УДК 621.391

И.К. ВАСИЛЬЕВА, М.Ф. БАБАКОВ

Национальный аэрокосмический университет им. Н.Е. Жуковского "ХАИ", Украина

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ВНЕШНИХ И СТРУКТУРНЫХ ФАКТОРОВ НА ПОЛЯРИЗАЦИОННЫЕ ПРИЗНАКИ ОСАДКОВ

Проведено исследование зависимости поляризационных параметров гидрометеорологических объектов, полученных путем моделирования, от интенсивности осадков, длины волны излучения, температуры, среднего угла наклона и степени упорядоченности частиц в ансамбле. Выполнен предварительный анализ информационных возможностей параметров для прогнозирования вида и интенсивности осадков, распознавания областей формирования града и грозоопасных зон по радиолокационным данным.

осадки, структурные факторы, поляризационные параметры, математическая модель

Введение

Трудности, возникающие при разработке алгоритмов распознавания гидрометеорологических образований (ГМО) по данным дистанционного зондирования (ДЗ), связаны, прежде всего, с неоднозначностью определения класса ГМО, обусловленной статистическим характером их поляризационных признаков (ПП). Поляризационные характеристики сигнала, рассеянного ансамблем частиц ГМО, зависят от множества факторов: длины волны излучения, диэлектрических свойств, формы, размера, концентрации, ориентации частиц и т.д. Известно, что диэлектрическая проницаемость зависит от фазового состояния, плотности частиц, длины волны и температуры. Размеры и число частиц в единице объема связаны с интенсивностью ГМО, причем вид этой зависимости обусловлен классом ГМО. В свою очередь, размеры и форма частиц большинства классов ГМО также связаны между собой либо детерминированным образом (в случае капельных ГМО), либо статистически (для частиц ледяной крупы, агрегатов кристаллов). Распределение углов наклона частиц считается нормальным [1], а значения параметров закона распределения зависят от класса ГМО. Таким образом, целью работы являлось исследование влияния указанных факторов на ПП. По результатам моделирования в приближении Рэлея

[1] элементов поляризационной матрицы рассеяния (ПМР) Ś [2] определялись ПП и строились зависимости оценки их математического ожидания (МО) от входного параметра модели. После аппроксимации Sb-распределением Джонсона [3] гистограмм ПП, находились вторичные оценки МО и среднеквадратического отклонения (СКО). Если смещение выборочной оценки МО ПП не превышало СКО его закона распределения, то данный параметр считался малочувствительным, т.к. по его значению невозможно оценить с достаточной достоверностью величину влияющего фактора. При этом для построения статистической модели ПП отпадала потребность проводить интегрирование по диапазону возможных значений такого фактора.

Поляриметрические параметры

ПП, определяемые на основе ПМР в ортогонально-линейном (h, v) поляризационном базисе

$$\dot{\mathbf{S}} = \begin{bmatrix} S_{hh} \exp(j\phi_{hh}) & S_{hv} \exp(j\phi_{hv}) \\ S_{vh} \exp(j\phi_{vh}) & S_{vv} \exp(j\phi_{vv}) \end{bmatrix}$$
(1)
$$\dot{S}_{hv} = \dot{S}_{vh} ,$$

при

условно можно разделить на следующие группы:

абсолютные амплитудные:

1) *НН*, *HV*, *VV* – модули S_{ij}, дБ [2];

- относительные амплитудные:

1) коэффициенты деполяризации [4]:

$$CDH = 10 \lg \left(\left| \dot{S}_{hv} \right| / \left| \dot{S}_{hh} \right| \right); \ CDV = 10 \lg \left(\left| \dot{S}_{hv} \right| / \left| \dot{S}_{vv} \right| \right); (2)$$

2) коэффициент асимметрии [4]:

$$CAS = 10 \lg \left(\left| \dot{S}_{hh} \right| / \left| \dot{S}_{vv} \right| \right); \tag{3}$$

3) коэффициент анизотропии [4]:

$$CAN = \left(\left| \dot{S}_{hh} \right| - \left| \dot{S}_{vv} \right| \right) / \left| \dot{S}_{hh} \right| + \left| \dot{S}_{vv} \right|; \tag{4}$$

- абсолютные мощностные:

|*R_{ij}*| – модули элементов ковариационной матрицы рассеяния (КМР), дБ [5];

- - 3) коэффициент параметра формы, дБ [2]:

$$SFC = 0.5 \left| \dot{S}_{hh} - \dot{S}_{vv} \right|^2 + 2 \left| \dot{S}_{hv} - \dot{S}_{vh} \right| / \left(\Lambda_1^2 + \Lambda_2^2 \right); \quad (5)$$

4) *Y*₁ –параметр средней мощности, дБ:

$$Y_1 = 0,25 \left(R_{11} + R_{33} + \dot{R}_{13} + \dot{R}_{31} \right); \tag{6}$$

5) У2 –параметр дисперсии мощности, дБ:

$$Y_2 = 0,25(R_{11} + R_{33} - \dot{R}_{13} - \dot{R}_{31}) + R_{22};$$
(7)

6) $|Y_3|$ – модуль параметра Y_3 , дБ:

$$\operatorname{Re} \dot{Y}_{3} = (R_{33} - R_{11}) / [4\cos 2\langle \beta \rangle \exp(-2\langle D_{\beta} \rangle)];$$

$$\operatorname{Im} \dot{Y}_{3} = \operatorname{Im} \dot{R}_{31} / [2\cos 2\langle \beta \rangle \exp(-2\langle D_{\beta} \rangle)], \qquad (8)$$

где $\langle \overline{\beta} \rangle$ – оценка среднего угла наклона частиц:

$$\overline{\beta} \rangle = 0.5 \operatorname{arctg} \left[2 \operatorname{Re} \left(\dot{R}_{21} + \dot{R}_{32} \right) / (R_{33} - R_{11}) \right]; \quad (9)$$

 $\left< D_{oldsymbol{eta}} \right>$ – оценка дисперсии угла наклона частиц:

$$\langle D_{\beta} \rangle = -\frac{1}{8} \ln \frac{R_{11} + R_{33} - R_{13} - R_{31} - 4R_{22}}{(R_{11} + R_{33} - R_{13} - R_{31} + 4R_{22}) \cos 4 \langle \beta \rangle};$$
(10)

7) Z_h , Z_v – параметры отражаемости при Н и

V-зондировании соответственно, дБZ [6];

8) Z_{dp} – разностная отражаемость, дБZ [6];

H_{dr} – дифференциальная отражаемость градового сигнала, дБ [5, 6];

- относительные мощностные:
- 1) ТАЛ параметр истинной анизотропии [4];

$$TAN = \left(\Lambda_1^2 - \Lambda_2^2\right) / \left(\Lambda_1^2 + \Lambda_2^2\right);$$
(11)

2) AN – параметр асимметричности, дБ:

$$AN = 10 \lg \left[\frac{\left| \dot{S}_{hh} \right| - \left| \dot{S}_{\nu\nu} \right| + 2 \left| \dot{S}_{h\nu} \right| \left| \dot{S}_{hh} \right|}{\left| \dot{S}_{hh} \right| + \left| \dot{S}_{\nu\nu} \right| \left| \dot{S}_{\nu\nu} \right|} \right]; \quad (12)$$

`

3) *НGM* – модуль параметра γ , град [7];

- (

- *EP*₁, *EP*₂ модули фазоров собственной поляризации, дБ [2, 4];
- 5) *DDT* отношение детерминанта к следу ПМР, дБ [2];
 - 6) *EVR* модуль отношения Λ_1 и Λ_2 ;
 - 7) *I*₁ отношение *Y*₂ и *Y*₁, дБ [5];
 - 8) $|I_2|$ модуль отношения \dot{Y}_3 и Y_1 , дБ [5];
 - 9) Z_{dr} дифференциальная отражаемость [6];

10) LDR_h , LDR_v – линейные деполяризационные отношения, дБ [6]:

- фазовые:

1)
$$\arg HH$$
, $\arg HV$, $\arg VV$, $\arg R_{ij}$ – аргументы

2) разности фаз [2]:

- $FH = 180(\varphi_{hh} \varphi_{hv}) / \pi$; $FV = 180(\varphi_{vh} \varphi_{vv}) / \pi$; (13)
 - 3) EF_1 , EF_2 –аргументы Λ_1 и Λ_2 ;
 - 4) *EFS* сумма *EF*₁ и *EF*₂, град [2];
 - 5) *EFD* разность EF_1 и EF_2 , град [2];
 - 6) *HGF* –аргумент параметра γ , град [7];
 - 7) *DTA* аргумент детерминанта ПМР [2];

DPS – дифференциальный фазовый сдвиг (определяется по аргументу коэффициента корреляции ρ_{hv}) [6]:

$$\dot{\rho}_{hv} = \dot{S}_{vv} \dot{S}_{hh}^{*} / \left(\sqrt{\left| S_{vv} \right|^{2}} \sqrt{\left| S_{hh} \right|^{2}} \right);$$
 (14)

9) arg $\dot{\rho}_{xh}$, arg $\dot{\rho}_{xv}$ – аргументы взаимных корреляционных коэффициентов для сигналов с основной и перекрестной поляризацией при Н и V-зондировании, соответственно [8];

 ELH, ELV, ORH, ORV – углы эллиптичности и ориентации отраженных сигналов при H и V поляризации зондирования [2, 4];

 ZE₁, ZE₂, ZO₁, ZO₂ – углы эллиптичности и ориентации нулевого сигнала [2, 4]; *EE*₁, *EE*₂, *EO*₁, *EO*₂ – углы эллиптичности и ориентации собственной поляризации [2, 4].

При интерпретации полученных по (9) оценок среднего угла наклона следует учитывать, что функция arctg возвращает значения в диапазоне $[-\pi, \pi]$, поэтому если $\beta \notin [-\pi/2, \pi/2]$ (например, при $\sigma_{\beta} > 30^{\circ} - \overline{\beta}/3$) возникает систематическая погрешность оценки МО. Если $\overline{\beta}$ близко к 0°, то $\langle \overline{\beta} \rangle$ даже при большой дисперсии угла наклона смещается незначительно (рис. 1, 2), что объясняется зеркальным относительно $\overline{\beta}$ отражением участков функции распределения $\langle \overline{\beta} \rangle$, выходящих за границы указанного интервала.

Поскольку величины углов наклона связаны с внешними воздействиями: направлением потоков воздуха, определяемым как горизонтальной скоростью ветра, так и скоростью падения частиц, зависящей от интенсивности ГМО, размера частиц, атмосферного давления, влажности и температур, то возможность использования $\langle \overline{\beta} \rangle$ и $\langle \sigma_{\beta} \rangle$ для идентификации класса ГМО вызывает сомнения.

Рис. 1. Гистограмма (1) и плотность распределения (2) оценки среднего угла наклона градин ($\sigma_{B} = 6^{\circ}$)

Рис. 2. Гистограмма (1) и плотность распределения (2) оценки среднего угла наклона градин ($\sigma_{\beta} = 56^{\circ}$)

Зависимость ПП от длины волны

С увеличением длины волны от 1 до 30 см абсолютные амплитудные ПП (кроме *SFC*) уменьшаются на 28...30 дБ, т.е. обратно пропорционально λ^2 (рис. 3, 4), абсолютные мощностные ПП – на 58...68 дБ. Параметры радиолокационной отражаемости $Z_{h,v}$, Z_{dp} , H_{dr} в явном виде от λ не зависят (по определению); отклонения от среднего значения (до ±1 дБZ), характерные для осадков в жидком фазовом состоянии, могут быть связаны с изменением диэлектрической проницаемости воды.

Относительные ПП практически не зависят от λ ; отклонения от среднего не превышают 0,4 дБ. Низкие значения большинства ПП для сухого снега ($\rho_s = 10 \text{ кг/m}^3$) обусловлены его слабыми диэлектрическими свойствами, а также выбором квазисферической модели для описания формы снежинок.

Колебания фазовых ПП при изменении λ , как правило, носят скачкообразный характер, причем отклонения от среднего составляют $10^{-3}...10^{-1}$ рад.

Зависимость от λ угловых ПП также отсутствует, или выражена очень слабо. Диапазон изменения МО не превышает 6°; отклонения от среднего максимальны для EO_1 , EO_2 .

Можно заключить, что от λ существенно зависят только абсолютные ПП. Эта зависимость известна и отражена в формулах для расчета элементов ПМР. Таким образом, несмотря на то, что дальнейшие исследования зависимостей ПП от влияющих факторов проводились при фиксированной длине волны $\lambda = 3,2$ см, соответствующей рабочей частоте бортовых метеонавигационных комплексов, полученные результаты можно распространить на весь диапазон λ , в котором применимо приближение Рэлея.

Зависимость ПП от температуры

Диапазон изменения температуры t для ГМО в жидком фазовом состоянии был принят 0...29°С, для крупы, града и снега – –29...0°С. Результаты моделирования показали, что изменения t практически не влияют на величину МО ПП. Наиболее чувствительны к t фазовые ПП, однако изменения их МО носят скачкообразный характер, а диапазон изменения незначителен и находится в пределах СКО ПП, что не позволяет использовать эти параметры в качестве индикативных признаков для оценки фактора t. Так, максимальное отклонение от среднего значения FH, FV составляет \pm 1,5°. Отклонения от МО EF_1 , EF_2 для жидких ГМО находятся в пределах \pm 0,5...1°, а для снега – \pm 5...6°.

Влияние на ПП МО угла наклона

Принято считать, что в ГМО средний угол наклона капель $\overline{\beta} = 7...12^{\circ}$, а для ледяной крупы, града, пластинчатых ледяных кристаллов и снега $\overline{\beta} \approx 0^{\circ}$. Тем не менее, для анализа влияния угла β на значения ПП для всех классов был принят одинаковый диапазон варьирования $\overline{\beta} = 0...58^{\circ}$, для учета возможных отклонений МО угла наклона от среднестатистических данных. В группу ПП, чувствительных к $\overline{\beta}$, входят $\langle \overline{\beta} \rangle$, *EFD*, *HGF*, *EO*₁, *EO*₂. Связь $\langle \overline{\beta} \rangle$ и $\overline{\beta}$ (см. рис. 5) для жидких ГМО имеет выраженный линейный характер вида:

$$\overline{\beta} = k \cdot \langle \overline{\beta} \rangle - b$$

Так, для дождя k = 1,32 и b = 1,27; для ливня k = 1,21 и b = 4,24; для грозы k = 1,16 и b = 2,78. Для твердых ГМО эта зависимость почти линейна до $\sigma_{\beta} \approx 28^{\circ}$; при дальнейшем увеличении СКО расчеты среднего угла наклона дают существенно заниженные оценки. Оценки МО $\langle \overline{\beta} \rangle$, полученные после аппроксимации гистограмм, точнее воспроизводят модельные значения $\overline{\beta}$, т.к. при этом отбрасываются случайные выбросы данных.

Зависимости вторичных оценок MO *EO*₁ от β для различных классов показаны на рис. 6.

Влияние на ПП СКО угла наклона

Капли имеют более упорядоченную ориентацию, чем ледяные частицы, поэтому для жидких ГМО был принят диапазон варьирования СКО угла наклона $\sigma_{\beta} 5...30^{\circ}$, для твердых – 6...58°. Наиболее чувствительны к $\sigma_{\beta} EO_1$ (МО возрастает на 10...25°), EO_2 (МО уменьшается на 15...30°), $\langle \overline{\beta} \rangle$ и $\langle \sigma_{\beta} \rangle$. Для жидких ГМО с увеличением σ_{β} МО $\langle \sigma_{\beta} \rangle$ возрастает, для твердых ГМО МО $\langle \sigma_{\beta} \rangle$ растет до $\sigma_{\beta} \approx 30^{\circ}$ и далее практически не изменяется.

На рис. 7, представляющем вид зависимости $\langle \overline{\beta} \rangle$ от σ_{β} в дожде ($\overline{\beta} = 10^{\circ}$), показано, что с увеличением σ_{β} погрешность оценки МО β по абсолютной величине возрастает. Для ГМО в твердой фазе эта зависимость имеет немонотонный характер.

Зависимость ПП от обводненности ледяных частиц

Диапазон варьирования доли жидкой воды в объеме ледяных частиц $p_w = 0...1$ для крупы и града соответствовал состояниям частиц от полностью сухих до мокрых, обводненных и тающих, приближающихся по своим диэлектрическим свойствам к каплям воды. В случае снега варьировалась его плотность $\rho_s = 10...800$ кг/м³.

Для ПП, чувствительных к p_w (ρ_s), характерно

то, что диапазон их изменения в снеге в несколько раз выше, чем в граде и крупе. Так, МО EF_1 , EF_2 в граде и крупе с ростом p_w почти не изменяются ($\Delta = \pm 2^\circ$), в снеге же они возрастают на 40°. При увеличении p_w МО SFC в граде и крупе уменьшается на 0,5...1 дБ, а в снеге возрастает на 22 дБ. Вид зависимости МО AN от p_w (ρ_s) показан на рис. 8.

Рис. 8. Зависимость МО *AN* от доли воды в объеме ледяных частиц p_w (или плотности снега ρ_s): 1 – крупа; 2 – град; 3 – снег

Зависимость ПП от интенсивности

Исследовались типичные для различных классов диапазоны интенсивности *R*, мм/ч: для дождя – 1...35; ливня – 5...50; грозы – 5...100; крупы – 0,5...10; града – 0,5...50; снега – 0,5...10.

К независящим от *R* можно отнести фазовые ПП, так как их изменения (1...20°) носят скачкообразный характер. Малочувствительны к *R* относительные ПП; наибольшие отклонения от среднего дают $LDR_{h,v}$, I_1 ($\Delta = \pm 6,5$ дБ – в снеге, $\Delta = \pm 1,2$ дБ – в ливне). Из угловых параметров наиболее чувствительны к *R* EO_1 и EO_2 . МО EO_2 в снеге возрастает от – 41° до – 20°, однако для остальных классов осадков диапазон изменения существенно ниже: от 6° (в граде) до 10° (в грозе).

К сильно зависящим от R относятся абсолютные амплитудные ПП (табл. 1). Из их числа можно отметить Z_h (рис. 9), Z_v , H_{dr} , которые мало зависят от других влияющих факторов и, следова-

Параметр	Направление (↑↓) и величина изменения MO параметра					
	дождь	ливень	гроза	крупа	град	снег
<i>R</i> , мм/ч	135	550	5100	510	0,550	0,510
<i>НН</i> , <i>VV</i> , дБ	↑ 1112	↑ 55,5	↑ 1718	↑ 1112	↑ 1314	↑ 1414,5
<i>НV</i> , дБ	↑ 1516	↑ 56	↑ 19	↑ 99,5	↑ 1515,5	↑ 78
<i>H_{dr}</i> , <i>Y</i> ₁ , <i>Z_h</i> , <i>Z_v</i> , дБ (дБZ)	↑ 2425	↑ 9,510	↑ 3334	↑ 2324	↑ 26,527	↑ 2828,5
$ Y_3 , Z_{dp}, дБ (дБZ)$	↑ 2829	↑ 1011	↑ 3536	↑ 2021	↑ 2829	↑ 2122
<i>R</i> ₂₂ , <i>Y</i> ₂ , дБ	↑ 3234	↑ 1012	↑ 3839	↑ 18,519	↑ 3030,5	↑ 1516
<i>EV</i> ₁ , <i>EV</i> ₂ , дБ	↑ 2728	↑ 1011	↑ 3839	↑ 2627	↑ 3031	↑ 3233
SFC,дБ	↓ 78	↓ 34	↓ 1415	↓ 1415	↓ 1011	↓ 2021

Рис. 9. Зависимость Z_h от интенсивности осадков: 1 – дождь; 2 – ливень; 3 – гроза; 4 – крупа; 5 – град; 6 – снег

тельно, являются индикативными показателями интенсивности осадков по данным ДЗ.

Заключение

Анализ результатов моделирования ПП осадков показал, что наиболее перспективными для распознавания ГМО по данным ДЗ являются относительные и угловые ПП, поскольку они не зависят от λ , не критичны к погрешностям определения импульсного объема РЛС и малочувствительны к колебаниям структурных и интегральных характеристик ГМО. Информативные возможности фазовых ПП сомнительны, поскольку МО этих параметров для всех моделируемых классов и по всему исследуемому диапазону входных параметров модели, относящихся к внешним воздействиям и структурным характеристикам, как правило, принимают близкие к нулю и переменные по знаку значения, а ширина их законов распределения (кроме *DPS*) составляет около 360°.

Литература

 Попов А.В., Васильева И.К. Моделирование поляризационных признаков гидрометеорологических образований // Радіоелектронні і комп'ютерні системи. – 2004. – № 1 (5). – С. 17 – 26.

2. Канарейкин А.Б., Потехин В.А., Шишкин И.Ф. Морская поляриметрия. – Л.: Судостроение, 1968. – 328 с.

 Хан Г., Шапиро С. Статистические модели в инженерных задачах. – М.: Мир, 1969. – 369 с.

4. Popov A.V., Pogrebnyak O. Informativity of polarimetric radar invariants // Proc. SPIE. – 2003. – Vol. 5151. – P. 74 – 84.

5. Рыжков А.В. Поляризационные методы в метеорологической радиолокации // Зарубежная радиоэлектроника. – № 4. – 1993. – С. 18 – 28.

6. Straka J.M., Zrnic D.S., Ryzhkov A.V. Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations // J. Appl. Meteor. – 2000. – Vol. 39. – P. 1341 – 1372.

 Huynen J.R. Phenomenological theory of radar targets // Electromagnetic scattering. – 1978. – P. 653 – 712.

8. Ryzhkov A., Zrnic D., Hubbert J. et al. Interpretation of polarimetric radar covariance matrix for meteorological scatterers // Proc. IEEE. – 2000. – P. 721 – 725.

Поступила в редакцию 23.07.2005

Рецензент: д-р техн. наук, проф. Г.Я. Красовский, ГНПЦ «Природа», Харьков.

Таблица 1