УДК 621.396

В.М. ВЕЛАСКО ЭРРЕРА¹, Г. ВЕЛАСКО ЭРРЕРА¹, В.К. ВОЛОСЮК², К.Н. ЛЁВКИНА², А.И. КУРТОВ³

¹Национальный автономный университет Мексики UNAM, Мексика ²Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Украина ³Харьковский университет воздушных сил, Украина

ИССЛЕДОВАНИЕ СЛУЧАЙНО-НЕОДНОРОДНОЙ ПОДПОВЕРХНОСТНОЙ СРЕДЫ И ПОТЕНЦИАЛЬНОЙ ТОЧНОСТИ ОПРЕДЕЛЕНИЯ ЕЕ ЭЛЕКТРОФИЗИЧЕСКИХ ПАРАМЕТРОВ

Рассмотрена электродинамическая модель подповерхностной среды со случайными изменениями показателя преломления. Исследованы предельные погрешности оценок электрофизических параметров этой модели при пассивном дистанционном зондировании.

дистанционное зондирование, коэффициент излучения, яркостная температура, угол визирования, потенциальная погрешность

Введение

Для обеспечения наименьших погрешностей при пассивном дистанционном зондировании подповерхностных покровов необходим правильный выбор условий проведения экспериментов (направления зондирования, поляризации, высоты расположения радиометра и др.).

В представленной работе задача исследования качественных показателей оценивания параметров подповерхностных сред решена в рамках метода максимального правдоподобия в предположении, что регистрируемые на фоне аддитивных помех колебания радиотеплового излучения являются гауссовскими случайными процессами.

Проблеме измерения электрофизических параметров различных сред посвящено много работ [1, 2]. Однако в них практически отсутствуют расчеты качественных показателей оптимальных оценок параметров подповерхностных сред и не уделено должное внимание оптимизации обработки сигналов радиотеплового излучения подповерхностных неоднородностей. Целью работы является исследование потенциальных точностей (предельных погрешностей оценок) электрофизических параметров случайно-неоднородной подповерхностной среды с плоской границей (поверхностью) раздела «воздух – среда».

Электродинамическая модель подповерхностной среды

Рассмотрим электродинамическую модель подповерхностной среды со случайно-неоднородным изменением показателя преломления и плоской поверхностью раздела. Ограничимся однократным рассеянием и применением метода малых возмущений для полей, рассеянных средой со средним значением показателя преломления \overline{n} , дисперсией σ_n^2 и корреляционной функцией

$$R_n(\Delta \vec{r}) = \langle [n(\vec{r}) - \overline{n}] \cdot [n(\vec{r} + \Delta \vec{r}) - \overline{n}] \rangle,$$

где $\langle \cdot \rangle$ – знак статического усреднения; $\vec{r} = (x, y, z)$ – координаты точек пространства внутри объема V подповерхностной среды.

Полагаем, что граница раздела между воздухом с диэлектрической проницаемостью $\varepsilon = 1$ и средой со случайным изменением показателя преломления $n(\vec{r})$ является плоской. Полагаем также, что коэф-фициент отражения состоит из двух слагаемых, со-

© В.М. Веласко Эррера, Г. Веласко Эррера, В.К. Волосюк, К.Н. Лёвкина, А.И. Куртов РАДІОЕЛЕКТРОННІ І КОМП'ЮТЕРНІ СИСТЕМИ, 2005, № 4 (12) ответствующих когерентной и диффузионной компонентам рассеянного поля

$$\dot{E}_{pac} = \dot{E}_{\kappa o \epsilon} + \dot{E}_{\partial u} \phi$$
.

Когерентная компонента соответствует зеркально отраженной волне и определяется коэффициентами Френеля. Для расчета диффузионной компоненты рассмотрим геометрию рассеяния, представленную на рис. 1. Здесь $\vec{\vartheta}_i, \vec{\vartheta}_j, \vec{\vartheta}_s$ и $\vec{\vartheta}'_s$ – единичные векторы падающей вспомогательной волны, волны преломленной в среде, рассеянной в среде и волны, излученной в верхнее полупространство соответственно.

Рис. 1. Геометрия подповерхностного рассеяния

В общем виде поле, рассеянное подповерхностными неоднородностями, соответствующее диффузионной компоненте, можно записать в следующем виде

$$\dot{E}_{\partial u\phi} = \dot{E}_{na\partial} \int_{V} \dot{F}(\vec{r}) \frac{\exp\{j\omega[t - t_{3}(\vec{r})]\}}{R_{i}R_{s}} d\vec{r} ,$$

где $d\vec{r} = dxdydz$; t_3 – время задержки при распространении волн от источника к подповерхностной неоднородности, а затем к приемной антенне; R_i , R_s – расстояния, учитывающие ослабление волн; \dot{E}_{nad} – напряженность падающей волны.

Изменения фазы и амплитуды, связанные с преломлением лучей за счет криволинейности траекторий, в этой формуле внесены в коэффициент объемного рассеяния $\dot{F}(\vec{r})$. Так как обычно расстояние от границы раздела до подповерхностных неоднородностей мало, то считаем, что R_i и R_s – это расстояния от излучателя до поверхности границы раздела и от поверхности до приемной антенны соответственно.

Мощность диффузного рассеяния вспомогательной волны в окружающее пространство пропорциональна величине

$$\left\langle \left| \dot{E}_{\partial u \phi} \right|^2 \right\rangle = \frac{1}{2} \left| \dot{E}_{n a \partial} \right|^2 \times$$
$$\times \iint_{VV} \left\langle \dot{F}(\vec{r}) \dot{F}^*(\vec{r}_1) \right\rangle \frac{\exp\{-j\omega[t_3(\vec{r}) - t_{31}(\vec{r}_1)]\}}{R_i R_s R_{i1} R_{s1}} d\vec{r} d\vec{r}_1 ,$$

где $R_F(\vec{r}, \vec{r} + \Delta \vec{r}) = \langle \dot{F}(\vec{r}) \dot{F}^*(\vec{r}_1) \rangle$ – корреляционная функция коэффициента рассеяния, $\vec{r}_1 = \vec{r} + \Delta \vec{r}$.

На практике размеры характерной объемной корреляции ΔV :

$$\Delta V = \frac{\int R_F \left(\Delta \vec{r} \right) d\Delta \vec{r}}{R_F \left(0 \right)}$$

обычно удовлетворяют приближению дальней зоны Фраунгофера, т.е. можно считать, что лучи падающего и рассеянного излучения в пределах размеров этого объема практически параллельны. Тогда мощность диффузного поля в точке *B* с точностью до постоянного коэффициента определяется выражением

$$\left\langle \left| \dot{E}_{\partial u \phi} \right|^2 \right\rangle = \frac{1}{2} \left| \dot{E}_{na\partial} \right|^2 \int_V \frac{\sigma_V^o(\vec{r})}{R_i^2 R_s^2} d\vec{r} , \qquad (1)$$

где σ_V^o – эффективное сечение объемного рассеяния, которое определяется выражением

$$\sigma_V^o \approx \int_V R_F(\vec{r}, \vec{r} + \Delta \vec{r}) \exp\left\{-jk\left(\bar{\vartheta}_i - \vec{\vartheta}_s\right) \cdot \Delta \vec{r}\right\} d\Delta \vec{r} . (2)$$

С учетом поглощения в среде и преломления падающей вспомогательной волны на глубине *z* эффективное сечение рассеяния единицы объема имеет вид [1]:

$$\sigma_V^o(z) = \left(1 - \left|\dot{K}_{12}(\theta_i, \bar{n})\right|^2\right) \frac{\cos\theta_i}{\cos\theta_i} \times \\ \times \exp\left\{\frac{2k_o \bar{n}^* z}{\cos\theta_i}\right\} 2\pi k^4 \sigma_n^2 \Phi_n[\bar{q}] \sin^2 \chi \,, \qquad (3)$$

где $\dot{K}_{12}(\theta_i, \bar{n})$ – коэффициент отражения Френеля для плоской поверхности при падении волны на эту поверхность из верхней среды 1; $\vec{q} = k(\vec{9}'_i - \vec{9}'_s)$ – вектор рассеяния; χ – угол между направлением поляризации и вектором $\vec{9}_s$; $\Phi_n[\vec{q}]$ – трехмерное преобразование Фурье от нормированной корреляционной функции $\rho_n(\Delta \vec{r}) = \frac{R_n(\Delta \vec{r})}{\sigma_n^2}$; σ_n^2 – диспер-

сия флуктуаций показателя преломления; $k = \frac{2\pi \overline{n}}{\lambda}$ –

волновое число $\left(k_o = \frac{2\pi}{\lambda}\right); \ \overline{n}^*$ – мнимая часть по-

казателя преломления среды. Между углами θ_i и θ'_i имеют место следующие соотношения:

$$\sin \theta_i = \overline{n} \sin \theta'_i;$$
$$\sin \theta'_s = \overline{n} \sin \theta_s.$$

Эффективное сечение объемного рассеяния, как видно из формулы (2), пропорционально трехмерному преобразованию Фурье от корреляционной функции $R_F(\Delta \vec{r})$ флуктуаций коэффициента рассеяния $\dot{F}(\vec{r})$ в подповерхностной среде.

Перейдем теперь от эффективного сечения рассеяния для объемной среды к эффективному сечению поверхности

$$\sigma_S^0 = \cos \theta_i \int_{-\infty}^0 \sigma_V^0(z) dz \; .$$

В результате получим такое выражение для σ_S^o :

$$\sigma_{S}^{o} = \sigma_{S}^{o} \left(\vec{\vartheta}_{i}, \vec{\vartheta}_{s} \right) = \cos \theta_{i} \int_{-\infty}^{0} \frac{\cos \theta_{s}}{\cos \theta_{s}'} \left| 1 - \left| \dot{K}_{21} \left(\theta_{s}', \overline{n} \right) \right|^{2} \right|^{2} \times \exp \left\{ \frac{2k_{o} \overline{n}^{*} z}{\cos \theta_{s}'} \right\} \sigma_{V}^{o} (z) dz , \qquad (4)$$

где $\dot{K}_{21}(\theta'_s, \overline{n})$ – коэффициент отражения Френеля для заданной поляризации при выходе из нижней среды 2 в верхнюю среду 1. Коэффициент интегрального диффузного рассеяния волн находим в таком виде

$$\gamma_u = \frac{1}{4\pi} \int_{\Omega} K(\Omega_s) d\Omega_s = \frac{1}{4\pi} \int_{\Omega} \frac{\sigma_S^o(\vec{\vartheta}_i, \vec{\vartheta}_s)}{\cos \theta_i} d\Omega_s, \quad (5)$$

где $d\Omega_s = \sin \theta_s d\theta_s d\phi_s$ – элемент телесного угла.

Интегрирование здесь выполняется по верхней полусфере. Результат вычисления этого интеграла в общем виде можно приблизительно получить для слоисто-неоднородной среды, в которой неоднородности вытянуты в горизонтальном направлении, а корреляция флуктуаций быстро убывает в глубину и медленно по горизонтали. Если при этом протяженность слоев существенно больше длины волны, то такая среда рассеивает в основном в зеркальном направлении, что позволяет приближенно вычислить эти интегралы. Расчет коэффициента объемного рассеяния приводит к следующему результату для вертикальной поляризации:

$$\gamma_{uB} = 2\pi \left(\left|\overline{n}\right|^2\right) \left(\frac{2\pi}{\lambda}\right)^2 V(p) \cos \theta_i \left[1 - \left|\dot{K}_{12B}\right|^2\right]^2 \sigma_n^2 l_{\mathcal{F}}, (6)$$

для горизонтальной поляризации:

$$\gamma_{u\Gamma} = 2\pi \left(\left| \overline{n} \right|^2 \right) \left(\frac{2\pi}{\lambda} \right)^2 \times \\ \times V(p) \cos \theta_i \cos^2 2\theta'_i \left[1 - \left| \dot{K}_{12\Gamma} \right|^2 \right]^2 \sigma_n^2 l_{\mathcal{Y}}, \quad (7)$$

где $l_{\mathcal{F}} = \frac{\lambda}{4\pi n^*}$ – эквивалентная толщина излучающего слоя; V(p) – одномерное Фурье-преобразование нормированной корреляционной функции $\rho_n(\Delta z)$ по вертикальной координате z.

Яркостная температура $T_{\mathcal{A}}$ имеет следующий вид

$$T_{\mathcal{H}} = T_0 \cdot \left[1 - \left(\left| \dot{K}_{12} \right|^2 + \gamma_u \right) \right], \tag{8}$$

где *T*₀ – термодинамическая температура.

В качестве примера рассмотрим слоистую среду, в которой свойства меняются с глубиной таким образом, что в каждом слое значение показателя преломления отличается на $\pm \Delta n$ от среднего значения, и средняя толщина слоя равна l_o (характерный интервал корреляции по глубине). Для такой среды

$$\sigma_n^2 = \left\langle (\Delta n)^2 \right\rangle, \rho_n(\Delta z) = \exp\left(-\frac{|\Delta z|}{l_o}\right),$$
$$V(\rho) = \frac{1}{\pi} \cdot \frac{l_o}{1 + (pl_o)^2} \quad \text{w} \quad p = \frac{4\pi |\overline{n}|}{\lambda} \cos \theta_i'.$$

Тогда для вертикальной поляризации

$$\gamma_{B} = 2 \left(\left| \overline{n} \right|^{2} \right) \left(\frac{2\pi}{\lambda} \right)^{2} \frac{l_{o}}{1 + \left(\frac{4\pi \left| \overline{n} \right|}{\lambda} \cos \theta_{i}^{\prime} l_{o} \right)^{2}} \times \\ \times \cos \theta_{i} \left[1 - \left| \dot{K}_{12B} \right|^{2} \right]^{2} \sigma_{n}^{2} l_{\mathcal{P}}, \qquad (9)$$

для горизонтальной поляризации

$$\gamma_{\Gamma} = 2\left(\left|\overline{n}\right|^{2}\right) \left(\frac{2\pi}{\lambda}\right)^{2} \frac{l_{o}}{1 + \left(\frac{4\pi |\overline{n}|}{\lambda} \cos \theta_{i}' l_{o}\right)^{2}} \times (10)$$
$$\times \cos \theta_{i} \cos^{2} 2\theta_{i}' \left[1 - \left|\dot{K}_{12\Gamma}\right|^{2}\right]^{2} \sigma_{n}^{2} l_{\mathcal{B}}.$$

Модуль коэффициента преломления

$$\left|\overline{n}\right| = \left|\sqrt{\overline{\varepsilon}r + j \cdot \overline{\varepsilon}i}\right| = \left|\overline{n}r + j \cdot \overline{n}^*\right| = \sqrt{(nr)^2 + (n^*)^2} ,$$

где $\overline{\epsilon}r, \overline{\epsilon}i$ — среднее значение действительной и мнимой части комплексной диэлектрической проницаемости среды, $\overline{n}r, \overline{n}^*$ — действительная и мнимая части комплексного коэффициента преломления.

Эти выражения для случаев регистрации излучения на нескольких частотах, направлениях θ_i позволяют определить такие параметры как $\overline{n}, \sigma_n, l_0, l_{\mathcal{P}}, T_0$. Для примера на рис. 2 представлены зависимости яркостной температуры, рассчитанной по формуле (8), от угла визирования $\theta \in 0^\circ - 90^\circ$ при горизонтальной поляризации $Th1(\theta)$, $Th2(\theta)$, $Th3(\theta)$.

Рис. 2. Зависимости яркостной температуры от угла визирования при горизонтальной поляризации Расчеты выполнены в предположении, что ори-

ентировочно известен тип исследуемой поверхно-

сти. На графиках представлено семейство кривых для трех типов поверхностей со следующей средней действительной и мнимой частью диэлектрической проницаемости при работе на длине волны $\lambda = 1$ м: снег ($\varepsilon r = 1, 2, \varepsilon i = 0,012$); сухая почва ($\varepsilon r = 4$, $\varepsilon i = 0, 6$); влажная почва ($\varepsilon r = 20, \varepsilon i = 3$).

Остальные параметры имеют следующие значения: термодинамическая температура $T_0 = 300K$; средняя толщина слоя $l_0 = 0,1$ м; длина волны $\lambda = 1$ м; дисперсия флуктуаций показателя преломления σ_n для снега, сухой и влажной поверхности равна соответственно 0,05, 0,5 и 1. На рис. 3 представлены аналогичные зависимости для вертикальной поляризации $Tv1(\theta)$, $Tv2(\theta)$, $Tv3(\theta)$.

Рис. 3. Зависимости яркостной температуры от угла визирования при вертикальной поляризации

Из рис. 2, 3 видно, что как при горизонтальной, так и при вертикальной поляризации яркостная температура увеличивается при $\theta \approx 70^{\circ}$, а затем резко спадает при $\theta \approx 90^{\circ}$.

На рис. 4. представлена зависимость яркостной температуры от толщины слоя $(l_0 \in 0, 1-1 \text{ м})$ при горизонтальной поляризации для трех поверхностей $Thl(l_0)$, $Th2(l_0)$, $Th3(l_0)$ ($\theta = 60^\circ$).

На рис. 5 яркостная температура представлена как функция длины волны (λ ∈ 0.1 – 3 м) при горизонтальной поляризации в предположении, что исследуются три типа поверхности: снег Th1(λ), сухая Th2(λ) и влажная почва Th3(λ) (угол визирования принимаем равным 60⁰).

Рис. 4. Зависимости яркостной температуры от толщины слоя при горизонтальной поляризации

Рис. 5. Зависимости яркостной температуры от длины волны при горизонтальной поляризации

Анализируя рис. 4, можно сказать, что с увеличением характерного интервала корреляции по глубине l_0 яркостная температура увеличивается, а при увеличении длины волны – уменьшается практически по линейному закону (рис. 5), т.е. можно сказать, что все электрофизические параметры подповерхностной среды оказывают определенное влияние на величину ее яркостной температуры.

Расчет предельных погрешностей измерений

Предельные погрешности измерений (дисперсии) определяются диагональными элементами ковариационной матрицы ошибок Φ^{-1} , обратной к информационной матрице Фишера Φ , элементы которой рассчитываются по формуле [3, 4]:

$$\Phi_{kl} = \sum_{i=1}^{I} \frac{T_i \Delta F_i}{2} \frac{\partial \ln T_{ai(\alpha)}}{\partial \alpha_k} \frac{\partial \ln T_{ai(\alpha)}}{\partial \alpha_l}, \qquad (11)$$

где *I* – число измерений, обеспечивающих заданное число независимых нелинейных уравнений (не меньше, чем число оцениваемых параметров);

$$\Delta F_i = \int_{-\infty}^{\infty} |K_i(j2\pi f)|^2 df$$
 – эквивалентная полоса про-

пускания радиометра; $\alpha_k - k$ -ая компонента вектора оцениваемых параметров α .

Яркостная температура случайно-неоднородной подповерхностной среды является функцией нескольких параметров:

- угла зондирования θ;
- длины волны λ ;
- средней толщины слоя l_0 ;

– комплексной диэлектрической проницаемости поверхности $\dot{\varepsilon}$, связанной с показателем преломления соотношением $\dot{n} = \sqrt{\dot{\varepsilon}}$;

– эквивалентной толщины излучающего слоя $l_{\mathfrak{I}} = \lambda / (4\pi n^*);$

– дисперсии флуктуаций показателя преломления σ_n^2 ;

- термодинамической температуры T₀.

Известными полагаем θ , λ и термодинамическую температуру T_0 , так как она может быть определена контактными методами. В рамках этой многопараметрической задачи необходимо оценить четыре параметра, εr , εi , σ_n^2 и l_0 . Известно, что количество уравнений должно быть не менее числа оцениваемых параметров, в данном случае – четырех. Для решения такой задачи четыре уравнения вида (8) получим при осуществлении измерений идентичными каналами радиометра на двух поляризациях с двух углов визирования θ 1, θ 2 :

$$\begin{cases} T_{\mathcal{H}\Gamma}(\Theta 1) = T_0 \cdot \left[1 - \left(\left| \dot{K}_{12\Gamma}(\Theta 1) \right|^2 + \gamma_{\Gamma}(\Theta 1) \right) \right]; \\ T_{\mathcal{H}\Gamma}(\Theta 2) = T_0 \cdot \left[1 - \left(\left| \dot{K}_{12\Gamma}(\Theta 2) \right|^2 + \gamma_{\Gamma}(\Theta 2) \right) \right]; \\ T_{\mathcal{H}B}(\Theta 1) = T_0 \cdot \left[1 - \left(\left| \dot{K}_{12B}(\Theta 1) \right|^2 + \gamma_{B}(\Theta 1) \right) \right]; \\ T_{\mathcal{H}B}(\Theta 2) = T_0 \cdot \left[1 - \left(\left| \dot{K}_{12B}(\Theta 2) \right|^2 + \gamma_{B}(\Theta 2) \right) \right]. \end{cases}$$
(12)

При этом надо учитывать, что антенная темпера-

тура
$$T_a = T_n \left(1 + \frac{1}{\mu} \right)$$
, где $\mu = \frac{T_n}{T_{\phi}}$ – отношение по-

лезной и фоновой составляющих антенной температуры – аналог энергетического отношения сигнал/шум. В формуле (11) вместо антенной температуры целесообразно использовать яркостную T_{g} , рассчитываемую по формулам, описывающим модель лишь поверхности. В приведенных ниже расчетах полагалось, что время интегрирования и полоса пропускания линейного тракта радиометра связаны соотношением $\frac{2}{T\Delta F} = 10^{-6}$. Далее в соответствии с (11) строим матрицу Φ^{-1} размерностью I = 4, диагональные элементы которой – потенциальные погрешности параметров $\alpha = (l_0, \varepsilon r, \varepsilon i, \sigma_n^2)$.

В соответствии с (11, 12) выполнен анализ предельных погрешностей оценивания электрофизических параметров поверхности в предположении, что тип исследуемой поверхности – сухая почва. На рис. 6 представлена зависимость погрешности оценки средней толщины слоя от угла визирования $\theta l \in 0 ...90^{\circ}$ при одновременном приеме сигналов горизонтальной и вертикальной поляризации для сухой почвы $\sigma l_0(\theta l)$. Параметры поверхности T_0 , l_0 , λ , σ_n предполагаются равными, приведенным выше, $\theta 2 = 60^{\circ}$.

Рис. 6. Зависимость погрешности оценки средней толщины слоя от угла визирования

На рис. 7 представлена зависимость погрешности оценки действительной части диэлектрической проницаемости $\sigma \varepsilon r(\theta 1)$. На рис. 8 представлена зависимость погрешности оценки мнимой части диэлектрической проницаемости $\sigma \varepsilon i(\theta 1)$. На рис. 9 представлена зависимость погрешности оценки $\sigma_n - \sigma \sigma n(\theta 1)$ от $\theta 1$.

Рис. 7. Зависимость погрешности оценки действительной части диэлектрической проницаемости

Из рис. 6 – 9 следует, что предельные погрешности оценивания электрофизических параметров случайно-неоднородной подповерхностной среды резко увеличиваются при $\theta \approx \theta 2 \approx 60^\circ$ и $\theta \approx 90^\circ$.

На рис. 10 представлена зависимость погрешности оценки действительной части диэлектрической проницаемости от угла визирования $\theta 2 \in 0^{\circ}...90^{\circ}$ при $\theta 1 = 20^{\circ} - \sigma \varepsilon r(\theta 2)$.

Параметры поверхности T_0 , l_0 , λ , σ_n соответствуют приведенным выше.

Рис. 9. Зависимость погрешности оценки σ_n

Рис. 10. Зависимость погрешности оценки действительной части диэлектрической проницаемости

На рис. 11 представлена зависимость погрешности оценки мнимой части диэлектрической проницаемости от второго угла визирования – σε*i*(θ2).

Из рис. 10, 11 следует, что предельные погрешности оценивания электрофизических параметров случайно-неоднородной подповерхностной среды в зависимости от второго угла визирования θ^2 резко увеличиваются при $\theta^2 \approx 80^\circ$ и $\theta^2 \approx 90^\circ$. Анализируя графики зависимостей от первого и второго углов, можно предположить, что участок резкого увеличения предельных погрешностей зависит от угла визирования, т.е. выбрав определенным образом θl,θ2 можно варьировать ширину интервала с минимальными значениями погрешностей.

Заключение

Анализируя результаты работы, можно сделать следующие выводы. Предельные погрешности оценок электрофизических параметров случайнонеоднородной подповерхностной среды с плоской границей раздела резко увеличиваются при $\theta = 90^{\circ}$ (рис. 7 – 11). Рекомендуемые углы визирования $\theta \in (0^{\circ} - 60^{\circ})$.

Таким образом, в данной работе на основе анализа диагональных элементов матрицы, обратной к информационной матрице Фишера, исследованы качественные показатели оценок электрофизических параметров подповерхностной среды для определенной ее электродинамической модели. Эти показатели соответствуют предельно достижимым оценкам, определенным методом максимального правдоподобия.

Результаты, приведенные в работе, в большей степени имеют методический характер. Выполненные расчеты позволяют не только разработать систему рекомендаций по выбору необходимых условий проведения экспериментов, но и оценить степень адекватности той или иной разработанной электродинамической модели исследуемой среды.

Литература

 Башаринов А.Е., Гурвич А.С., Егоров С.Т.
Радиоизлучение Земли как планеты. – М.: Наука, 1974. – 232 с.

 Степаненко В.Д. Радиотеплолокация в метеорологии. – Л. Гидрометеоиздательство, 1987. – 174 с.

3. Веласко Эррера Виктор Мануэль. Оптимальные оценки параметров температурных волн в подповерхностных средах при пассивном радиолокационном зондировании // Авиационно-космическая техника и технология. – Х.: Нац. аэрокосм. ун-т «ХАИ». – 1999. – № 14. – С. 140 – 146.

4. Волосюк В.К., Кравченко В.Ф., Тилинский В.Р. Исследование потенциальных показателей измерений электрофизических параметров плоской поверхности по данным регистрации ее собственного радиотеплового излучения // Измерительная техника. – 1994. – № 4. – С. 20 – 28.

 Волосюк В.К., Кравченко В.Ф. Математические методы моделирования физических процессов в задачах дистанционного зондирования Земли // Успехи современной радиоэлектроники. – 2000. – № 8. – С. 20 – 28.

6. Волосюк В.К., Кравченко В.Ф., Пономарев В.И. Математические методы моделирования физических процессов в задачах дистанционного зондирования Земли // Успехи современной радиоэлектроники. – 2000. – № 12. – С. 14 – 22.

Поступила в редакцию 9.09.2005

Рецензент: д-р техн. наук, проф. В.В. Лукин, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Харьков.