBHOMY BRACKY | Oe30udysiiinozo npu sucoxux puickax. Tlpu ymeopenui aycmening no ou@ysiinomy
MEXAHIZMY HpU HOPMAIBHOMY WRICKY THCWDYMEHMAaneHa mouka Aq; nidsuuyemves. Lle niosuujenns mum
Oinvitte, YuM 6ulye WeUOKICME Hazpieanni. Qdeprcanidli aycmeHim nidoaemsCa [HIMEHCUEHOMY HOKAENY,
RICAS HO20 OXONCONCYEMBCA 31 WEUOKOCMAMU 6UlHe KPUMMUUHUX sucoxocmedl zapmy. Hasedewno, wo
BAMUUROGUIT AYCIEHIM MAE NepexpyyeHy HaKAenoM KpUcmaniuvy epamky. [lugysiiine nepemeopeHHA
satimae docump 3Haune micye Lllsuokicna 6i0nyemixa MapmeHcUmy 6i06VeacmbCa APU WEUCKOCIIIX HAZPISY
OmizeKo comHpi mucay spadycie & ceKyHay. Tarkum WiHOM, njAd OYHCe GUCOKUX WMEUOROCIAX HASPIBY MONMCGE
VIMBOPEHHS NePILY, KU Npu RIOSUEHNT MeMnepamypy noHao Aq; Ovoe oudy3iino2o nepemeoprosamucs
Ha aycmenim. Hum suige memnepamypa, mMuM WeUOue 3a6epulyemsca oudyaiinuil npoyec nepepo3nooiny
8Y2IeU0 8 AVCIEeHIm.

Kiowoei crosa: Aycmenim, nosepxuesuti wiap, Ougyzitinul Mexanizm YmeopeHHs.

B cmambve npueedenvl pesyiumambl UCCAROOSOHUN 30KOHOE 0OPAZ0SANUA CMPYRIYDLL GYCMEHUMA @
HOBEPXHOCIHOM C0€ Oemal Npu WnioeaHu Dmo AeNeHue NOIVUUN0 HA360HUE UTUMOEOUHBIE NPUNICOZI.
CmpyKmypa 3mux Rpuxcozoe Apedcmasniem coboil aycmeHum aHOMONbHO ebicokot meepoocrmt. Taxas
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