УДК 621.396.96+537.874.4

### А.В. КСЕНДЗУК

Национальный аэрокосмический университет им. Н.Е. Жуковского "ХАИ", Украина

## ГРАДИЕНТНАЯ ОПТИМИЗАЦИЯ МНОГОПОЗИЦИОННЫХ РАДИОЛОКАЦИОННЫХ СИСТЕМ С СИНТЕЗИРОВАНИЕМ АПЕРТУРЫ АНТЕННЫ

Разработаны принципы градиентной оптимизации многопозиционных радиолокационных системы с синтезированием апертуры антенны по критериям, связанным с разрешающей способностью, показан пример такой оптимизации для системы дистанционного зондирования, состоящей из четырех носителей.

#### многопозиционная РСА, навигационные системы, синтез апертуры

#### Введение

При создании радиотехнических систем дистанционного зондирования аэрокосмического базирования одна из основных и наиболее трудоемких задач – это задача их оптимизации по различным критериям, [1, 2]. Одним из наиболее важных показателей качества функционирования таких систем является пространственная функция неопределенности (ПФН), определяющая не только пространственное разрешение, но и величины динамических и флуктуационных ошибок.

Постановка задачи, ее связь с практическими задачами, цель. Сложность непосредственного анализа функций неопределенности для систем с синтезированием апертуры антенны, вызванная особенностями алгоритмов пространственно-временной обработки [2], не позволяет использовать критерии качества, связанные с ПФН для оптимизации бистатических и многопозиционных РСА. Развитие таких систем положило начало поиску эффективных методов их оптимизации, которые, однако, в большинстве случаев весьма упрощены и не могут быть использованы непосредственно [3].

По этой причине актуальной и важной с практической точки зрения является задача поиска методов оптимизации многопозиционных систем дистанци-

онного зондирования с синтезированием апертуры антенны (МПРСА) с минимальными вычислительными затратами. Именно ее решению и посвящена данная работа.

# Синтез алгоритма оптимальной обработки сигналов

В работе [4] были введены понятия полей средних запаздываний  $\tau_0(\mathbf{r},\mathbf{r}_k,\mathbf{r}_i)$  и дельтазапаздываний  $\tau_\Delta(t,\mathbf{r}_1,\mathbf{r}_k,\mathbf{r}_i)$ , а также соответствующих им линий равного запаздывания и равного доплеровского сдвига частоты.

Поведение полей и позволяет оценить вид пространственной функции неопределенности  $\dot{\Psi}(\mathbf{r}_1,\mathbf{r}_2)$  для заданного радиолокационного сигнала  $\dot{S}(t)=\dot{S}_0(t)\exp\{j\omega_0t\}$  :

$$\dot{\Psi}(\mathbf{r}_1, \mathbf{r}_2) = \int_0^T \dot{S}_0[t - \tau(t, \mathbf{r}_1)] \dot{S}_0^*[t - \tau(t, \mathbf{r}_2)] \times \\
\times \exp\{j\omega_0[\tau(t, \mathbf{r}_2) - \tau(t, \mathbf{r}_1)]\} dt.$$
(1)

После ряда преобразований несложно получить следующее выражение

$$\dot{\Psi}(\tau, \{a_k\}) = \exp\{j\omega_0\tau\} \int_{-\tau_0(\mathbf{r}_1)}^{T-\tau_0(\mathbf{r}_1)} \dot{S}_0^*(t)\dot{S}_0^*(t) - \tau) \times \exp\{j\omega_0 \sum_{k=1..K} a_k [t] + \tau_0(\mathbf{r}_1)]^k\} dt.$$
(2)

Ограничиваясь линейными членами в экспоненте несложно увидеть, что полученное выражение позволяет установить связь между пространственной функцией неопределенности и классической функцией неопределенности радиолокационного сигнала

$$\dot{\Psi}(\tau, \{a_k\}) = C \int_{-\tau_0(\mathbf{r}_1)}^{T-\tau_0(\mathbf{r}_1)} \dot{S}_0(t') \dot{S}_0^*(t'-\tau) \exp\{j\Phi t\} dt , \quad (3)$$

где  $\tau = \tau_0(\mathbf{r}_2) - \tau_0(\mathbf{r}_1)$ ,  $\Phi = \omega_0[\tau_\Delta(\mathbf{r}_2) - \tau_\Delta(\mathbf{r}_1)]$  — функции, определяющиеся введенными полями средних дальностей и доплеровского сдвига частоты.

При синтезе оптимальных алгоритмов обработки в многопозиционных интерферометрических РСА, оптимальные оценки высоты будем определять из векторно-матричного интегрального уравнения

Обеспечение максимального разрешения в малой окрестности  $\mathbf{r}_0$  или точке пространства  $\mathbf{r}_0$  за счет выполнения условий

$$| \operatorname{grad}_{\mathbf{r}} \{ \tau_0(\mathbf{r}_0, \mathbf{r}_k, \mathbf{r}_i) \} | \ge P, i = 1...Rc, k = 1...Tr ;$$
 (4)

$$|\operatorname{grad}_{\mathbf{r}} \{ \tau_{\Delta} (\mathbf{r}_0, \mathbf{r}_k, \mathbf{r}_i) \} | \geq P, i = 1..Rc, k = 1...Tr, \quad (5)$$

которые гарантируют обеспечение разрешения не меньше требуемого вдоль линий  $\operatorname{grad}_{\mathbf{r}} \{ \tau_0(\mathbf{r}_0, \mathbf{r}_k, \mathbf{r}_i) \}$  и  $\operatorname{grad}_{\mathbf{r}} \{ \tau_{\Delta} (\mathbf{r}_0, \mathbf{r}_k, \mathbf{r}_i) \}$ . Условия оптимизации (4), (5) целесообразно применять для обеспечения высокого разрешения для сигналов с плохой разрешающей способностью по времени запаздывания и по сдвигу частоты, соответственно.

Модификацией условий (4), (5) является их выполнение в относительно большой области обзора  $D_0$  (такой, что величина и/или направление градиента существенно изменяются по отношению к произвольной точке  $\mathbf{r}_0 \in D_0$ ). При этом можно использовать как минимальные

$$|\operatorname{grad}_{\mathbf{r}} \{ \tau_0(\mathbf{r}_0, \mathbf{r}_k, \mathbf{r}_i) \} | \ge P, \ \mathbf{r}_0 \in D_0, \tag{6}$$

$$|\operatorname{grad}_{\mathbf{r}} \{ \tau_{\Lambda} (\mathbf{r}_0, \mathbf{r}_k, \mathbf{r}_i) \} | \ge P, \, \mathbf{r}_0 \in D_0, \quad (7)$$

так и усредненные в пределах следов диаграмм направленности значения, гарантирующие среднее разрешение не хуже заданного:

$$\int_{D_0} |\operatorname{grad}_{\mathbf{r}} \left\{ \tau_0(\mathbf{r}_0, \mathbf{r}_k, \mathbf{r}_i) \right\} | d\mathbf{r}_0 \ge P ; \qquad (8)$$

$$\int_{D_0} |\operatorname{grad}_{\mathbf{r}} \left\{ \tau_{\Delta} (\mathbf{r}_0, \mathbf{r}_k, \mathbf{r}_i) \right\} | d\mathbf{r}_0 \ge P.$$
 (9)

Обеспечение совместного разрешения по градиентам к полям равного запаздывания и равного доплеровского сдвига в области  $D_0$  можно задать с помощью операторов логического умножения

$$|\operatorname{grad}_{\mathbf{r}} \{ \tau_0(\mathbf{r}_0, \mathbf{r}_k, \mathbf{r}_i) \} | \geq P \&$$

$$\& |\operatorname{grad}_{\mathbf{r}} \{ \tau_{\Lambda} [\mathbf{r}_0, \mathbf{r}_k, \mathbf{r}_i) \} | \geq P, \mathbf{r}_0 \in D_0,$$

$$(10)$$

гарантирующих, что по обеим координатам функции неопределенности разрешение не будет хуже заданного.

Угол между линиями градиента важен при обеспечении равномерной области пространственного разрешения. Условия, учитывающие угол между векторами, могут быть представлены в виде зависимости от скалярного произведения векторов ( $\cdot$ , $\cdot$ ) и их нормы  $\|\cdot\|$ :

$$\frac{(grad_{\mathbf{r}}\{\tau_{0}(\mathbf{r}_{0},\mathbf{r}_{k},\mathbf{r}_{i})\},grad_{\mathbf{r}}\{\tau_{\Delta}(\mathbf{r}_{0},\mathbf{r}_{k},\mathbf{r}_{i})\})}{\|grad_{\mathbf{r}}\{\tau_{0}(\mathbf{r}_{0},\mathbf{r}_{k},\mathbf{r}_{i})\}\|\|grad_{\mathbf{r}}\{\tau_{\Delta}(\mathbf{r}_{0},\mathbf{r}_{k},\mathbf{r}_{i})\}\|} \in P_{0}.$$

Если критериями оптимизации служат одновременно модули градиентов и величина угла между ними, то необходимо использовать условие

$$\begin{cases} \frac{(grad_{\mathbf{r}}\{\tau_{0}(\mathbf{r}_{0},\mathbf{r}_{k},\mathbf{r}_{i})\},grad_{\mathbf{r}}\{\tau_{\Delta}`(\mathbf{r}_{0},\mathbf{r}_{k},\mathbf{r}_{i})\})}{\|grad_{\mathbf{r}}\{\tau_{0}(\mathbf{r}_{0},\mathbf{r}_{k},\mathbf{r}_{i})\}\| \|grad_{\mathbf{r}}\{\tau_{\Delta}`(\mathbf{r}_{0},\mathbf{r}_{k},\mathbf{r}_{i})\}\|} \in P_{0} \\ \|grad_{\mathbf{r}}\{\tau_{0}(\mathbf{r}_{0},\mathbf{r}_{k},\mathbf{r}_{i})\}\| > P_{1} \\ \|grad_{\mathbf{r}}\{\tau_{\Delta}`(\mathbf{r}_{0},\mathbf{r}_{k},\mathbf{r}_{i})\}\| > P_{2} \end{cases}$$

Пример решения задачи оптимизации выбора области обзора для созвездия излучателей и одного приемника показан ниже. Рассматривается многопозиционная система, которая состоит из одного приемника и четырех передатчиков (из четырех бистатических пар), пространственная конфигурация фиксирована, необходимо в потенциальной зоне наблюдения D (в области пересечения диаграмм направленности передатчиков) выбрать область обзора таким образом, чтобы максимизировать качество построения радиолокационных изображений по критериям, связанным с градиентами к  $\tau_0$ ,  $\tau_\Delta$ .

Пространственная конфигурация МПРСА и потенциальная зона наблюдения показаны на рис. 1; результаты оптимизации – на рис. 2, 3.

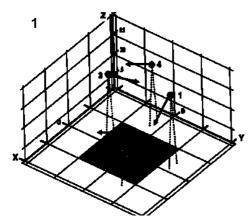



Рис. 1. Пространственная конфигурация МПРСА

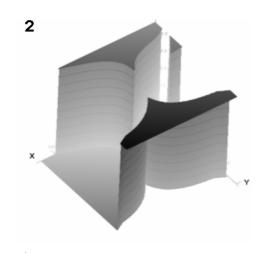



Рис. 2. Результат оптимизации по величине угла между градиентами к полям дельта-запаздываний и постоянных запаздываний

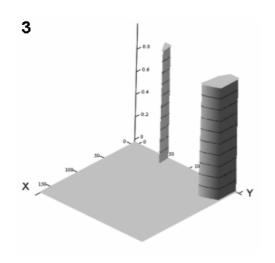



Рис. 3. Результат оптимизации по величине угла между градиентами при учете их модулей

#### Заключение

Преимущество предложенных методов оптимизации заключается, прежде всего, в небольшом объеме вычислений и, как следствие этого, возможности использования предложенных методов, например, в микроспутниках.

Так, например, для одной точки вычисление градиентов требует 160 умножений и 40 сложений соответственно. В то же время вычисление пространственной функции неопределенности для одной точки требует более 200 умножений и более 100 сложений для каждого отсчета времени, что означает большее число операций приблизительно в  $1,5T/t_d$ , где T — время синтеза,  $t_d$  — время дискретизации.

Для процессора с 4 MFLOPS вычисления для области  $1000 \times 1000$  точек займут: при вычислении градиентов — 50 сек; при вычислении пространственных функций неопределенности (105 временных дискрет на интервале синтеза апертуры) — 86 дней.

### Литература

- 1. Фалькович С.Е., Хомяков Э.Н. Статистическая теория измерительных радиосистем. М.: Радио и связь, 1981. 288 с.
- 2. Ksendzuk A.V. Extended quality identifiers for radar measurements // IV International Conference on Antenna Theory and Techniques. Sevastopol, Ukraine. 2003. Vol. 2. P. 757-760.
- 3. Krieger G., Fiedler H., Moreira A. Bi- and Multi-Static SAR: Potentials and Challenges // 5-th European Conference on Synthetic Aperture Radar EUSAR 2004. Ulm, Germany. 2004. Vol. 2. P. 365-371.
- 4. Ксендзук А.В. Синтез апертуры с использованием навигационной системы ГЛОНАСС // Успехи современной радиоэлектроники. 2003. Вып. 2. С. 44-54.

Поступила 7.03.2006

**Рецензент**: д-р техн. наук, проф. В.К. Волосюк, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Харьков.