
Надійність програмного забезпечення 153

UDC 681.32

YEV. YEF. SYREVITCH, A.L. KARASYOV, S.S. MEHANA

Kharkiv National University of Radioelectronics, Ukraine

FUNCTIONAL VERIFICATION QUALITY METRICS

AT HDL-MODEL VERIFICATION

Principles of functional verification quality of digital devices models in hardware description languages are
considered. The method of evaluation, which is based on quantity of checked functional modes, is offered.

verification, functional mode, hardware description languages

Introduction

During digital system design developers face the

problem of verifying circuit description in HDL.
Verification quality evaluation methods, which are
accepted among software developers, are not suitable
for projects in HDL. It is connected with HDL features,
main of which are concurrency and signal presence in
the description. The problem of verification quality
estimation is as actual as test generation task during
verification. Since verification using tests is spoken
about, thus test quality is evaluated.

A set of different evaluation methods for test quality
estimation exists [1 – 4]. For example, ad hoc metrics,
program code coverage, state machine coverage, etc.
The problem is that the majority of test quality metrics
are mainly oriented onto controllability measure that is
not difficult to calculate. But the fact of a code piece
activation doesn’t mean that it works correctly. The
disadvantage of such metrics is that they don’t give
qualitative estimate of functional correctness.

User-defined functional coverage allows a

developer, who has more detailed information about the

project and implementation assumption, done at

realization, to specify functional coverage for main

project modes. An example, illustrating usage of

functional coverage estimate during VHDL-model

verification of the sectional microprocessor, is offered.

Analysis of test quality evaluation methods

Considered most spread methods of verification

quality evaluation Special ad hoc metrics stand-alone.

Ad hoc metrics include: error percentage, simulated

sequence length after last found mistake, and general

simulation cycle. Such metrics contain quantitative

information, but produce very little qualitative

information about verification or about percentage of

project not being tested. Ad hoc metrics do not answer

the question about verification successfulness, if the

percent of errors aspire towards zero, but at that

untested parts of the project exist.

The nest big subset of methods is program code

coverage. They are:

1. Line Coverage. Measures, how many times the

certain line in a code has worked (or has not worked)

during simulation.

2. Branches Coverage. Measures, how many times

the fragment of a code diverges into a unique flow.

3. Path Coverage. Measures, how many times the

concrete path (switching operators and branching) is

carried out during simulation.

4. Expressions Coverage. Measures controllability

of a separate variable which influences calculation of

target value of separately taken expression.

Ratings on a program code are based on a measure

of controllability and allow revealing "holes" (that never

worked at verification). Their lack is, that activation of

the erroneous operator does not mean, that the mistake

in a code will be shown on an observable point during

simulation.

For overcoming the above-stated lack the metrics
based on a measure of observability have been offered.

 Yev. Yef. Syrevitch, A.L. Karasyov, S.S. Mehana
РАДІОЕЛЕКТРОННІ І КОМП’ЮТЕРНІ СИСТЕМИ, 2006, № 6 (18)

Надійність програмного забезпечення 154

They show how well value on a variable is observable.
The test giving 100% of line covering, achieves in
average 77% at application of the metrics on
observability.

One more disadvantage of ratings on a program code
it that they do not give quality standard of testing for a
functional correctness.

To overcome of the given lack it was offered to use
the metrics based on functional correctness – a system
of the supervising programs, allowing analyzing
functional correctness and desirable events (for
example, observable points) during simulation.

States and transitions coverage metrics in the
graph is one more way of measurement of
controllability. These metrics correspond to quantity of
hits into this or that state or transition at performance of
the test.

As well as program code coverage, states and
coverage in a graph do not provide rating on
observability and on a functional correctness.

Functionality coverage determined by a user allows
the designer who possesses the greatest information on
details of the low-level project and assumptions made at
realization, to specify functional coverage for the
important points of the project. Use of such metrics
allows to draw a conclusion on how precisely the
project corresponds to the specification.

Verification strategy

The strategy, used for verification of the given
description, is based on a fact, that the designer for any
input data can calculate reactions of the developed
device, if data corresponds to modes (device states),
described in the specification. Generalized steps of
algorithm look as the following:

1. The verification engineer receives from the
engineer - developer compiled hdl-code that describes a
device or its logically (functionally) finished blocks.

2. Build tests on the received HDL-code by
generation of sequences distinguishing a given operator
and set control points.

3. Return received tests to the engineer - developer
for calculation of corresponding target values and/or
values in set control points.

4. Simulate generated tests on the HDL-code on
order to get experimental values.

5. Compare the values received after simulating the
hdl-code, and the etalon values received from the
engineer - developer.

6. If they are not equal, a conclusion of mistakes,
present in the design is made.

The algorithm of tests generation will consist in
building of distinguishing test sequences for definition of
the given functional element among the other of the given
subset, driving tests into inputs of this element and
transportation of results up to graph models external
outputs or up to the nearest control points. Driving tests
to a functional element and getting results is carried out
on activated paths in the graph models. Path activization
in the graph occurs similarly to path activization in D-
algorithm for digital circuits, but language operators are
used as primitives. Number of distinguishing test
sequences equals to the number of operators in HDL-
code.

In the listing 1 the fragment of VHDL description of
the sectional multiprocessor КР1804ВС1 is shown. This
example was taken, because of its simplicity and
typicalness.
Listing 1. Fragment of sectional microprocessor
КР1804ВС1 VHDL model
library IEEE; use IEEE.std_logic_1164.all; use
IEEE.std_logic_signed.all;
ENTITY KP1804BC1 is port (DI: in std_logic_vector;
AMC: in std_logic_VECTOR (0 to 1); ICPU: in
std_logic_VECTOR (0 to 8); A,B: in INTEGER; Y : out
std_logic_vector (0 to 3)); END KP1804BC1;
architecture Data of KP1804BC1 is
signal Q : std_logic_VECTOR (0 to 3);
signal R,S,F : std_logic_VECTOR (0 to 3);
signal CI: std_logic;
type mem is array (0 to 6) of std_logic_VECTOR (0 to 3);
signal RAM:mem ;
BEGIN
process (A,B,Ci,ICPU,Di) begin
R_DECODER: case ICPU(0 to 2) is
when "000"=>R <= RAM(A);
when "100"=>R<="0000";
when "111"=>R<=DI; when others=>
R<="XXXX"; end case;
S_DECODER: case ICPU (0 to 2) is

Надійність програмного забезпечення 155

when "000"=>S <=Q;
when "100"=>S<=RAM(A);
when"111"=>S<="0000";when others=> S<="XXXX";
end case;
ALU_OPERATION: case ICPU (3 to 5) is
when "000" => F<= R+S;
when "100" => F<=R and S ;
when "110" => F<=R xnor S ; when others =>
F<="XXXX"; end case;
OUT_FUNC: case ICPU (6 to 8) is
when "000"=> Y <=F;
when "010"=> Y<=RAM(A) ; when others =>
Y<="XXXX"; end case;
Q_FUNC: if (ICPU (6 to 8)="000") then Q<=F;end if;
RAM_FUNC: if (ICPU (6 to 8)="010") then
RAM(B)<= F; end if; end process; END DATA;

The origin description is transformed into graph

structure, which represents a composition of two graphs.

First – information – describes dataflow and their

conversion (similarly to an operational automaton in

classical composite model with microprogram handle)

without the registration of conditional branches. The

second graph is developed as a network of conditions.

The example of graph model obtaining on a base of

a code model is given below in the fig. 1.

There are two-place logic and arithmetic operations,

and unary operations (as assignment, negation, and

taking sign) in the informational graph.

Assignment operators (:=, <= accordingly) should

also be included in the informational graph and tests

should be building for them. But for simplification and

volume decreasing these operations are not considered

in the article.

Consider the algorithm of test generation for

arithmetic operations distinguishing according to the

principle “all from all” from the given subset. .

Distinguishing sequences for synthesized arithmetic

operators are submitted in fig. 2.

So that to distinguish operation "plus" from a subset

{addition, subtraction, to increase, divide), it is

necessary to submit a zero on one of inputs of the

functional element, and on the other input – value,

greater than one.

а

b

Fig. 1. Informational I-graph (а), control С-graph (b)

Fig. 2. Distinguishing sequences for arithmetic operators

Further we break up on subset (+, –) and
(multiplication, division) by the following way: if the
result of the previous step equals to ‘0’, then tested
functional element is in the subset (multiplication,
division); if not equal to ‘0’, then it is in the subset

Надійність програмного забезпечення 156

(addition, subtraction). Then drive equal values greater
than ‘1’ onto both inputs. If the result is not ‘0’, the
functional element is ADDITION.

In the fig. 3 a table of test vectors generation and
modes correspondence is given.

Fig. 3. Test obtaining

In the fig. 3 steps of test generation are described for
verification of three modes: addition, logic AND, and
XNOR. Each mode corresponds to a certain set of input
restriction vectors, called restriction vectors, obtained
during test generation. Number of vectors depends on
number of control points and number of vectors,
necessary for providing

Functional mode is a function, which is executed by
a device on input data transformation Modes of moving
and reading/writing in the given example are not
functional modes, but are providing for them.

a

b
Fig. 4. Simulation of the code , which contains (а)

and doesn’t contain design error (b)
A diagnostic experiment stays in the following: a

design error of SUBSTITUTION type is inserted into
the code.

Simulation is carried out using input patterns,
generated on the graph structure. Further two figures are

represented: the first (fig. 4, a) contains error-free code
simulation results (modes in the specification and in the
code coincide);the second – result of code simulation
with inserted error (fig. 4, b). It is obvious, that results at
Y-output, which is a control point, differ from each other.

Test quality metrics

On a base of functional modes mode graph is build,

bypassing of which gives the ides of verification
quality. Specification for a microprocessor is set in
informal, language form. For example, it looks like the
following:

The field of the microcommand contains 9 bats.
Three least significant bits determine operands, three
middle bits - an operation, three most significant - a
code of a receiver and RAM operation. If the code of
operation is "000", then F=R+S is carried out ;if "100"
F=RandS is carried out; "110" corresponds to
F=RxnorS. The code of operands "000" sets R=RAM
(A) and S=Q; the code "100" corresponds to R = "0000"
and S=RAM (A); and "111" sets R=DI and S = "0000";
the code of the receiver describes the following: if it is
equal "000", then Y=F and Q = F; if "010", Y=RAM
(A) and RAM (B) =F is carried out.

A microcommand from the specification
corresponds to some functional mode.

As it has been said above, sets of vectors of
restrictions also correspond to some operating mode of
DD. Thus a sequence of restriction vectors allows
setting a way of graph bypassing.

For the given example of the sectional
microprocessor a way of bypassing is the following: ‘+’
–‘ AND’ –‘ XNOR’.

Consider the problem of obtaining at least one
decision at primary inputs. Assume, that all primitives
are functional. Besides, functional primitives (built-in
operators) allow obtaining reactions for all possible
values of operands ranges of definition. At that during
propagation through a functional element there is at
least one pair of input values, providing the given
output (for operations «+» and «–» it is obvious; for
«*» and «/» for first input – ‘1’, for second – output
value. It is fair for inputs, which do not have
predefined values. At absence of restrictions on lines
up to considered functional element there is always a

Надійність програмного забезпечення 157

decision – values on graph inputs, which allow to
propagate necessary distinguishing sequence.
Consider the situation, when a restriction vector,

obtained from the verification engineer, does not
correspond to any functional mode. If it is impossible to
calculate etalon reactions for the vector, obtained on
external inputs, then it is necessary to make up a
decision about either mistaken code, or incorrect –
written test. Test is generated correctly, if during
justification of distinguishing sequences for the given
functional element at least one decision exists on
external inputs and this is fulfilled, as considered
earlier. Then a conclusion is done about mistaken code.
The admitted place of mistake is control constructions.

It is possible to come out with the situation, when
some restriction vector, not being belonged to the
specification, nevertheless (according to the designer’s
words) corresponds to some mode. If the designer (or
any ideal external model) can provide etalon reactions
for this mode, then the specification dynamically is
extended and expanded.

The diagram of code, specification, and test
correspondence is given below in the fig. 5.

Fig. 5. Test, specification and code-description

 correspondence

Fig. 6. Test, specification and code-description

 correspondence after extra modes addition

After inclusion additional functional modes into the

specification the diagram looks as follows.
The test covers now more of the specification, than

in the first figure.
Proceeding from all aforesaid, we shall define a

quantitative measure of test quality.

%100*
extraspec

ver
code

ff
fQ


 , (1)

where specf – modes from the specification; extraf –

additional modes inserted into the specification; ver
codef –

modes, verified in the code. Using this evaluation allows
giving quantitative equivalent of qualitative measure.

Conclusion

Scientific value and novelty of the offered
methodology is in using functional coverage metrics for
functional verification quality evaluation. The example
was suggested that illustrates usage of functional
coverage metrics during functional verification of
VHDL description of sectional microprocessor
КР1804ВС1.

Literature

1. Tasiran S., Keutzer K. Coverage Metrics For

Functional Validation Of Hardware Designs // IEEE
Design & Test Of Computers, July-August 2001. –
P. 36-45.

2. Kryvulya Gennadiy, Syrevitch Yevgeniya,
Karasyov, Andrey Chegikov Denis. Test Generation for
VHDL Descriptions Verification //Proceedings of IEEE
East – West Design & Test Workshop. – Odessa,
Ukraine, September 15-19. – 2005. – P. 191-195.

3. Рустинов В.А., Сыревич Е.Е., Сыревич А.В.,
Чегликов Д.И. Процедуры импликации на
арифметической операциях при синтезе тестов
верификации // АСУ и приборы автоматики.
Всеукраинский межведомственный н.-т. сборник. – Х.,
2005. – Вып. 130. – C. 4-13.

4. Foster Harry D., Krolnik Adam C., Lacey
David J. Assertion-Based Design Kluwer. – Academic
Publishers, USA. – 363 p.

Поступила в редакцию 14.03.2006

Рецензент: канд. техн. наук, проф. Н.Я. Какурин,
Харьковский национальный университет радио-
электроники.

