
Надійність програмного забезпечення 177

UDC 004.415.5(075.8)

I. SLIZOVSKAYA

National Aerospace University Named After M.E. Zhukovsky, Ukraine

METHODS FOR IMPROVING QUALITY OF SOFTWARE PRODUCTS

This paper studies the principles of improving the quality of software, which were first suggested by David L. Parnas.
The paper contains a description of the key methods for creating software architecture. The methods described allow
simplifying procedures of controlling the quality of a software product. The paper also contains an analysis of the de-
scribed methods, which details the concept of creating quality software for the purpose of its further development.

quality control, testing, decomposition, information hiding, inspection, tabular construction

Introduction

At every stage of IT technology development, a spe-

cial attention has been paid to issues related to improv-

ing software quality.

Quality is understood to be subjective opinions of

end users and is formed according to the extent to which

software satisfies their demand. These subjective opin-
ions relate to the functionality, usability, reliability, per-

formance, and scalability of any piece of software, as

well as its other characteristics. To satisfy customers'

demand, software makers have to care about the quality

of their products before the development actually starts.

For this reason, quality assurance, error detection and

correction are major players in the process of software

development, without preventing a project from being

on time and on budget.

The industry experience in creating software products
demonstrated that the most serious problems in software

development are related to incompleteness and contradic-

tions in project documentation as well as project require-

ment management. Research shows that troubles with

requirements create more risks than other problems in the

software development process. Errors in requirements

cause approximately one-third of all detected defects.

The process of managing the requirements of a

software development project has been defined as a sys-

tematic approach to eliciting, organizing, and document-
ing the requirements of the system, and a process that

establishes and maintains agreement between the cus-

tomer and the project team on the changing require-

ments of the syste.

Requirements management is a relatively new term.

It used to be called “requirements engineering [1]. The

term “software engineering” was coined to suggest that

those who design and build software should work with

the professional knowledge and discipline that is ex-

pected of engineers in other fields. David L. Parnas is

one of the grand masters of software engineering, whose

academic research and industrial collaborations have

exerted far-reaching influence on software design and

development. His ground-breaking writings capture the

essence of the innovations, controversies, challenges,

and solutions of the software industry. Together, they

constitute the foundation for modern software theory

and practice. David L. Parnas has been developed prin-

ciples and methods that are both of academic interest

and applicable to real-world problems. Software Fun-

damentals – Collected Papers by David L. Parnas is a

practical guide to key software engineering concepts. It

introduces and explains such key topics as [2]:

− decomposition of software into components;

− information hiding as the basis for a modular

program;

− abstract interfaces that provide services without

revealing implementation;

− relational and tabular documentation construction;

− documentation-based software testing;

− software inspections.

© I. Slizovskaya
РАДІОЕЛЕКТРОННІ І КОМП’ЮТЕРНІ СИСТЕМИ, 2007, № 8 (27)

Надійність програмного забезпечення 178

Results of researches

Decomposition of software into components. De-
composition is a process of dividing software products
into components that can be developed, analyzed,
tested, and so on separately. Components interact with
each other in accordance with previously defined proce-
dures, specified by the interfaces. The advantages of this
approach are the following.

• Software architecture allows changing different
components and testing the components separately
(provided that the interfaces remain unchanged). It is
useful for lengthy development cycles as well as for
projects with iterational life cycles (several releases of
new versions with added new features).

• Clear-cut definitions of interfaces allow using
automatic “black-box” unit-testing, which decreases man-
power expenses in the area of software quality control.

• Since tasks are sent to developers as small com-
ponents, requirements for skills, knowledge, and re-
sponsibility of every developer are less onerous; thus,
the quality of a product can be expected to improve.

• Ready components can be used in new projects,
thus making their repeated testing redundant.

• Decomposition required sufficient documenta-
tion and often allows detecting incompleteness and con-
tradictions in the requirements that might result in a
conflict when the components are assembled.

The other side of the above:
• Performing decomposition prior to starting de-

velopment takes a qualified analysts, architects, and a
great deal of time.

• The project depends on the right architecture
having been selected; selecting the wrong architecture
may result in a complete failure of the project, for ex-
ample, when the architecture offers no possibilities for
scalability or extension.

• New requirements, when made in the middle of
the life-cycle, call for a new analysis and mapping re-
quirement changes to changes in modules.

• Changes in interfaces result in a repeated archi-
tecture definition, which, in its turn, require additional
expenditure and repeated testing.

Information hiding as the basis for a modular pro-
gram. Information hiding is a consequence of decomposi-

tion [3]. The logic of a module remains closed within this
module and there is no need for it to be known outside the
module, since the interface interaction is defined before-
hand. Special features of the method are following.

• A module’s logic can be easily modified (for ex-
ample, a more efficient algorithm can be implemented),
without changing other interacting modules and tests.

• Module calls need additional, certain time-
critical parts of a program cannot be consigned to a
module (for example, in embedded systems, when re-
sources are limited).

• Minimizing information exchange in the proc-
esses of writing requires intensive information ex-
changes when the application is running, and vice versa.

• Higher constructive flexibility requires more re-
sources, and vice versa.

Abstract interfaces that provide services without
revealing implementation. An abstract interface is an
interface that represents many possible actual interfaces
equally well, an interface that models some, but not all,
of the properties of an actual interface, a proper subset
of the set of assumptions in the actual interface.

If all the properties of the abstract system correspond
to the properties of the real system, a great deal of infor-
mation about the real system can be obtained through
studying the abstraction. The abstraction provides less
information, but it may appear more complex because it
is described using unfamiliar notation. The results of the
abstraction may be “reused.” They apply in many situa-
tions. These situations share the abstraction and differ
only in the things that are abstracted from. Abstractions
can introduce restrictions but do so consciously.

Relational and tabular documentation construc-
tion. There are two aspects to abstract documentation:

• better design, which is easier to document;

• using mathematics, which is
o more compact;
o less ambiguous;
o more useful than natural language.

The use of mathematics enables checking for com-
pleteness, checking for consistency, having a precise
description, having a reviewable document, often simu-
lating the system, basing the design on the document,
and making optimizations to simplify the system.

Надійність програмного забезпечення 179

The main purpose of using mathematics is automatic

testing since a table record can be processed by special-

ized software. Below are the mathematics-based meth-

ods suggested by Parnas for recording requirements.

Step 1. Record the requirement as a

[]()([]() ()
() []() ())

()

, ' ' '

, 1 '

' ' ' ' .

∃ = ∧ = ∧ = ∨

∀ ≤ ≤ ⇒ ≠ ∧ = ∧

∧ = ∧ =

i B i x B j x present true

i i N B i x present false

x x B B

Step 2. Provide an expanded view of the requirement

recorded as a mathematical formula. This method is not

more formal or more difficult than the programming

language. This means: “Set i to indicate the place in the

array B where x can be found and set present to be true.

Otherwise set present to be false.”

But there are some unclear points:

• What need be done if the array is of zero length?

• What need be done if x is present more than once?

• Is it allowed to change B or x?

• What does the “otherwise” mean: Does it mean

that if something that need be done is not done, or if

there is no place in the array where x can be found, or if

there are many places where x can be found?

Step 3. Record the requirement as a table:

 x can be found in B x can not be
found in B

j = place where x can be
found in B

any number at
all

present = true false

Step 4. Modify the table so that all the expressions

conform to the rules of computer algebra:

The first method can be implemented in mathemat-

ics-based tools, but requirements recorded using this

method are difficult for people to interpret.

The second method appears to be clearer but does

not answer key questions.

The third method is clearer but does not answer one

key question and cannot be implemented in reliable tools.

The fourth method is complete and could be proc-
essed by tools. It is, in theory, equivalent to the first, but
in practice much better.

Table records are successfully used for documenting
processes that can be expressed as a table of states and
transitions [4], which allows considering a module as a
finite state machine and applying the principles of finite
state machine theory to it. One table may best serve one
purpose, for example, communicating between people
involved in specifying the program in question, while a
different but equivalent table may best serve some other
purpose, for example, communicating between other peo-
ple or planning and designing the program. It is, therefore,
often desirable and useful in practice to construct a table
representing the specification for the program and then to
transform that table into other equivalent tables. To create
and use a mathematical record, it is necessary to:

− review existing Computer Algebra Systems and
select the combination of tools that is most suited for
our purposes;

− develop an automated method of checking that
each tabular expression satisfies a specified restriction
for all possible assignments of values to its variables.

Documentation-Based Software Testing. Software
must be tested according to appropriate documentation.
The documentation is assumed to be ready and complete
by the time testing begins. David Parnas suggests that
the following widely-known testing methods be used:
Black Box Testing, Clear Box Testing, and Grey Box
Testing [5].

The following method of calculating test volumes,
sufficient to achieve the required degree of trustworthi-
ness, is suggested:

1. Assume that the right input distribution is avail-
able. Tests selected randomly from this distribution will
be used.

2. Let 1/h be the required reliability.
3. The probability of passing N properly selected

tests if each test would fail with probability of 1/h will
be: M = (1 - 1/h)N

4. M is the probability that a marginal product
would pass a test of length N.

This method works reliably if the number of test
cases is unlimited from the start.

 (), []∃ =i B i x (()), []∀ ¬ =i B i x

j’ | ['] =B j x true

present’= true false

Надійність програмного забезпечення 180

Software Inspections. The procedure for inspecting

software [6] consistently finds subtle errors in software.

The procedure is based on four key principles:

• All reviewers actively use the code.

• Reviewers exploit the hierarchical structure of the

code rather than proceeding sequentially through the code.

• Reviewers focus on small sections of the code,

producing precise summaries that are used when in-

specting other sections. The summaries provide the

“links” between the sections.

• Reviewers proceed systematically so that no

case, and no section of the program, gets overlooked.

David Parnas suggests the following inspection pro-

cedure:

1. Begin by identifying and listing desired proper-

ties.

2. Prepare questionnaires for the reviewers.

3. Prepare a precise specification of what the code

should do.

4. Decompose the program hierarchically into parts.

5. Produce the descriptions required for the “dis-

play approach”/

6. Compare the “top-level” display description with

the requirement specification.

Inspections are carried out by a sufficient number of

experts specializing in the subject area. The experts

must be familiar with the purposes and tasks of the pro-

ject. Their responsibilities must be clearly defined and

assigned.

Inspections have the following peculiarities:

• constant control of the development process at

all of its stages;

• all deviations in the process are reported and cor-

rected;

• external critical reviews lead to better results

than internal reviews within a group of developers;

• a sufficient number of subject area experts are

required;

• sufficient time is required to conduct inspections.

Conclusion

The approaches and methods, suggested by David

Parnas, allow systemizing requirements, create architec-

ture, and organize the software development process, so

that the end product is of high quality. Using computer

algebra allows automating the process the process of

managing requirements for software products; this ap-

proach results in lower development costs and a shorter

development time.

References

1. Peters, D.K., Parnas, D.L. Requirements-Based

Monitors for Real-Time Systems // IEEE Transactions

on Software Engineering. – February 2002. – Vol. 28,

No.2. – Р. 146-158.

2. David Lorge Parnas, P.Eng. Decomposition of

Software Into Components // Faculty of Informatics and

Electronics. University of Limerick. 2003.

3. Parnas, D.L. The Secret History of Information

Hiding // Software Pioneers: Contributions to Software

Engineering, Manfred Broy and Ernst Denert (Eds.),

Springer Verlag, Berlin – Heidelberg, 2002. – Р. 399-

409, ISBN 3-540-43081-4.

4. Baber, Robert L. Practical Guidelines for Con-

structing and Simplifying Tables for Finite State Ma-

chines (FSMs) and Trace Functions (TFs) // SQRL Pa-

per, June 14. 2005.

5. David Lorge Parnas, P. Eng. Documentation

Based Software Testing // Faculty of Informatics and

Electronics. University of Limerick. 2003.

6. Parnas, D.L, Lawford, M. The Role of Inspection

in Software Quality Assurance // IEEE Transactions on

Software Engineering. – Guest Editor's Introduction. –

August 2003 – Vol. 29, No. 8. – Р. 674-676.

Поступила в редакцию 22.02.2007

Рецензент: д-р техн. наук, проф. В.М. Илюшко,
Национальный аэрокосмический университет
им. Н.Е. Жуковского «ХАИ», Харьков.

