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FUNCTIONAL VERIFICATION QUALITY METRICS 

AT HDL-MODEL VERIFICATION 
 
Principles of functional verification quality of digital devices models in hardware description languages are 
considered. The method of evaluation, which is based on quantity of checked functional modes, is offered.  
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Introduction 
 
During digital system design developers face the 

problem of verifying circuit description in HDL. 
Verification quality evaluation methods, which are 
accepted among software developers, are not suitable 
for projects in HDL. It is connected with HDL features, 
main of which are concurrency and signal presence in 
the description. The problem of verification quality 
estimation is as actual as test generation task during 
verification. Since verification using tests is spoken 
about, thus test quality is evaluated. 

A set of different evaluation methods for test quality 
estimation exists [1 – 4]. For example, ad hoc metrics, 
program code coverage, state machine coverage, etc. 
The problem is that the majority of test quality metrics 
are mainly oriented onto controllability measure that is 
not difficult to calculate. But the fact of a code piece 
activation doesn’t mean that it works correctly. The 
disadvantage of such metrics is that they don’t give 
qualitative estimate of functional correctness.  

User-defined functional coverage allows a 

developer, who has more detailed information about the 

project and implementation assumption, done at 

realization, to specify functional coverage for main 

project modes. An example, illustrating usage of 

functional coverage estimate during VHDL-model 

verification of the sectional microprocessor, is offered.  
 

Analysis of test quality evaluation methods 
 

Considered most spread methods of verification 

quality evaluation Special ad hoc metrics stand-alone. 

Ad hoc metrics include: error percentage, simulated 

sequence length after last found mistake, and general 

simulation cycle. Such metrics contain quantitative 

information, but produce very little qualitative 

information about verification or about percentage of 

project not being tested.  Ad hoc metrics do not answer 

the question about verification successfulness, if the 

percent of errors aspire towards zero, but at that 

untested parts of the project exist.  

The nest big subset of methods is program code 

coverage. They are:  

1. Line Coverage. Measures, how many times the 

certain line in a code has worked (or has not worked) 

during simulation.  

2. Branches Coverage. Measures, how many times 

the fragment of a code diverges into a unique flow. 

3. Path Coverage. Measures, how many times the 

concrete path (switching operators and branching) is 

carried out during simulation.  

4. Expressions Coverage. Measures controllability 

of a separate variable which influences calculation of 

target value of separately taken expression. 

Ratings on a program code are based on a measure 

of controllability and allow revealing "holes" (that never 

worked at verification). Their lack is, that activation of 

the erroneous operator does not mean, that the mistake 

in a code will be shown on an observable point during 

simulation. 

For overcoming the above-stated lack the metrics 
based on a measure of observability have been offered. 
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They show how well value on a variable is observable. 
The test giving 100% of line covering, achieves in 
average 77% at application of the metrics on 
observability. 

One more disadvantage of ratings on a program code 
it that they do not give quality standard of testing for a 
functional correctness. 

To overcome of the given lack it was offered to use 
the metrics based on functional correctness – a system 
of the supervising programs, allowing analyzing 
functional correctness and desirable events (for 
example, observable points) during simulation. 

States and transitions coverage metrics in the 
graph is one more way of measurement of 
controllability. These metrics correspond to quantity of 
hits into this or that state or transition at performance of 
the test.  

As well as program code coverage, states and 
coverage in a graph do not provide rating on 
observability and on a functional correctness. 

Functionality coverage determined by a user allows 
the designer who possesses the greatest information on 
details of the low-level project and assumptions made at 
realization, to specify functional coverage for the 
important points of the project. Use of such metrics 
allows to draw a conclusion on how precisely the 
project corresponds to the specification.  

 
Verification strategy 

 

The strategy, used for verification of the given 
description, is based on a fact, that the designer for any 
input data can calculate reactions of the developed 
device, if data corresponds to modes (device states), 
described in the specification. Generalized steps of 
algorithm look as the following: 

1. The verification engineer receives from the 
engineer - developer compiled hdl-code that describes a 
device or its logically (functionally) finished blocks. 

2. Build tests on the received HDL-code by 
generation of sequences distinguishing a given operator 
and set control points. 

3. Return received tests to the engineer - developer 
for calculation of corresponding target values and/or 
values in set control points. 

4. Simulate generated tests on the HDL-code on 
order to get experimental values. 

5. Compare the values received after simulating the 
hdl-code, and the etalon values received from the 
engineer - developer. 

6. If they are not equal, a conclusion of mistakes, 
present in the design is made. 

The algorithm of tests generation will consist in 
building of distinguishing test sequences for definition of 
the given functional element among the other of the given 
subset, driving tests into inputs of this element and 
transportation of results up to graph models external 
outputs or up to the nearest control points. Driving tests 
to a functional element and getting results is carried out 
on activated paths in the graph models. Path activization 
in the graph occurs similarly to path activization in D-
algorithm for digital circuits, but language operators are 
used as primitives. Number of distinguishing test 
sequences equals to the number of operators in HDL-
code.  

In the listing 1 the fragment of VHDL description of 
the sectional multiprocessor КР1804ВС1 is shown. This 
example was taken, because of its simplicity and 
typicalness.  
Listing 1. Fragment of sectional microprocessor 
КР1804ВС1 VHDL model 
library IEEE; use IEEE.std_logic_1164.all; use 
IEEE.std_logic_signed.all; 
ENTITY KP1804BC1 is port (DI: in std_logic_vector; 
AMC: in std_logic_VECTOR (0 to 1); ICPU: in 
std_logic_VECTOR (0 to 8); A,B: in INTEGER; Y : out 
std_logic_vector (0 to 3) ); END KP1804BC1; 
architecture Data of KP1804BC1 is 
signal Q : std_logic_VECTOR (0 to 3);  
signal R,S,F : std_logic_VECTOR (0 to 3); 
signal CI: std_logic; 
type mem is array (0 to 6) of std_logic_VECTOR (0 to 3);  
signal RAM:mem ;  
BEGIN  
process (A,B,Ci,ICPU,Di) begin 
R_DECODER:   case ICPU(0 to 2) is 
when "000"=>R <= RAM(A); 
when "100"=>R<="0000"; 
when "111"=>R<=DI; when others=> 
R<="XXXX"; end case; 
S_DECODER:    case ICPU (0 to 2) is 
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when "000"=>S <=Q; 
when "100"=>S<=RAM(A); 
when"111"=>S<="0000";when others=> S<="XXXX"; 
end case; 
ALU_OPERATION: case ICPU (3 to 5) is 
when "000"  => F<= R+S; 
when "100"  => F<=R and S ; 
when "110"  => F<=R xnor S ; when others  => 
F<="XXXX"; end case; 
OUT_FUNC: case ICPU (6 to 8) is 
when "000"=> Y <=F;  
when "010"=> Y<=RAM(A) ; when others => 
Y<="XXXX"; end case; 
Q_FUNC: if (ICPU (6 to 8)="000") then Q<=F;end if; 
RAM_FUNC: if (ICPU (6 to 8)="010") then 
RAM(B)<= F; end if; end process; END DATA; 

 

The origin description is transformed into graph 

structure, which represents a composition of two graphs.  

First – information – describes dataflow and their 

conversion (similarly to an operational automaton in 

classical composite model with microprogram handle) 

without the registration of conditional branches. The 

second graph is developed as a network of conditions.  

The example of graph model obtaining on a base of 

a code model is given below in the fig. 1. 

There are two-place logic and arithmetic operations, 

and unary operations (as assignment, negation, and 

taking sign ) in the informational graph.  

Assignment operators (:=, <= accordingly) should 

also be included in the informational graph and tests 

should be building for them. But for simplification and 

volume decreasing these operations are not considered 

in the article. 

Consider the algorithm of test generation for 

arithmetic operations distinguishing according to the 

principle “all from all” from the given subset. . 

Distinguishing sequences for synthesized arithmetic 

operators are submitted in fig. 2. 

So that to distinguish operation "plus" from a subset 

{addition, subtraction, to increase, divide), it is 

necessary to submit a zero on one of inputs of the 

functional element, and on the other input – value, 

greater than one.  

 
а 

 
b 

Fig. 1.  Informational  I-graph (а), control С-graph (b) 
 

 
Fig. 2. Distinguishing sequences for arithmetic operators 

 

Further we break up on subset (+, –) and 
(multiplication, division) by the following way: if the 
result of the previous step equals to ‘0’, then tested 
functional element is in the subset (multiplication, 
division); if not equal to ‘0’, then it is in the subset 
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(addition, subtraction). Then drive equal values greater 
than ‘1’ onto both inputs. If the result is not ‘0’, the 
functional element is ADDITION. 

In the fig. 3 a table of test vectors generation and 
modes correspondence is given.  

 
Fig. 3. Test obtaining 

 

In the fig. 3 steps of test generation are described for 
verification of three modes: addition, logic AND, and 
XNOR. Each mode corresponds to a certain set of input 
restriction vectors, called restriction vectors, obtained 
during test generation. Number of  vectors depends on 
number of control points and number of vectors, 
necessary for providing 

Functional mode is a function, which is executed by 
a device on input data transformation Modes of moving 
and reading/writing in the given example are not 
functional modes, but are providing  for them.  

 

a 

b 
Fig. 4. Simulation of the code , which contains (а)  

and doesn’t contain design error (b) 
A diagnostic experiment stays in the following: a 

design error of SUBSTITUTION type is inserted into 
the code. 

Simulation is carried out using input patterns, 
generated  on the graph structure. Further two figures are 

represented: the first (fig. 4, a) contains error-free code 
simulation results (modes in the specification and in the 
code coincide);the second – result of code simulation 
with inserted error (fig. 4, b). It is obvious, that results at 
Y-output, which is a control point, differ from each other. 

 
Test quality metrics 

 
On a base of functional modes mode graph is build, 

bypassing of which gives the ides of verification 
quality. Specification for a microprocessor is set in 
informal, language form. For example, it looks like the 
following:  

The field of the microcommand contains 9 bats. 
Three least significant bits determine operands, three 
middle bits - an operation, three most significant  - a 
code of a receiver and RAM operation. If the code of 
operation is "000", then F=R+S is carried out ;if  "100" 
F=RandS is carried out; "110" corresponds to  
F=RxnorS. The code of operands "000" sets R=RAM 
(A) and S=Q; the code "100" corresponds to R = "0000" 
and S=RAM (A); and "111" sets R=DI and S = "0000"; 
the code of the receiver describes the following: if it is 
equal "000", then Y=F and Q = F; if "010",  Y=RAM 
(A) and RAM (B) =F is carried out.  

A microcommand from the specification 
corresponds to some functional mode.  

As it has been said above, sets of vectors of 
restrictions also correspond to some operating mode of 
DD. Thus a sequence of restriction vectors allows 
setting a way of graph bypassing.   

For the given example of the sectional 
microprocessor a way of bypassing is  the following: ‘+’ 
–‘ AND’ –‘ XNOR’. 

Consider the problem of obtaining at least one 
decision at primary inputs. Assume, that all primitives 
are functional. Besides, functional primitives (built-in 
operators) allow obtaining reactions for all possible 
values of operands ranges of definition. At that during  
propagation through a functional element there is at 
least one pair of input values, providing the given 
output (for operations «+» and «–» it is obvious; for 
«*» and «/» for first input – ‘1’, for  second – output 
value.  It is fair for inputs, which do not have 
predefined values. At absence of restrictions on lines 
up to considered functional element there is always a 
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decision  – values on graph inputs, which allow to 
propagate necessary  distinguishing sequence. 
Consider the situation, when a restriction vector, 

obtained from the verification engineer, does not 
correspond to any functional mode. If it is impossible to 
calculate etalon reactions for the vector, obtained on 
external inputs, then it is necessary to make up a 
decision about either mistaken code, or incorrect – 
written test. Test is generated correctly, if during 
justification of distinguishing sequences for the given 
functional element at least one decision exists on 
external inputs  and this is fulfilled, as considered 
earlier. Then a conclusion is done about mistaken code. 
The admitted place of mistake is control constructions.   

It is possible to come out with the situation, when  
some restriction vector, not being belonged to the 
specification, nevertheless (according to the designer’s 
words) corresponds to some mode. If the designer (or 
any ideal external model) can provide etalon reactions 
for this mode, then the specification dynamically is 
extended and expanded.   

The diagram of code, specification, and test 
correspondence is given below in the fig. 5.  

 
Fig. 5. Test, specification and code-description 

 correspondence 
 

 
Fig. 6. Test, specification and code-description 

 correspondence after extra modes addition  
 
After inclusion additional functional modes into the 

specification  the diagram looks as follows. 
The test covers now more of the specification, than 

in the first figure. 
Proceeding from all aforesaid, we shall define a 

quantitative measure of test quality.   

%100*
extraspec

ver
code

ff
fQ


 ,                   (1) 

where specf  – modes from the specification; extraf  – 

additional modes inserted into the specification; ver
codef  – 

modes, verified in the code. Using this evaluation allows 
giving quantitative equivalent of qualitative measure.   
 

Conclusion 
 

Scientific value and novelty of the offered 
methodology is in using functional coverage metrics for 
functional verification quality evaluation.  The example 
was suggested that illustrates usage of functional 
coverage metrics during functional verification of 
VHDL description of sectional microprocessor 
КР1804ВС1.  
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