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ON DIRECT AND INVERSE PROBLEMS FOR FUZZY EQUATION SYSTEMS  
WITH TOLERANCES 

 
We investigate the resolution of fuzzy (relational) equation systems with tolerances which are a certain extension 
of fuzzy equations considered f.i. in [3-5]. The extension of the concept of Higashi and Klir [3] enables us to 
describe the set of solutions to our problem (for given tolerances) by means of posets. In a second part we 
investigate an inverse problem: Given upper (lower) tolerances how to determine lower (upper) tolerances such 
that the arising problem becomes consistent? Numerical examples are given. 
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1. Introduction 

 

1.1. Direct problems 

 

Let us consider 

iii BXRB   , i=1, …,N.  (1) 

ii BB ,  are given fuzzy sets over a basic space γ. The 

iR  are fuzzy relations over χ×γ where χ is another basic 

space. We are seeking for a fuzzy set X (over χ) 
fulfilling (1). Furthermore we suppose that there are 

given fuzzy sets Bi  over γ with iii BBB   ‘  ’ 

means a convenient rule of composition. Hereforth we 

denote this problem by (P D ). We may interpret (P D ) as 

a generalization of the following problem: Find X 
fulfilling 

ii BR  , i=1,..., N.  (2) 

We denote this problem by ( DEP ). It originates among 

others from the fuzzification of classical nonlinear 
equation systems. The functions occurring there have 

been replaced by fuzzy relations iR , the right-hand 

sides by iB  and the unknowns by X. The situation that 

we investigate ( DP ) instead of ( DEP ) is partially 

reasoned by the well-known fact that ( DEP ) is not 

always solvable (cf. [4] and [5]). There are several 

possiblities to generalize ( DEP ) and to define a new 

conception of solvability, respectively. We refer to 

Pedrycz [4] where a solution of ( DEP ) is determined in 

a numerical environment, and to Gottwald [l] where a 
solvability index is used for characterization of the 

solution set. The above stated problem ( DP ) has two 

advantages in our opinion: On one hand, the demand to 

the user to determine the tolerances ii BB ,  seems to be 

fairly transparent – he may predict where tolerances 
(and in which quantities) are acceptable for him. On the 
other hand, we are able to describe the structure of the 

solution set of ( DP ) completely in the case of finite χ, γ 

whereby the corresponding algorithms can be realized 
in an easy manner. However, sometimes the user may 
have some troubles to assign precise numerical values to 
the fuzzy sets. Gottwald and Pedrycz [2] proposed an 
interesting way for obtaining lower and upper tolerances 
using fuzzy sets which express the quality of fulfillment 
of (2) and which are built up applying Gottwald’s 
solvability index. Another possibility consists in 
modelling the tolerances by fuzzy sets of Type 2 which 
has been considered by the authors in [6].  

The limitation to finite basic spaces does not seem to 
be too restrictive, since many practical problems can be 
grasped in this way. However, some of the achieved 
results are also valid for compact  χ, γ  (e.g. in 
Euclidean space), when the corresponding membership-
functions are upper semi-continuous. Nevertheless, the 
numerical handling of the rule of composition (to 
mention only one item) will be rather complicated so 
that we restrict ourselves to finite sets. 
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1.2. Inverse problems 
 

 ( 1
IP ): Let ii RB , be given and upper tolerances 

iB . How to determine the lower tolerances iB  such 

that the problem ( DP ) becomes consistent (there is at 

least one solution X)? 

( 2
IP ): See ( 1

IP ), but this time the lower 

tolerances iB  are given.  

Both problems are of interest from the standpoint of 
application: On one hand, we are able to evaluate the 

‘amount of consistency’ if we are able to solve ( 1
IP ) 

and ( 2
IP ) in a certain ‘optimal’ manner (the greater the 

necessary tolerances the more contradictions we have in 
our problem). On the other hand, it may be interesting to 
know much about the tolerances given by practical 
demands, especially the difference to those necessary 
for consistency. 

For the solution of ( DP ), ( 1
IP ) and ( 2

IP ) we 

particularly use a method described by Higashi and Klir 

in [2] for the solution of ( DEP ) in the case N = 1. In 

Section 2 we deal with a generalization of this method 
to our problems. Section 3 contains some more basic 
definitions from fuzzy set theory. The next two sections 
are devoted to the solution of the problems under 
consideration. Numerical examples are given to enlight 
the situation. In the 6th section we summarize and give 
an outlook as well. 
 

2. Some facts from the theory of partialiy     
ordered sets (posets) 
 

In the sequel we assume P to be a poset with partial 
order ≤ُ.ُ  

Definition 2.1. Let  p P. We call it a minimal 

element for P iff for arbitrary p   P we have p = p , 

whenever p ≤ p . 

Definition 2.2. We call p   P the greatest element 

of P iff for all p   P we have p≤ p .  

Henceforth we denote the set of all minimal 

elements of P by 0P . Then we can state the following 

lemmata:  

Lemma 2.1. Let P be finite. Then we haue 0P  0  

and for all p   P we can find p  0P  with p ≤ p. 

Lemma 2.2 (see [3]). Let P′   P. If there is for all  

p   P a p′  P′ with p′ ≤ p then we have 00 PP   . 

We observe that the inclusion PP 0  follows 

from the above assumptions and it should not enter into 
the formulation of the lemma (as stated in [3]). 

Now we define a point-to-set mapping F as follows: 
1. F : P→ρ (P) with  ρ (P) the power set of p. 
2. Let p   P and q F(p). Then  q ≤  p holds. 

3. Let Ppp 2,1 ,  and 21 pp  . Then we have      

)()( 21 pFpF  . 

4. For all p   P the set F(p) has at least one minimal 
element. The following theorems have been proved in 

[3] for ( DEP ) and N = 1. Here we shall give 

generalizations useful for our objective. 

Theorem 2.1. We have p  0P  iff  F(p) = {p}. 

Proof. (a) Let p   0P . From property 2 of F we 

have from q  F(p) that q  p,  hence q = p and F(p) = 
{p}. 

(b) Suppose F(p) = {p}. Moreover let p′ p. From 
property 3 we obtain F(p′)   F(p), i.e. F(p′) = {p}. 

From q  p′ p  with q   F(p′) we get p′ =p, hence 

0Pp . 

Theorem 2.2. Let p   P. Then there exists p′   0P  

with p′  p when there exist a point-to-set mapping F 
for poset P. 

Proof. Let p P. We take p′   0F (p) the existence 

of which is ensured by property 4. From property 2 we 

have p′ p. Now assume p′ 0P . From Theorem 2.1 

then there is q′  p′ with q′   F(p′). Because of 

property 3 we get q′   F(p). Hence p′ 0F (p). This 

contradiction ends the proof.  

Theorem 2.3. Suppose p̂ , to be the greatest 

element   
of  P.  Then the following inclusions hold:  

0 ˆ( )P F p P  . 
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Proof. We must only show that 0 ˆ( )P F p . Let  

0p P . Then of course ˆp p  and therefore 

ˆ( ) ( )F p F p . From Theorem 2.1 we get p = F(p), 

that is ˆ( )p F p .  

Theorem 2.4. Let p̂ P  be the greatest element of 

P. Then we have 0 0ˆ( )F p P .  

Proof. Put ˆ( )P F p  . From Theorem 2.2 for all 

p   P we can find 0p P  with p p . From 

Theorem 2.3 we have P p   . Application of Lemma 

2.2 concludes the proof.  
The last statement enlights the usefulness of the 

mapping F: If p̂  and 0 ˆ( )F p are easy to obtain (in 

comparison with a straightforward determination of 0P ) 

the above method may be advantageous. 
 

3. Basic definitions from fuzzy set theory 
 

Let    =  m ,...,1 ,  = { 1,..., n  }. By 

)(),(),(   ,  we denote the sets of all 

fuzzy sets over  ,,  (Cartesian product). Let                   

Х  )( . By   we denote the corresponding 

membership function. For sake of lucidity we will also 
use the following abbreviations: 

x ( i )=х i , (y j )=у i , Rk = ( i , i )= r k
ij  

Definition 3.1 (Rule of composition).  
Let h : [0, l] x [0, l]→[0, l] be a continuous t-norm (see 

[l] and [4]). Furthermore let X   )( , R   

)(   . Then we define Y = RX )(  by  

y i  = max ),(1 ijimi rxh , j = 1, . . . , m. 

Definition 3.2. Let X 1 , X 2 , be two fuzzy sets over 

the same basic space. We say that 21 XX   iff 

21 xx    for all elements of the basic space. 

Definition 3.3 (a-operation). Let a, b   [0, 11. Then 
we put 

,
,1

max
),(1 baforz

bafor
ba

bahz












  

with h 1  (a, b) = {z   [0, l] : h(a, z) = b}. 
Sanchez was the first who used a-operations (among 

others) to resolve fuzzy relation equations (see also [4]). 

Detinition 3.4. Let Y  )( , R  )(   . 

Then we define X = R   Y by jijnji yrx  1min ,  

i = 1, . . . , m. 
By the help of Definitions 3.1. and 3.2. we are now 

able to give an exact mathematical formulation of our 

problems (P D ), (P1
I ) and (P 2

I ). 

 
4. The direct problem (P D ) 

 
Now we will investigate (P D ). By ψ we denote the 

set of all solutions of (P D ). Further we suppose 

)(and)(),(    to be partially ordered by 

inclusion according to Definition 3.2. Next we will give 
a simple criterion for ψ   0. As a first step we state: 

Theorem 4.1. Put iii BRX max , i = 1, . . . , N. Then 

max

1

max
i

N

i
XX


   (3) 

represents the greatest fuzzy set fulfilling 

R i X ,iB i=l,...,N   (4) 

(here ‘/\’ denotes the min-operator being applied 
componentwise). We can state the following important 
result: 

Theorem 4.2. We have ψ   0 iff maxX  ψ.  In 

this case maxX  is the greatest element of ψ. For the 
proofs we refer to [4] and [5]. We will deal now with 
the construction of a mapping F as defined in Section 2. 

For simplification we set i
kBi bк )(  and 

similarly for iB . Let X   )( . We define 



NnXIXI

brxhmjXI

i
k

n

k

i

i
k

i
jkj

i
k

x ,...,1),()(

),(:,...,1)(

1






 (5) 

(our notation is connected with that in [2]). We choose 

f ii I (X) and construct the following mapping:  

[f i (X)]: )(   with  
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,0)(0

,0)(minmax
)( ),()( 1

jforJ

jforjz
Xf

i

i
k

i
jf

i

f

bkrhzjiJK
f

I
i   (6) 

with j running from 1 to m. The index set )( jJ if
 is 

defined as follows: Let f i  = (f i  (l), . . . , f i  (n)). Then 

)( jJ if
 (j) = {I   (1, . . . ) n}: F i (l) =j}. Finally we 

set 

)(
1

XIff i
N

i
X 


 

with )(1 XIXI iN
i  and define a mapping [f(X)] : 

)(    by 

    jXf Xf i
Nii )(max

1
)(


 .     (7) 

Now we can give the desired definition of F: 

  )(:)()( XIfXfXF   (8) 

Theorem 4.3. The following statements are true: 
(a) For X   ψ we have F(X)   ψ. 

(b) Let f   I(X). Then [f(X)]   X. 

(c) Let X, Z   ψ with X  Z. If [f(X)]   F(X) 

then we obtain [f(Z)]    (Z) and [f (X) = [f (Z)].  

Proof. (b) Let X   ψ and suppose [f(X)]  X. 

Then there is a j*   (1, . . . ,m} with [f (X) ] j  > x j . 

Hence we can find an i* (1,…,n} with  

[f i (X) ] j >х j .Consequently J if
(j*)  0 and there is 

a k* )(  jj if
such that inf z >x i  with  

z  h 1 (








i
k

i
kj br , ). But this implies 

h(x



i

kjj r, )<



i
kb  which is a contradiction to  

k*   j if
(j*). 

a) It remains to show that R i  Z iB , i = 1, . . .,N, 

with Z = [f(X)]. Assume that this inclusion is not valid. 
Then there are k٭ { 1, . . . , n}, i* (1, . . . , N} 

with  ki ZR )( 



i
kb from which we immediately 

get h( j
i

kj zr ,


 ) < 


I
kb  j= 1 …, m. From  

X   ψ we find a j  { 1, . . . , m} with  

h( j
i

kj xr ,


 ) 
 I

kb , that is, 0)(  jj fi . But then we 

get in particular h(   ))(, j
ii

kj Xfr


 < 


I
kb  . From 

this and (6) we obtain h( ,



i

kjr  inf z) < 


I
kb with  

z   h (1 ,



i

kjr 


I
kb ). But this is a contradiction to the 

definition of h 1  and the continuity of h.  
(c) Suppose X, Z   ψ and X  Z. We choose  

i   {1, . . . , N} and consider )(XIf ii  . From 

jj zx  for all j   {1, . . . , m} we have ii If  (Z) 

and therefore    )()( ZfXf ii   and 

   )()( ZfXf  .  

This theorem shows that the above constructed 
mapping F satisfies the conditions of the second section. 
The fourth condition (existence of minimal elements of 
F(X)) is trivially fulfilled, since F(X) is a finite finite set 
and therefore Lemma 2.1 holds. As a consequence we 
get: 

Theorem 4.4. The sets ψ and F(X max ) have the 

same minimal elements, i.e. ψ = )( max
0 XF . 

With respect to the structure of ψ we formulate: 
Theorem 4.5 (Representation Theorem). The 

following equality is valid: 

ψ = U
X 0
  max, XX


, 

where  max, XX


 = {X   )( : 

maxXXX 


} and   means classical set union. 

Hence we may interpret ψ as a union of a finite 
number of fuzzy intervals. 

Theorem 4.6. ψ  consists of only one element iff 

)( maxmax XFX  . From the theorem given up to 

now we can derive the following algorithm for the 
construction of ψ: 

1. Compute maxX  and test whether maxX  ψ or 

not. In the latter case we have ψ = 0 , that is, 

inconsistency: STOP. Otherwise go to 2. 
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2. Construct )( maxXI i  for i = 1, . . . , N. 

3. Determine F(X max ). 

4. Compute F 0 (P max ) for instance by pairwise 

comparison. 
Despite the principal feasibility of the algorithm the 

computation of F(X max ) can be rather extensive. That is 
why we will give a theorem allowing a further reduction 
of computational effort. To this end we introduce yet the 
following notations: 

F i (X) = {[f i (X)] : f i  =I i (X)},   (9) 



















 


)(, 0
N

1i
:)()( XFXX iiiZpZXF 

  , (10)  

We have of course Z   F(X) iff Z = V iN
i X1  with 

X )(XF ii   (‘V’ denotes the max-operator being 

applied componentwise). Now we can state: 

Theorem 4.7. The sets F(X) and F


(X) have the 
same minimal elements for XV, that is 

).()( 00 XFXF


   (11) 

Proof. Let Z )(0 XF  . Then we obtain ZF(X) 

from Lemma 2.1, that is, )()(0 XFXF


 . Now 

suppose )(XFQ , i.e. 1
N i

iQ V X ,  

i iX F ( X ) . For each iX we find an 

)(0 XFR ii   (Lemma 2.1) such that ii XR  . But 

then )(1 XFRVR iN
i


   and obviously R   Q. 

Now we can apply Lemma 2.2 and get (11).  
Example. Before listing up numerical data we make 

some useful remarks. If we take h(x, y) = min(x, y) we 
get 

a b =


 

.
,1

otherwiseb
bafor

 (12) 

Hence we obtain 

 




 

 

.0

0)(max
)( )(

otherwise

jforJb
Xf

i

f
f

jijk

i

j
i  (13) 

 Now we take ),,( 321    ,   = ( 321 ,,  ). 

Further let N = 2 and 

.
1.08.02.0
6.02.00.1
2.01.05.0

,
09.02.0
3.01.05.0
6.001.0

2
































 RRi   

Moreover we take h(x, y) = min(x, y). At first we 
consider 

R 1 o X= B1 , R 2 X= B 2   (14) 

With B1 = (0.3, 0.2, 0.4) and B 2 = (0.5, 0.1, 0.3).  

We notice that (14) is inconsistent: The first equation 
has the unique solution X* = (0.4, 0.3, 0.2) which does 
not fulfil the second equation. Now we provide (14) 
with the following tolerances:  

1B  = (0.1,0.1, 0.2) and 2B  = (0.3, 0, 0.1).  (15) 

1B (0.5, 0.3, 0.6) and 2B (0.7, 0.2, 0.5).  

Applying Theorem 4.2 we obtain ψ   0  with  

X max  = (1.0, 0.5, 0.2). Therefore we get 

)( max1
1 XI  = {1, 2, 3),  1

2I  {2, 3}, 1
3I = {1, 2}, 

2
1I = {1, 2), 2

2I  ={1, 2, 3, },  2
3I  = 1, 2, 3). 

Omitting elementary computations we get 
1

0F  = {(0.2, 0.1, 0), (0.1, 0, 0. l), (0, 0.2, 0)}, 

2
0F = {(0.3, 0, 0), (0, 0.3, 0)} 

which leads to ψ = 00 FF


 ={(0.3, 0.1, 0), (0.3, 0, 0.1), 

(0, 0.3, 0)}={ 321 ,, XXX


} and therefore  

ψ =  max
1

3
1 , XXi


   using Theorem 4.5. For the case 

111 BBB  , ( 2B 2, B  as before) we get  

maxX  = (0.4, 0.3, 0.2) and of course X max  =X*. When 
formally using our algorithm we obtain 

1
1I  = {2}, 1

2I  = {3}, 1
3I = {l}, 2

1I =(l), 2
2I ={1,2,3}, 

2
3I ={1,2,3} and therefore F1

0  = {(0.4, 0.3, 0.2)},  

F 2
0 = {(0.3, 0, 0)} and hence it follows that  

F


= {(0.4, 0.3, 0.2)}. But then ψ = max
0 XF 


, that 

is, ψ = maxX  as already stated above. 
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5. The inverse problems (P 1
I )) and (P 2

I ) 
 

5.1. The problem (P1
I ) 

 
Before investigating the structure of the solution set 

of the problem (the formulation of which has been given 
in the introduction) we again shall give necessary 
notations. So we define 

)( N  NjYУУ jN ,...,1);(:),...,( 1      (16) 

We assume this set to be a poset by componentwise 

ordering: With )(, 21  NYY   we define 

21 YY  iff 21
jj YY  , j=l,..., N, when using the 

notation ),,...,( 1
i

N
ii YYY  i = 1,2. Now we will define 

the set of solutions of (P 1
I ): 

 )(),(  NBBB  : (1) is consistent for given 

 )(,  NBB 


 with BBB  . (17) 

We have of course )( N . The following 

statement gives us the possibility to determine the 

extremal elements of  : 

Theorem 5.1. The set    has a greatest element 

max


B  which can be computed in the following way: 

,,...1,maxmax

1
NiXRBB ii 


   (18) 

where maxX  is the fuzzy set given by Theorem 4.1. 

Proof. First we show 


maxB   . From (18) we 

get immediately , max

i
B


maxmax, XRBB iii 


. 

 Moreover ii BXR max . But then 

iii BXRB  maxmax  , i= N. Hence (1) has at least 

the solution maxX . Obviously we have B   if 

max


 BB . Now we assume 


В , but 


B   

max


B . Then there is an i* {1, … N} with 

max*
 

ii BB  Hence )(max  


XRB i
i

 . On the other 

hand there is a Z*   )(  with 





 


ii

i
BZRB  and from Theorem 4.1 we have  

Z* maxX  and )(max  


 XRZRB iii
 . 

But (*) and (**) form a contradiction, which ends the 
proof.  

We will end this section with the remark that   always 

possesses a least element, namely the empty fuzzy set. 
 

5.2. The problem (P 2
I ) 

 
Now we deal with the characterization of the set of 

feasible upper tolerances when the lower ones are given. 
Again we start with definitions: For a fuzzy set under 
consideration we denote the maximal one (over the 

corresponding basic space) by E. So E )( N  

means )( jEi   = 1, i = 1, . . . , N; j = 1, . . . , n, etc. 

Now we define the counterpart of   from the last 

section: 

  ),( BB  =  B )( N  : (1) сonsistent for given 

 BB,  )( N   with BBB   (19)  

While in the previous section we could state that   is 

never empty it may happen that   is. Namely, let us 

choose  EB )( N . Then we compute the 

corresponding maxB according to the above theory. It is 

clear that for maxBB  the set   will be empty. 

Nevertheless, we have the following simple proposition: 

If   0 then EB max  (as defined above) is the 

greatest element (and vice versa).  
Now we will take up the determination of minimal 

elements of  , that is  . We consider the following 

problem: 

Find X  )(  with  

)(max EBXRB iii   , i=l,. . . ,N.    (20) 

We denote the solution set of this problem by   . 

According to Theorem 4.2 we know that      0 iff 

maxX    with )(max  EX . From 

Theorem 4.4 we have 0  = )(0 EF . Let 
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 = B )( N :  XBXRB iii


 , 0  , 

i=l,...,N}.  (21) 
Then we can state: 

Theorem 5.2. The sets ~  and   have the same 

minimal elements, i.e. 0
~ = 0 . 

Proof. First we show 0
~   0 . To this end take 

B  0
~ , i.e. iii BXRB  


 , i=l,..., N, with 

the supposition X


0   . Now let B   and 

 BB . On the other hand we have Z )(  with 

 ZRB ii  iB , i = 1, . . . , N, and of course 

 Z  0  . But then there exists an zX


 0   with 

ZX z 


 an fulfilling  

iizii BZRXRB  


 .  

With the notations izi
z

i BXRB 


 and 

z
N

zz BBB ,...,( 1  ) we obtain  BBB z . Since 

zB  ~  we get  BBB z . But this means 

B 0 , i.e. 0
~  0 . In a simlar way we can 

show that 0
~   0 , go (strong inclusion) cannot 

hold.  

Example. First we consider (P1
I ) with the data of 

the above example, where 1B  and 2B  are taken from 

(15). We will determine the maximal lower tolerances 
according to (18). We have already obtained that  

maxX  = (1.0, 0.5, 0.2). Further, max
1 XR  =(0.5, 0.2, 

0.6), max
2 XR  =(0.5, 0.2, 0.5). Hence we get  

max
1B = (0.3, 0.2, 0.4), max

2B  = (0.5, 0.1, 0.3). This 

shows that the lower tolerances from (15) are not 
‘optimal’ in the sense of feasibility. 

For illustration of (P 2
I ) we choose the lower 

tolerances from (15) and determine the set 0 , due to 

Theorem 5.2. After corresponding computations we 

obtain 0   = 0  with 0  as in Section 4. From this 

we have 0 = (B1 , B 2 ), that means, the right-hand 

sides of (14) are the minimal upper tolerances in this 
example. 
 

6. Concluding remarks 
 

In the present paper we investigated the structure of 
solutions of a certain class of fuzzy equation systems. It 
turns out that the solution set can be described in the 
terms of poset theory. The applied method can be 
extended to problems of fuzzy modelling with 
tolerances (i.e., we look for a fuzzy relation when fuzzy 
inputs and outputs are given). This will be matter of 
further investigation. Besides we have interesting 
connections to fuzzy eigen set problems in given 
regions.  
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