УДК 621.396. 967.2

и.и. обод

Харьковский университет Воздушных Сил, Украина

ОБНАРУЖЕНИЕ ВОЗДУШНЫХ ЦЕЛЕЙ СИСТЕМОЙ ВТОРИЧНОЙ РАДИОЛОКАЦИИ

Проводится сравнительный анализ показателей качества обнаружения воздушных целей системой вторичной радиолокации.

система вторичной радиолокации, обнаружение воздушных целей, показатели качества обнаружения

Введение

Постановка проблемы. Государственной программой строительства и развития Вооруженных Сил Украины предполагается создание единого радиолокационного поля. Это позволит образовать единую информационную сеть систем наблюдения ПВО, ВВС и УВД, реализация которой немыслима без внедрения в системы наблюдения автоматических обнаружителей и измерителей координат воздушных целей. Если теория и практика построения автоматических обнаружителей-измерителей координат воздушных целей для систем первичной радиолокации достаточно подробно рассмотрена в существующей технической литературе, то рассмотрение этих вопросов для систем вторичной радиолокации (ВРЛ) имеет некоторый пробел. В частности, недостаточно полно оценено влияние коэффициента готовности самолетного ответчика (CO) P_o и вероятности подавления отдельных импульсов ответного сигнала (OC) P_p на структуру и характеристики автоматических обнаружителей-измерителей координат воздушных целей.

Анализ литературы. В [1] синтезирован алгоритм обнаружения воздушных целей применительно к рассматриваемой ситуации, однако не приведено

совместное влияние P_o и P_p на характеристики обнаружения. Кроме того, не приведен сравнительный анализ синтезированного (оптимального) и реализованного в системах ВРЛ (квазиоптимального) обнаружителей воздушных целей.

Цель статьи: сравнительный анализ показателей качества синтезированного и используемого на практике обнаружителей воздушных целей системами вторичной радиолокации.

Изложение материалов исследований

Как показано в [1], вероятность правильного обнаружения воздушной цели вторичным радиолокатором при использовании пачки из N ОС при учете P_o и P_p имеет следующий вид:

$$\begin{split} D &= \sum_{r_i} \frac{N!}{r_0! r_1! ... r_n!} \prod_{s=0}^n \left\{ P_o(1 - P_p) C_n^s P_{11}^s (1 - P_{11})^{n-s} + \right. \\ &\left. + [1 - P_o(1 - P_p)] C_n^s P_{01}^s (1 - P_{01})^{n-s} \right\}^{r_s}, \end{split} \tag{1}$$

где P_{11} — вероятность обнаружения импульса ответного кода; P_{01} — вероятность образования ложной единицы из шума; n — значность ОС.

Суммирование в выражении (1) должно производиться по всем тем представлениям числа N в виде суммы n неотрицательных слагаемых r_i , $i \in 0 \dots n$, для которых выполняется условие обнаружения. Как следует из приведенного выражения, вероятность обнаружения воздушной цели системой ВРЛ существенным образом зависит от коэффициента готовности СО и вероятности подавления отдельных импульсов ОС.

Для двухимпульсных ОС условие обнаружения приобретает вид

$$r_1 + wr_2 \ge c \ . \tag{2}$$

В соответствии с (2), обнаружение воздушной цели по пачке двухимпульсных ОС на ВРЛ сводится к сравнению с порогом суммы числа r_1 ОС, с одним обнаруженным импульсом, и взятого с весом w числа ОС с двумя обнаруженными импульсами r_2 . Величина веса показывает, насколько при обнаружении цели ОС с двумя обнаруженными импульсами ценнее, чем ОС с одним обнаруженными импульсами ценнее, чем ОС с одним обнаруженным импульсом. В случае если помех в ответном канале нет, т.е. $P_p = 0$, величина веса равна двум и условие (2) сводится к сравнению с порогом суммарного числа импульсов в пачке ОС.

Если обозначить через A_i вероятность обнаружения i импульсов в ответном сигнале (i = 1, 2):

$$A_0 = P_0 P_{10}^2 + (1 - P_0) P_{00}^2;$$

$$A_1 = 2P_0 P_{11} P_{10} + 2(1 - P_0) P_{01} P_{00};$$

$$A_2 = P_0 P_{11}^2 + (1 - P_0) P_{01}^2,$$

то выражение для вероятности правильного обнаружения принимает следующий вид:

$$D = \sum_{r_0} \frac{N!}{r_0! r_1! r_2!} A_0^{r_0} A_1^{r_1} A_2^{r_2}.$$

Так как $r_0 = N - r_1 - r_2$, то множитель, содержащий факториалы, является произведением биноминальных коэффициентов:

$$\frac{N!}{r_0!r_1!r_2!} = \frac{N!(N-r_2)!}{r_2!(N-r_2)!r_1!(N-r_2-r_1)!} =$$

$$= C_N^{r_2}C_{N-r_2}^{r_1}.$$

Преобразовывая условия суммирования, получим

$$D = \sum_{r_2=0}^{N} \sum_{\substack{n_1 = \max\{0, c - wr_2\}}}^{N-r_2} C_N^{r_2} C_{N-r_2}^{r_1} \times A_0^{N-r_1-r_2} A_1^{r_1} A_2^{r_2} = \sum_{r_2=0}^{N} C_N^{r_2} A_2^{r_2} \times A_0^{N-r_1-r_2} A_1^{r_1} A_2^{r_2} + \sum_{\substack{n_1 = \max\{0, c - wr_2\}}}^{N-r_2} C_{N-r_2}^{n_1} A_0^{N-r_1-r_2} A_1^{r_1}.$$
(3)

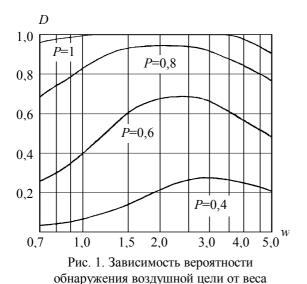
В существующих системах ВРЛ [2, 3] обработка сигналов включает дешифрацию ОС по логике n/n. Это исключает из обнаружения ту часть импульсов ОС, которые остались после подавления отдельных сигналов в канале ответа. Вероятность прохождения полезных и ложных сигналов через дешифратор можно определить как

$$D_{11} = P_{11}^n; \quad F_{01} = P_{01}^n,$$
 (4)

так как сигналы на выходе дешифратора являются результатом логического умножения.

Функция правдоподобия гипотезы H_1 для пачки прошедших дешифрацию сигналов получаем как

$$\begin{split} L(\vec{Y} \Big| H_1; P_o; P_p) &= \prod_{k=1}^N \Big\{ P_o (1 - P_p) \times \\ \times \prod_{i=1}^n D_{11}^{x_{ik}} \left(1 - D_{11} \right)^{1 - x_{ik}} + (1 - P_o) P_p \prod_{i=1}^n F_{01}^{x_{ik}} \left(1 - F_{01} \right)^{1 - x_{ik}} \Big\}. \end{split}$$


В этом случае оптимальное решающее правило обнаружения воздушной цели по пачке предварительно прошедших дешифратор ОС, определяемое отношением правдоподобия, сводится к цифровому накоплению и сравнению с порогом числа прошедших дешифрацию ОС. Значение порога обнаружения в этом случае также зависит от коэффициента готовности СО и вероятности подавления ОС.

Вероятность правильного обнаружения воздушной цели после дешифрации ОС можно определить по выражению

$$D = \sum_{j=C1}^{N} C_N^j [P_o(1 - P_p)D_{11} + (1 - P_o)P_p F_{01}]^j \times \times [P_o(1 - P_p)(1 - D_{11}) + (1 - P_o)P_p(1 - F_{01})]^{N-j}.$$
(5)

Таким образом, оптимизация цифрового обнаружения воздушной цели по пачке дешифрованных ОС сводится к выбору порогов обнаружения так же, как и для синтезированного обнаружителя, т.е. с учетом коэффициента готовности СО и вероятности подавления импульсов ответных сигналов.

Рассмотрим характеристики обнаружения воздушной цели для алгоритмов (3) и (5) для двухимпульсных ОС. Вероятность правильного обнаружения при постоянном значении вероятности ложной тревоги на выходе обнаружителя, рассчитанная по выражению (3) с постоянными параметрами c и w, приведена на рис. 1. Расчеты произведены при C/N = 0.3; N = 27; q = 2 и для различных значений $P_o(1 - P_p) = P$. При P = 1 наилучшие результаты оказываются для w = 2, а с уменьшением значения P величина оптимального веса увеличивается.

Для каждого значения отношения сигнал-шум и P как для синтезированного, так и для реализованного в системах ВРЛ алгоритмов обнаружения воздушной цели существуют оптимальные значения порогов и весов, обеспечивающие максимум D при постоянной вероятности ложной тревоги. Кривые об-

наружения при оптимальных и фиксированных значениях порогов и весов приведены на рис. 2. При этом штриховая зависимость дана для синтезированного алгоритма, сплошная зависимость – для существующего алгоритма обнаружения с оптимальным порогом и штрихпунктирная – для существующего алгоритма при фиксированном пороге обнаружения, выбранного в соответствии с рекомендация-

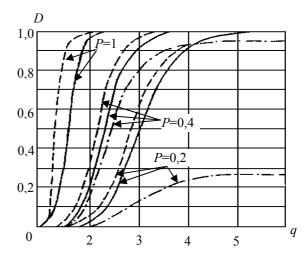


Рис. 2. Вероятность обнаружения воздушной цели при постоянных и оптимальных порогах ми для систем первичной радиолокации.

По сравнению с синтезированным обнаружителем, как следует из рис. 2, обнаружитель, сравнивающий с порогом число прошедших дешифратор ОС, проигрывает в пороговом сигнале 1 – 1,5 dБ при условии выбора для каждого из обнаружителей оптимальных для них значений порогов и весов.

Проигрыш в пороговом сигнале при выборе постоянного порога обнаружения C1 пачки дешифрованных ОС вместо оптимального переменного C1, максимизирующего D при постоянной F, зависит от величины вероятности подавления сигналов в запросном и ответном каналах ВРЛ P (рис. 3).

Для обнаружения пачки ОС после дешифрации при P < 1 и достаточно большом отношении с/ш оп-

тимальное значение порога обнаружения стремиться к единице (рис. 4).

При этом следует заметить, что величина q, при котором выполняется это условие, зависит от длины пачки ОС, коэффициента готовности СО и вероятно-

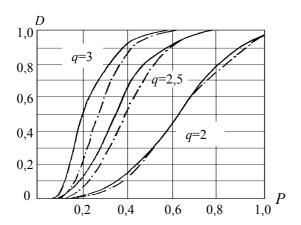


Рис. 3. Зависимость вероятности обнаружения воздушной цели от вероятности подавления в запросной и ответном каналах

сти подавления ответного сигнала.

Однако известно [4], что системы ВРЛ реализуются на принципе несинхронной сети, позволяющей защитить запросчики от несинхронных помех. Это обстоятельство и результаты, приведенные на рис. 4, позволяют сделать вывод, что цифровой порог обнаружения воздушных целей в системах вторичной радиолокации, при воздействии внутрисистемных и преднамеренных помех в запросном и ответном каналах, а также при большом отношении сигнал/шум следует выбирать равным двум.

При малых отношениях сигнал/шум цифровой порог обнаружения воздушных целей увеличивается

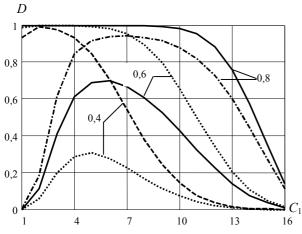


Рис. 4. Вероятность обнаружения как функция порога обнаружения

до 5 - 6.

Заключение

Проведенный анализ характеристик обнаружения показывает:

- 1. Оптимальные пороги обнаружения воздушных целей в системах ВРЛ существенно зависят от коэффициента готовности СО и вероятности подавления отдельных импульсов ОС в канале ответа.
- 2. Применение дешифрации ОС и последующего накопления при выборе оптимального порога незначительно снижает показатели качества обнаружения по сравнению с оптимальной обработкой пачки ОС.
- 3. Цифровой порог обнаружения воздушной цели системой ВРЛ в существенной степени определяется вероятностью подавления сигналов в запросном и ответном каналах и при больших отношениях сигнал/шум может быть равным двум.

Литература

- 1. Обод И.И., Стриха С.В. Оптимизация обработки пачек ответных сигналов вторичного радиолокатора для повышения эффективности автоматизированных систем управления воздушного движения // Вестник ХГПУ (ХПИ). — 2000. — Вып. 127. — С. 101 — 104.
- 2. Давыдов П.С., Жаворонков В.П., Кащеев Г.В. Радиолокационные системы летательных аппаратов. – М.: Транспорт, 1977. - 356 с.
- 3. Савицкий В.И. Автоматизированные системы управления воздушным движением. М.: Транспорт, 1986. 192 с.
- 4. Обод И.И. Помехоустойчивые системы вторичной радиолокации. М.: ЦИНТ, 1998. 118 с.

Поступила в редакцию 29.06.2005

Рецензент: д-р техн. наук, проф. Н.Н. Минервин, Харьковский университет Воздушных Сил, Харьков.