
Надійність програмного забезпечення 130

UDC 004.891.3

S.A. VILKOMIR

Software Quality Research Laboratory, University of Limerick, Ireland

USING MC/DC AND RC/DC CRITERIA FOR SPECIFICATION-BASED TESTING
OF SAFETY-CRITICAL SOFTWARE

Software testing coverage criteria for logical expressions are considered including a new Reinforced
Condition/Decision Coverage (RC/DC) criterion. This new criterion has been developed from the well-known
Modified Condition/Decision Coverage (MC/DC) criterion and is more suitable for the testing of safety-critical
software where MC/DC may not provide adequate assurance. Specific examples of using these criteria for
specification-based testing are addressed.

software testing criteria; MC/DC; RC/DC; Specification-based testing

Introduction

The methods and criteria of software testing are

traditionally divided into structural (or white-box) and

functional (or black-box) aspects [1, 2]. Structural

testing criteria (i.e., criteria that take into account an

internal structure of the program) are in turn divided

into data-flow and control-flow criteria.

Control-flow criteria, in particular, examine logical

expressions, which determine the branch and loop

structure of the program. When logical expressions are

used for software specification, the same control-flow

criteria could be used for specification-based testing.

This group of criteria is considered in the paper.

This paper is based on the author’s previous results

[3, 4] and is structured as follows. Section ‘MC/DC’

presents the use of control-flow criteria for

specification-based testing and considers the definition

of the Modified Condition/Decision Coverage (MC/DC)

criterion [5]. This criterion is used mainly for testing of

safety-critical avionics software and is the most

complicated and controversial control-flow criterion.

In the next section, we analyze a major shortcoming

of the MC/DC criterion, namely the deficiency of

requirements for the testing of the ‘false operation’ type

of failures. Examples of failures of this type are

considered to illustrate the problem. These have an

especially vital importance for safety-critical

applications.

Section ‘RC/DC’ presents the definition of a new

Reinforced Condition/Decision Coverage (RC/DC)

criterion, which eliminates the shortcoming of MC/DC.

The central point is the requirement that each condition

in a decision is shown to be varied without changing the

outcome of the decision.

MC/DC

Using control-flow criteria for specification-based

testing. The aim of control-flow criteria is to help in

testing decisions (the program points at which the

control flow can divide into various paths) and

conditions (atomic predicates which form component

parts of decisions) in a program. The simplest control-

flow criteria were formulated in the 1960s and 1970s.

The following are based on the well-known book by G.

Myers [1]:

 statement coverage: every statement in the

program has been executed at least once;

 decision coverage: every statement in the program

has been executed at least once, and every decision in

the program has taken all possible outcomes at least

once;

 condition coverage: every statement in the

 S.A. Vilkomir
РАДІОЕЛЕКТРОННІ І КОМП’ЮТЕРНІ СИСТЕМИ, 2006, № 6 (18)

Надійність програмного забезпечення 131

program has been executed at least once, and every

condition in each decision has taken all possible

outcomes at least once;

 multiple condition coverage (MCC): every

statement in the program has been executed at least once,

and all possible combinations of condition outcomes in

each decision have been invoked at least once.

The MCC criterion is the strongest and requires full

searching of various combinations of conditions values

that is not normally possible in practice. The other

criteria mentioned above are weaker and require

considerably less test patterns that is not sufficient for

safety-critical software [6]. As a compromise, the

MC/DC criterion has been proposed [7, 5].

Definition of MC/DC. The definition of the

MC/DC criterion, according to [5], is the following:

Every point of entry and exit in the program has

been invoked at least once, every condition in a decision

in the program has taken on all possible outcomes at

least once, every decision in the program has taken all

possible outcomes at least once, and each condition in a

decision has been shown to affect the decision's

outcome independently. A condition is shown to affect a

decision's outcome independently by varying just that

condition while holding fixed all other possible

conditions.

The main part of the MC/DC definition is ‘each

condition has been shown to affect the decision's

outcome independently’. The key word in this definition

is ‘independently’; i.e., the aim of MC/DC is the

elimination during testing of the mutual influence of the

individual conditions and the testing of the correctness

of each condition separately.

Investigation of MC/DC has initially been

considered in [7, 8]. Detailed consideration of the

different aspects of this criterion was carried out more

recently in [9, 10, 11, 12, 13]. Different forms of this

criterion, e.g. Masking MC/DC [14] were proposed. As

an example illustrated the definition of MC/DC,

consider decision d = ABCD where A, B, C and D

are conditions. Two test cases are required to test

condition A: (A = 1, B = 1, C = 1, D = 1) when d = 1 and

(A = 0, B = 1, C = 1, D = 1) when d = 0. Similar test

cases are required to test conditions B, C and D. Totally,

five test cases are required according the MC/DC

definition.

A case study of using MC/DC for specification-

based testing. A case study of the MC/DC use for

specification–based testing of a nuclear reactor

protection system has been considered in [4]. Here we

consider a new example for the following specification

of the same system: the system should shut down a

reactor when two from four circulation pumps are out of

operation or in the case of decrease of the water level

more than 650 mm in any one steam generator provided

that the corresponding circulation pump operates

normally.

Let Li and Ci (i = 1…4) be conditions to describe

correspondently the level of water and the operation of

circulation pumps:

Li = 0  the level is normal;

Li = 1  the level is decreased;

Ci = 0  the pump is in normal operation;

Ci = 1  the pump is out of operation.

The decision that is responsible for this specification

of the actuation is:

d = (C1C2)(C1C3)(C1C4)

 (C2C3)(C2C4)(C3C4)

 (L1C1)(L2C2)(L3C3)(L4C4).

A general number of all possible combinations of

values of the 8 conditions equals 28 = 256. According to

the definition of MC/DC, the number of required test

cases is considerably lower. One of the possible sets of

test cases is shown in Table 1 (10 test cases). Pairs of

test cases for every specific condition are marked ‘*’.

For example, test case 1 and test case 4 are marked for

the condition L3 because they provide variation of the

decision d (d = 0 for test case number 1 and d = 1 for

test case number 4) during variation of the condition L3

(L3 = 0 for test case number 1 and L3 = 1 for test case

number 4) while the values of all other conditions are

fixed.

Надійність програмного забезпечення 132

Table 1

Test data satisfying the MC/DC criterion

num
Values Variations

L1 L2 L3 L4 C1 C2 C3 C4 d L1 L2 L3 L4 C1 C2 C3 C4

1 0 0 0 0 0 0 0 0 0 * * * *

2 1 0 0 0 0 0 0 0 1 *

3 0 1 0 0 0 0 0 0 1 *

4 0 0 1 0 0 0 0 0 1 *

5 0 0 0 1 0 0 0 0 1 *

6 0 0 0 0 1 0 0 0 0 * * *

7 0 0 0 0 1 1 0 0 1 * *

8 0 0 0 0 1 0 1 0 1 *

9 0 0 0 0 1 0 0 1 1 *

10 0 0 0 0 0 1 0 0 0 *

Application for safety-critical software

The shortcoming of MC/DC. The main aim of

MC/DC is testing situations when changing a condition

implies a change in a decision. Often a decision can be

associated with some safety-critical operation of a

system. In such cases, MC/DC requires the testing of

situations when changing one condition has some

consequence on the operation of the system. A software

error in such situations could involve non-operation

(inability to operate on demand) type of failures. Such

situations are extremely important and the MC/DC

requirements are entirely reasonable.

However, as we show below, this criterion has one

substantial shortcoming, namely deficiency of

requirements for testing of the false actuation (operation

without demand) type of failures. This could make this

criterion insufficient for many safety-critical

applications. The false actuation of a system could be

invoked by a software error in situations when changing

a condition should not imply changing a decision.

Below we consider two examples from the

specification-based point of view.

Railway points. Consider a railway computer

control system and a decision that is responsible for

switching over the points by which trains can be routed

in one direction to another. Let there be two tracks

(main and reserved); the condition determines track

states (which may be either occupied or clear) and the

decision determines changing the route from the main

track to the reserved track and vice versa. Consider two

situations for the non-operation and false actuation

types of failures.

The first situation is when the main track becomes

occupied (varying the condition) and, therefore, it is

necessary to switch over the points to the reserve track

(varying the decision). The failure in this situation

involves keeping the value of the decision instead of

varying it; this means non-operation of the system and

could result in a possible crash.

The second situation is when the reserved track

becomes occupied (varying the condition) and,

therefore, it is necessary to keep the main track as a

route (keeping the decision). The failure in this situation

involves varying the value of the decision instead of

Надійність програмного забезпечення 133

keeping it fixed that means false operation of the system

and a possible crash.

Thus, from the safety point of view, these situations

are symmetrical and can lead to a crash. Therefore, both

types of failures should be considered and both

situations should be tested with the same accuracy.

Protection system for a nuclear reactor. Consider

a decision that is responsible for actuating a reactor

protection system at a nuclear power plant (i.e., the

reactor shutdown) and a condition that describes some

criterion for the actuation (e.g., excessive pressure over

some specified level). Varying this decision because of

variation of the condition should be tested since failure

in this situation means the non-operation of the system

in case of emergency conditions and can lead to the

nuclear accident.

Nevertheless, keeping the value of the decision is

also important. The failure in this situation means the

false actuation of the system during normal operating

and can lead to non-forced reactor shutdown, the

deterioration of the physical equipment, and the

underproduction of electricity.

The typical architecture of nuclear reactor protection

systems (three channels with 2 from 3 logical voting)

takes into account this particular problem. The use of

three identical channels decreases the probability of the

system not operating correctly.

However, if it is only required to consider this

factor, the 1 from 3 logic is more reliable. The aim of

using 2 from 3 voting is to provide protection against

false actuation of a system as in this case the false signal

from one channel does not lead to system actuation.

Thus, during software testing for the reactor

protection system, it is necessary to include test cases

for both varying and keeping a decision's outcomes.

The examples considered above demonstrate that for

many cases testing only varying a decision when varying a

condition (i.e., using MC/DC) is insufficient from the

safety point of view.

To eliminate this shortcoming, a new RC/DC criterion

in critical applications has been proposed by Vilkomir and

Bowen [4]. We consider it below from the specification-

based point of view.

RC/DC

Definition of RC/DC. As we have shown in the

previous section, MC/DC does not require testing some

situations, which can be important for safety. The main

idea of RC/DC is for future development of MC/DC

with the purpose of making it more effective.

Testing according RC/DC should include test cases

according MC/DC and additional test cases for testing

important situations when a false actuation of a system

is possible. In that way, all requirements of MC/DC are

valid and a new requirement for keeping the value of a

decision when varying a condition is added to the

testing regime.

With the objective of ensuring compatibility and

continuity with the MC/DC definition, we define

RC/DC as follows:

Every point of entry and exit in the program has

been invoked at least once, each condition in a decision

has been shown to affect the decision's outcome

independently, and each condition in a decision has

been shown to keep the decision's outcome

independently. A condition is shown to affect and keep a

decision's outcome independently by varying just that

condition while holding fixed (if it is possible) all other

conditions.

The reservation ‘if it is possible’ is used because it is

far from always being possible to affect or keep the

value of a decision independently.

A case study of using RC/DC for specification-

based testing. Continue the consideration of the case

study of specifications for the nuclear reactor protection

system. Hence the RC/DC criterion includes MC/DC,

the test cases for MC/DC (table 1) should be

supplemented by additional test cases according RC/DC

requirements.

RC/DC requires that a condition should ‘keep the

decision's outcome’. When the decision has outcome 1,

it means that the protection system has already actuated.

Надійність програмного забезпечення 134

In this case, the further behavior of the system has no

practical interest.

The situation when the decision has outcome 0 is

more important. A failure ‘to keep 0’ means a false

actuation of the reactor protection system that entails

significant economic loss. In Table 2, we consider an

example (between many others) of test cases only for

this situation.

Similar to table 1, pairs of test cases for every

specific condition are marked ‘*’. For example, test case

3 and test case 9 are marked for the condition C2

because they keep the value of the decision d (d = 0 for

both test cases) during variation of the condition C2

(C2 = 1 for test case number 3 and C2 = 0 for test case

number 9) while the values of all other conditions are

fixed.

Table 2

Test data satisfying the RC/DC criterion

num
Values Variations

L1 L2 L3 L4 C1 C2 C3 C4 d L1 L2 L3 L4 C1 C2 C3 C4

1 0 0 0 0 1 0 0 0 0 * *

2 1 0 0 0 1 0 0 0 0 *

3 0 0 0 0 0 1 0 0 0 * *

4 0 1 0 0 0 1 0 0 0 *

5 0 0 0 0 0 0 1 0 0 * *

6 0 0 1 0 0 0 1 0 0 *

7 0 0 0 0 0 0 0 1 0 * *

8 0 0 0 1 0 0 0 1 0 *

9 0 0 0 0 0 0 0 0 0 * * * *

As it is shown in Table 2, we need 9 test cases to test

situations when variations of every single condition

should keep the decision outcome 0. Together with 10

test cases from Table 1, we use 19 test cases (from 256

possible combinations) to test decision d according the

RC/DC requirements.

Conclusion

The paper considers the use of the MC/DC and

RC/DC criteria for specification-based software testing.

It is argued that MC/DC criterion does not include

requirements for testing of ‘false operation’ type

failures. Such failures, as we have shown in several

examples, can be highly important in safety-critical

computer systems.

The RC/DC criterion aims to eliminate this

shortcoming and requires the consideration of situations

when varying a condition keeps the value of a decision

constant.

Using RC/DC gives an advantage for specification-

based testing since it requires testing safety-important

situations when a false actuation of a system is

possible.

Although the number of required test cases rises, the

growth remains linear compared to the number of

conditions in a decision, making the approach

practicable.

We have illustrated application of the RC/DC

criterion in the specification-based testing of nuclear

reactor protection system software.

Надійність програмного забезпечення 135

References

1. Myers G. The Art of Software Testing // Wiley-

Interscience, 1979.

2. Roper M. Software Testing // McGraw-Hill,

1994.

3. Vilkomir S.A., Bowen J.P. Formalization of

Software Testing Criteria Using the Z Notation //

Proceedings of 25th IEEE Annual International

Computer Software and Applications Conference

(COMPSAC), Chicago, Illinois, USA, 8-12 October

2001. – IEEE Computer Society Press. – P. 351-356.

4. Vilkomir S.A., Bowen J.P. Reinforced

Condition/Decision Coverage (RC/DC): A New

Criterion for Software Testing // Proceedings of 2nd

International Conference of Z and B Users (ZB2002),

Grenoble, France, 23-25 January 2002. Springer-Verlag,

Lecture Notes in Computer Science. – Vol. 2272. –

P. 295-313.

5. RTCA. Software Considerations in Airborne

Systems and Equipment Certification // DO-178B,

RTCA, Washington DC, USA, 1992.

6. Dupuy A., Leveson N. An Empirical Evaluation

of the MC/DC Coverage Criterion on the HETE-2

Satellite Software // Proceedings of the Digital Aviation

Systems Conference (DASC), Philadelphia, USA,

October 2000.

7. Chilenski, J., Miller, S. Applicability of Modified

Condition/Decision Coverage to Software Testing //

Software Engineering Journal. – September 1994. –

P. 193-200.

8. Chilenski J., Newcomb P.H. Formal Specification

Tool for Test Coverage Analysis // Proceedings of the

Ninth Knowledge-Based Software Engineering

Conference. – 20-23 September 1994. – P. 59-68.

9. Bishop P.G. MC/DC based estimation and

detection of residual faults in PLC logic networks //

Supplementary Proceedings 14th International

Symposium on Software Reliability Engineering

(ISSRE '03), Fast Abstracts. – Denver, Colorado,

USA. – 17-20 November, 2003. – P. 297-298.

10. Hayhurst K.J., Veerhusen D.S. A Practical

Approach to Modified Condition/Decision Coverage //

20th Digital Avionics Systems Conference (DASC),

Daytona Beach, Florida, USA. – 14-18 October 2001. –

Vol. 1. – P. 1B2/1--1B2/10.

11. Pretschner A. Compositional Generation of

MC/DC Integration Test Suites // Proc. TACoS'03,

Warsaw, March 2003. Electronic Notes in Theoretical

Computer Science 82(6). – 2003. – P. 1-11.

12. Vilkomir S.A., Kapoor K., Bowen J.P. Tolerance

of Control-Flow Testing Criteria // Proceedings of 27th

IEEE Annual International Computer Software and

Applications Conference (COMPSAC), Dallas, Texas,

USA, 3-6 November 2003. IEEE Computer Society

Press. – 2003. – P. 182-187.

13. White A.L. Comments on Modified

Condition/Decision Coverage for Software Testing //

2001 IEEE Aerospace Conference Proceedings, 10-17

March 2001, Big Sky, Montana, USA. – Vol. 6. –

P. 2821-2828.

14. Chilenski J. An Investigation of Three Forms of

the Modified Condition Decision Coverage (MCDC)

Criterion // Report DOT/FAA/AR-01/18, April 2001.

Поступила в редакцию 24.02.2006

Рецензент: д-р техн. наук, проф. В.С. Харченко,
Национальный аэрокосмический университет
им. Н.Е. Жуковского «ХАИ», Харьков.

